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Abstract 
A novel model of spacetime and fields atomization based on Atomic Series over 
finite Atomic AString Functions is offered. Formulated Atomization Theorems 
allow representing polynomials, analytic functions, and solutions of field eq-
uations including General Relativity via superposition of solitonic atoms which 
can be associated with flexible spacetime quantum, metriants, or elementary 
distortions. Spacetime is conceptualized as a lattice of flexible Atomic Solitons 
adjusting locations to reproduce different metrics and other physical fields. It 
may offer the variants of unified field theory based on Atomic Solitons where, 
like in string theory, fields become interconnected having a common mathe-
matical ancestor. 
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1. Introduction and “Atomic Theory” of A. Einstein 

In a 1933 lecture [1] cited below with some highlights, A. Einstein discussing 
some controversies of Quantum Mechanics mentioned the prospects of a novel 
“atomic theory” based on “mathematically simplest concepts and the link be-
tween them” to solve some “stumbling blocks” of continuous field theories to de-
scribe quantized fields. 

“The important point for us to observe is that all these constructions and the 
laws connecting them can be arrived at by the principle of looking for the ma-
thematically simplest concepts and the link between them. In the limited num-
ber of the mathematically existent simple field types, and the simple equations 
possible between them, lies the theorist’s hope of grasping the real in all its depth. 
Meanwhile the great stumbling-block for a field-theory of this kind lies in the 
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conception of the atomic structure of matter and energy. For the theory is fun-
damentally non-atomic in so far as it operates exclusively with continuous func-
tions of space, in contrast to classical mechanics, whose most important element, 
the material point, in itself does justice to the atomic structure of matter… I still 
believe in the possibility of a model of reality—that is to say, of a theory which 
represents things themselves and not merely the probability of their occur-
rence… But an atomic theory in the true sense of the word (not merely on the 
basis of an interpretation) without localization of particles in a mathematical 
model is perfectly thinkable. For instance, to account for the atomic character of 
electricity, the field equations need only lead to the following conclusions: A re-
gion of three-dimensional space at whose boundary electrical density vanishes 
everywhere always contains a total electrical charge whose size is represented by 
a whole number. In a continuum-theory atomic characteristics would be satis-
factorily expressed by integral laws without localization of the entities which 
constitute the atomic structure. Not until the atomic structure has been success-
fully represented in such a manner would I consider the quantum-riddle solved.” 

Interestingly, some of Einstein’s aspirations of a novel “atomic theory” with 
“simplest concepts and links between them” based on finite “regions of space” 
with “atomic structure” can be realized with the theory of Atomic Functions (AF) 
pioneered in the 1970s by V.L. Rvachev and V.A. Rvachev [2]-[12] without con-
nections to Einstein’s theories until 2017-2022 author’s works on Atomic AStr-
ing Functions and Atomic Solitons in spacetime physics [2] [3] [4] [5]. The mo-
tivation for this research is to demonstrate how two theories—General Relativity 
(GR) [13] [14] [15] [16] and Atomic AString Functions [2]-[12]—can be com-
bined as well as to offer a novel mathematical interpretation of spacetime field as 
a superposition of flexible ‘solitonic atoms’ (Atomic Solitons). The combined 
Atomic Spacetime theory is based on formulated Atomization Theorems (§5) 
allowing representation of polynomials, analytic functions, and solutions of dif-
ferential equations of mathematical physics including GR [13]-[33] via superpo-
sition of finite Atomic AString Functions resembling flexible quanta (§3, 7). It 
leads to novel Spacetime Atomization models and atomic metriants (§3, 7, 8) as 
well as offers some variants of unified field theory based on Atomic Solitons (§8, 
9). 

The main difficulty of integrating relatively new Atomic Functions theory 
[2]-[12] into GR [1] [13] [14] [15] [16] was to figure out how AFs known for 
their unique approximating properties of analytical functions and solutions of 
linear differential equations [6]-[12] can be applied for such a complex GR equa-
tion including nonlinear Ricci tensors [13] [14] [15] [16]. The breakthrough idea 
first intuitively envisaged in [2] [3] is based on the combination of three proper-
ties—derivatives and integrals of finite Atomic Function splines expressed via 
AF itself [2]-[12], the ability of Atomic AString Functions to represent poly-
nomials and analytic functions [6]-[12], and “preservation of the analyticity” for 
Ricci tensor first noted here (§6). It means if smooth spacetime geometry is 
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represented as a superposition of finite AF splines, the deformations, metric, 
Ricci, and Einstein curvature tensors would also be some AF combinations be-
cause derivatives and complex multiplications of AFs are expressed via AF 
themselves. It offers a discrete-continuous interpretation of spacetime and oth-
er fields as a complex network/lattice of shifted and stretched “solitonic atoms” 
resonating with A. Einstein’s [1] aspirations of a “perfectly thinkable” “atomic 
theory” with “simplest concepts and links between them” where finite “regions 
of space” can have “atomic structure”. The background, challenges and contri-
butions to Atomic Functions theory are described in the historical review he-
reafter.  

2. Brief History of Atomic and AString Functions 

Theory of Atomic Functions (AF) [2]-[12] has been evolving since 1967-1971 
when V.L. Rvachev1, had envisaged finite pulse function ( )up x  for which de-
rivatives (also pulses) would conveniently be similar to the original pulse shifted 
and stretched by the factor of 2: 

( ) ( ) ( ) ( )2 2 1 2 2 1 for 1, 0 for 1.up x up x up x x up x x′ = + − − ≤ = >    (1.1) 

This and other similar functions possess unique properties of infinite differen-
tiability, smoothness, nonlinearity, nonanalyticity, finiteness, and compact sup-
port like widely-used splines. What the most significant is that other functions 
like polynomials, sinusoids, exponents, and other analytic functions can be 
represented via a converging series of shifts and stretches of AFs. So, like from 
“mathematical atoms” [6]-[12], smooth functions can be composed of the AF 
superpositions, and because of that those “atoms” have been called Atomic Func-
tions in the 1970s. 

The foundation of AF theory has been developed by V.L Rvachev and V.A. 
Rvachev [2] [3] [4] [5] [6] [25] [27] and enriched by many followers from dif-
ferent countries, notably by schools of V.F. Kravchenko [9] [10] [11] [12], B. 
Gotovac, H. Gotovac [26] [33], and the author [2] [3] [4] [5] [21] [22] [23], