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Abstract 
This paper summarizes the works of numerous inspiring hard-working ma-
thematicians in chronological order who have toiled the fields of mathematics 
to bring forward the harvest of Eulers number, also known as Napiers num-
ber or more infamously, e. 
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1. Introduction 

The number e, rather famously known as Euler’s number, is one of the irrational 
numbers, similar to the infamous π. It is a relatively young irrational number, 
compared to π, having first shown up in calculations in the mid-16th century [1]. 

In the years that followed, the very intriguing number e remained hidden in 
early mathematicians’ complex calculations, and its existence and important prop-
erties were shrouded for mathematicians at that time were on the verge to find 
other less abstract-more practical physical and mathematical solutions to more 
pressing problems such as navigation [2]. 

It was in the early 18th century that Leonhard Euler first mentioned the num-
ber e in one of his letters. That is the first time that e had appeared and thanks 
go to Leonhard Euler for also identifying e’s unique properties that makes it an 
irrational number [3]. 

Over the years that followed e was further studied but not with as much en-
thusiasm as mathematicians had for π. Euler’s number, among other irrational 
constants, is nature’s way of indicating that the curiosity of men and men will 
power to verge into the unknown is unlimited [4]. 

For ages, the mysteries of the universe have been hidden in the strange and 
intriguing “fabric” of mathematics. Apart from the few mathematically inclined 
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persons in this world, mathematics seems rather like an abstract phenomenon 
but it is more intertwined into every individual’s daily life then one might ex-
pect. 

It is without a doubt that irrational constants could be the most fascinating 
wonder of mathematics. As a simple definition, one can say that irrational con-
stants are which can never have a finite representation in digits, having their sig-
nificant figures expand into infinity. In other words, they go on forever [5]. Some 
examples include the famous π, the golden ratio and even simply the square roots 
of some numbers, for example square root of two. However, the constant this 
piece will be mainly discussing is one that is intertwined into business, compu-
ting and almost every other subject derived from mathematics-Euler’s constant 
is represented as e. 

2. The Number e First Appears in Mathematics through the 
Efforts of John Napier in His Work on Logarithm—1618 

John Napier of Merchiston (see Figure 1) was a Scottish landowner. He is also 
well known for being a mathematician, keen physicist, and also an astronomer. 
John Napier is best known to have discovered logarithms and work with loga-
rithmic calculations [6]. During his time, he saw that the calculations involving 
incredibly large numbers, and very small numbers were a hefty task. Being a 
practical man who had a strong opinion that mathematics always had to be ap-
plied in real life, began by developing a system of logarithms which became the 
earliest logarithm known. 

In essence, logarithms today simplify extensive calculations by allowing the 
lengthy task of multiplication to be simplified down to just being able to add two 
numbers to obtain the same value. In other words, a shortcut for calculating 

 

 
Figure 1. John Napier (1550-1670). 
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exponents. John Napier’s aim was essentially this, so he went on to develop the 
first system of logarithm which follows the procedure described briefly below. 

Associated to every number was a representative numeral. Napier termed this 
representative numeral at first as an “artificial number” (which he after some 
time labeled as “logarithm”). The main idea was that when these two representa-
tive numbers were “added” (or subtracted) it would give a result which was the 
equivalent to the result obtained when the two original numbers were multiplied 
or divided (see Figure 2). 

Napier’s original work on logarithms is displayed in his publication of Mirifici 
Logarithmorum Canonis Descriptio in the year 1614. The constant e first time 
grand appearance in this piece of work, but no formal recognition of its unique-
ness which stem from its properties were provided. Napier’s original logarithms 
are not as much alike as the logarithm used today. These old logarithms were to 
the base 1/e and calculations also involved a constant (107). Napier defined the 
logarithms he had found as a ratio of two distances in a geometric form. The lo-
garithms used today however, are based on the concept of exponents. Napier’s 
calculations may not be widely used today, but a clear understanding of Napier’s 
work can help one grasp the concept of the early relation of e with Napier’s work 
and logarithms (see Figure 3). 

 

 
Figure 2. The two original parallel lines that John Napier used with moving particles. 

 

 
Figure 3. The relation between the two lines and the log and sine functions. The two particles and 
their line of travel can be clearly seen. 
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Napier based his ideas of the logarithm in a, what is primarily, a kinematic 
framework. He began by imagining two particles, one he set moving with a con-
stant velocity on an infinite line to cover equal distances in regular time inter-
vals. The other particle he set moving, at the same time and velocity as the first, 
but the length of the line this particle had to travel was finite. Its velocity at a 
particular point was proportional to the distance left to cover in its path [7]. 

3. Henry Briggs, a Professor at Gresham College in London, 
Began Investigating Napier’s Work and Identifies a 
Numerical Operation of Logarithm of e to the Base 
10—1624 

Henry Briggs (see Figure 4) was a professor at the Gresham College in London. 
After Napier published his work on logarithm, Briggs begin studying it and saw 
a relation which led to the discovery of the base 10 logarithm. 

Briggs was very interested in the application of logarithm in navigation, a field 
of major importance for England at that time. His major work was that he made 
calculations of a numerical operation to the base 10 logarithm of e. However, 
Briggs never made any specific referencing to any constants such as e [8]. 

4. Saint Vincent Computes the Area under a Rectangular 
Hyperbola—1647 

Grgoire de Saint-Vincent (see Figure 5) was a famous Flemish mathematician. 
His study and work, mainly on the quadrature of the hyperbola is what he is re-
membered for in the history of mathematics. A rectangular hyperbola is any 
curve given by 

=xy k  
on the Cartesian axis. Saint-Vincent found that the area formed under a rectan-
gular hyperbola between the interval [ ],p q  is the same as over another interval 
[ ],r s  when 

 

 
Figure 4. The British mathematician Henry Briggs (1561-1630). 
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Figure 5. Gregoire Saint Vincent (1584-1667). 

 

=
p r
q s  

Whether or not he recognized the connection with logarithms is still uncer-
tain as no direct evidence of any of his calculations are provided. Even if he did 
include the extensive calculations, the probability was low that he would come 
across the number e plainly [9]. 

5. Huygens Understood the Relation between the 
Rectangular Hyperbola That Saint Vincent  
Discovered to the Logarithm—1661 

The famous Dutch Christian Huygens (see Figure 7) was a highly respected 
mathematician, inventor and appreciated astronomer of his time. Many consider 
him to be one of the greatest scientists of all time and a significant figure in the 
scientific revolution. Fascinating enough, he was also a student of Saint-Vincent. 
Huygens in his study of the rectangular hyperbola, established the relation be-
tween the logarithms that Napier had found and the rectangular hyperbola that 
Saint Vincent discovered. 

It was mentioned previously that a rectangular hyperbola is any curve given 
by xy k=  on the Cartesian axis. A useful property that Huygens paid attention 
to was that from the hyperbola was that the area under a rectangular hyperbola 
is the same between interval [ ],p q  as it was between the interval [ ],r s  when 

p r
q s
= , 

Huygens examined clearly the relation between the area under the rectangular 
hyperbola 
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Figure 6. Illustrated here is a rectangular hyperbolic curve. Highlighted in gray is the area 
under the curve ( ) 1f x x=  from 1 to a. If a is less than 1, the area from a to 1 is 

counted as negative. 
 

1xy =  

and the natural logarithm which is essentially log to the base e (see Figure 6). 
From this property, one can define a function ( )A x , which is the area under 
the above curve from 1 to x, to be defined by the property that 

( ) ( ) ( ).A xy A x A y= +  

This functional property is what makes logarithms unique, and it is common 
practice to call such functions ( )A x  a logarithm. It is worth noting that when 
the rectangular hyperbola 1xy =  is chosen, one obtains the logarithm to base 
e-also known as the natural logarithm. 

Again, from this it is clear to identify the logarithm to base 10 of e, which was 
calculated to 17 decimal places by Huygens. Finally, for the first-time in history, 
e has made a major appearance. However, it is just considered as another con-
stant in Huygens’s work and does not have much significance as an irrational 
constant. The sole reason being that the unique properties of e have not been 
discovered yet. Once again, it is a close call to finding the irrational number, but 
e remains unrecognized still, and shrouded by other ideologies [5]. 

6. Nicolaus Mercator Publishes Logarithmotechnia,  
A Brilliant Piece of Work Which Contains the Series 
Expansion of log(1 + x)—1668 

Nikolaus Mercator (see Figure 8) was a German mathematician, well known for 
his published work on logarithms-Logarithmotechnia (see Figure 9). In Merca-
tor’s work Logarithmotechnia, Mercator labels all the logarithms to the base e 
with the term “natural logarithm” for the first time. Again, sadly the unique num-
ber e remains just another constant and is not appreciated for its uniqueness. It  
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Figure 7. Christiaan Huygens (1929-1695). 

 

 
Figure 8. Nicolaus Mercator (1620-1687). 

 

 
Figure 9. The original work-Logarithmotechnia of Mercator. 
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waits elusively just around the corner for another brilliant mind to bring it into 
light. He used the series expansion of ( )log 1x + . 

7. Jacob Bernoulli Finally “Discovers” the Number e through, 
not Logarithm, But Instead Compound Interest—1683 

The famous Bernoulli (see Figure 10) family had many successful mathemati-
cians but Jacob Bernoulli was the most successful of them. His multiple contri-
butions to calculus make him well known in the mathematical community. It 
will be shown that he was also the first mathematician to determine the funda-
mental properties of the irrational mathematical constant e. 

The fascinating thing about the discovery of e, is that though extensive work 
and research was put into logarithms, the number e was not discovered by pre-
vious mathematicians in the process of these logarithmic calculations. In fact, it 
was in an entirely different field; through Jacob Bernoulli’s work on compound 
interest that e became “discovered”. 

Jacob Bernoulli stumbled across the number e in 1683, while studying a ques-
tion on compound interest. 

His main research was based on the problem of compound interest and, in 
probing the properties of continuous compound interest. He was after the an-
swer to the limit of 

1lim 1
n

n n→∞

 + 
 

. 

The limit had to lie between two and three according to his calculations using 
the binomial theorem [10]. An expansion of working out similar to his is ex-
plained below. 

Imagine a bank account has an initial deposit of $1.00 total paying 100 percent 
in interest annually. The value of the account will be valued at $2.00 at the end of 
the year after the first interest has been credited. The question in Bernoulli’s 
mind was what would happen if the interest given by the bank had been credited 
more frequently throughout the following financial year? 

Bernoulli calculated that if the interest had been credited twice in any specific 
year, the interest rate 50% for a time period of 6 months. As a result, the $1 in 
the opening of the account is multiplied by 1.5 twice in a year, giving the bank  

 

 
Figure 10. Jacob Bernoulli (1655-1705). 
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account a value of: 
2$1.00 1.5 $2.25× =  

If a similar situation was taken but now with the interest being compounded 
quarterly, it would yield 

4$1.00 1.25 $2.4114× =   

Taking a scenario where the interest was compounded monthly would yield 
121$1 1 $2.613035

12
 × + = 
 



 

If n compounding time frames and intervals are taken, the interest for each 
interval can be calculated by dividing 100% by n time frames which yields at the 
end of a financial year a total account valued at (1 + 1/n) raised to n, 

1$1.00 1 . × + 
 

n

n  

Bernoulli saw that as n approached a very high value, the sequence reached a 
particular number. When the compounding interval was taken weekly, the ac-
count at the end of the year was valued at $2.692597. When the time frame was 
decreased even farther to a daily interval, it yielded $2.714567 at the end of the 
fiscal year. 

After taking very small-time intervals, Bernoulli found that the sequence limit 
approached a value of $2.7182818 [7]. This, in the history of mathematics can be 
taken as the first approximation of e. In addition, this can also be said to be the 
first time in mathematical history, a number was defined by the limiting process, 
and this process defines e. Bernoulli did not realize that his work was related to 
the work on logarithms at that time though. 

8. Leibniz Writes a Letter to Huygens, and Formally States 
the Value of the Constant e, But Uses the Letter b  
Instead—1690 

Gottfried Wilhelm Leibniz (see Figure 11) was a prominent German mathema-
tician, logician and philosopher of his time. He was also a physics student of 
Christiaan Huygens. 

Leibniz wrote a letter in the year 1690 to another mathematician Huygens. In 
this particular letter Leibniz had denoted the letter b to represent the value 
which is now known as e. This can be seen to be the first time that e shows up as 
a unique number on its own. At last, after decades of computation by numerous 
mathematicians, the number e had been given a label or name. Despite not being 
the present name that is used today, at the least, it was recognized. 

Leibniz came across the constant e in his work in calculus and the process 
of integration. His work was done at the same time at which Isaac Newton 
was around and there is still debate to which mathematician is the father of 
calculus. 
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Figure 11. Gottfried Wilhelm Leibniz (1646-1716). 

 

 
Figure 12. Johann Bernoulli (1667-1748). 

9. Johann Bernoulli Commences His Work the Calculus  
Involving the Exponential Function—1697 

Johann Bernoulli (see Figure 12) was a Swiss mathematician of the well renowned 
Bernoulli family. His major work includes the application of calculus to mechan-
ical problems. 

Earlier on, it was stated that there were problems arising from the fact that log 
was not considered by the mathematical community as a function. It was Johann 
Bernoulli that began studying the calculus of the exponential function in 1697 
which was published in his work Principia calculi exponentialium seu percur-
rentium. This work uses the lengthy process of integrating term by term to cal-
culate many exponential series. This calculus relates the number e and logarithms. 
Unusually in the history of mathematics, a single family, the Bernoulli’s, pro-
duced half a dozen outstanding mathematicians over a couple of generations at 
the end of the 17th and start of the 18th Century (see Figure 13). 

Johann Bernoulli is truly a significant mathematician, having made many dis-
coveries not only in the calculus relating to exponential functions, but also in 
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other fields such as solving the brachystochrone problem in which the fastest path 
had t be determined for the descent of a particle between two points in a gravita-
tional field; among other mathematical contributions [10]. 

10. Leonhard Euler Goes on to Designate the Variable e to 
Represent the Constant—1731 

Leonhard Euler (see Figure 14) still remains one of the most admired Swiss ma-
thematician, geographer, engineer and astronomer, having contributed to science 
and mathematics, numerous discoveries. 

A large amount of mathematical contributions was given by Leonhard Euler 
to the mathematical community that it does not amaze one that much, to find 
that the notation that is used today-e-to represent the irrational constant is a 
contribution by Euler. However, it may not be entirely true that the letter e was  

 

 
Figure 13. Johann Bernoulli and Jacob Bernoulli working on mathematical problems. 

 

 
Figure 14. Leonhard Euler (1707-1783). 
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used because it was the first letter of his name. It may not even be the case that 
the e was derived from the first letter of the word “exponential”. At that time 
Euler had already assigned the notation a to another constant in his study and he 
used the letter e, which was the vowel after a to denote and represent Euler’s 
number e. The reason, whatever it may be, led to the allocation of e to the con-
stant as it was used in a letter that Euler wrote and sent to Goldbach in the year 
1731 [2]. 

11. Leonhard Euler Goes on to Make Various Discoveries 
Regarding e—1748 

Leonhard Euler had made several discoveries of the properties of e in the years 
that followed and in the year 1748 he published his research Introductio in Ana-
lysin infinitorum and gave detailed explanations presented formally of the unique 
properties and ideas relating to e. In particular, Euler proved that 

1 1 1 1e 1
1! 2! 3! 4!

= + + + + +
 

and also showed Jacob Bernoulli’s work showing es first major approximation 

1e lim 1 .
→∞

 = + 
 

n

n n  
In this piece of work, Euler stated an approximation for number e to 18 de-

cimal places 

e 2.718281828459045235.=  
It remains a mystery of how he went about to derive e to 18 decimal places. 

He listed it without showing any calculations on how it was done. The most ap-
plicable explanation is taking about 20 terms of 

1 1 1 1e 1
1! 2! 3! 4!

= + + + + +
 

This gives the answer for e with the same degree of accuracy which Euler had 
stated. 

Another fascinating feature of e that Euler had discovered was the connection 
between the complex exponential function and the sine and cosine functions. 
Euler successfully deduced this using De Moivre’s formula. 

Interestingly, Euler also gave the continued fraction expansion of e and showed 
that there was a pattern that followed as the calculation propagated. In particular 
he showed that 

e 1 1
12 1 16 110 114

18

−
=

+
+

+
+

+  
Where it can also be observed that 
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1e 1
11 12 11 11 14 11 12

6

− =
+

+
+

+
+

+
+

+  
Euler provide in his work evidence for the patterns he spotted continues. De-

spite this, he knew that if some form of calculation was found to indicate that the 
calculations he showed were infinite, it would act as evidence that e was an irra-
tional number. 

This is clear to see because the propagated calculations of the fraction (e − 
1)/2 follows the pattern like observed for example 6,10,14, . Obviously e 
could not be rational. This simple calculation leads to the conclusion that this 
may have been the first attempt by a mathematician to prove the irrationality 
of e [9]. 

Shank and Glaisher work calculate the value of e to 205 decimal places-1854 
The same interest and drive that mathematicians had of calculating more and 
more decimals for the number e was not as powerful and inspiring as the passion 
they had at that time for π [2]. 

There were a few who did calculate its decimal expansion. In the year 1854, 
Shanks gave a large decimal expansion of e. Interestingly, Shanks was an even 
more enthusiastic about the calculation of π to a large number of decimal places 
though. Glaisher showed in his calculations that the first 137 places of Shanks 
calculations for e were correct but found an error on the 138th value which, after 
correction by Shanks, gave e to 205 decimal places. A mathematician attempting 
to solve the problem at that time would need about 120 terms of 

1 1 1 1e 1
1! 2! 3! 4!

= + + + + +
 

to achieve an accuracy of such degree and a huge amount of patience[1]. Benja-
min Peirce relates the constants e, π and imaginary number i-1864 Benjamin 
Peirce (see Figure 15) during one of his lectures he stated to his students: 

Gentlemen, that is surely true, it is absolutely paradoxical; we cannot under-
stand it, and we don’t know what it means. But we have proved it, and therefore 
we know it must be the truth. 

On Euler’s identity, 
ie 1 0π + =  

Euler’s identity can be seen as one equation that represents deep mathematical 
beauty. There are five of the mathematical constants that are linked by the three 
basic arithmetic operations-addition, exponentiation and multiplication. And what’s 
more fascinating is that they all occur only once. Here are the five mathematical 
constants used: 
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Figure 15. Benjamin Peirce (1809-1880). 

 
• The number 0 which is the identity for addition; 
• The number 1 which is the identity for multiplication; 
• The number π which is the fundamental circle constant; 
• The number e, which is a widely occurring constant in growth and decay 

analysis; 
• The number i which is used in complex number system calculations repre- 

senting the imaginary unit [7]. 

12. Hermite Officially Proves That e Is an Irrational  
Number—1873 

Charles Hermite (see Figure 16) was a French mathematician who did research 
concerning number theorems, quadratic forms and complex geometry. 

Leonhard Euler is widely regarded as the first mathematician to prove the ir-
rationality of the number e (as show previously). However, in the year 1873 
Hermite successfully proved the irrationality of the number e by showing that it 
wasn’t an algebraic number. It would be absurd for any mathematician to se-
riously believe that e would be algebraic [3]. 

13. Boorman Calculates e to 346 Decimal Places—1884 

In the years that followed other mathematicians worked on the decimal expan-
sion of e. In 1884 Boorman calculated e successfully to 346 decimal places. In his 
calculations he proved that Shanks calculations were accurate to only 187 de-
cimal places. 

To present day, using computer programs the value of e has been given to bil-
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lions of decimal places. Much like π, the irrational number e still fascinates ma-
thematicians worldwide. It is used in business, engineering and geography. The 
irrational constant is truly, a wonder. 

Here as a clear depiction of the beauty of e. If the equation is graphed 

e= xy  
It can be find that: 
1) The slope at any given point on the curve is also equal to e raised to x; 
2) The area formed under the curve from negative infinity up to x is also e 

raised to x. 
The function of exy =  is the only constant in all the fields of science and 

mathematics studied to date for which the two points above hold true. It brings 
into perception how intimately e is related the idea of growth-exponential growth 
(see Figure 17). 

 

 
Figure 16. Charles Hermite circa (1822-1901). 

 

 
Figure 17. A graph of ( )expy x=  sketched using a graphing software. 
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14. Conclusion 

The universe that encapsulates all, and what human beings can perceive and un-
derstand is infinite. There is no saying what other mysterious and beautiful irra-
tional constants lay out there waiting to be discovered. The will of the human 
spirit is unyielding, and hence if the search to understand better the universe and 
all structurally-critical constants such as e are what is desired, it can be and will 
be discovered and understood. 
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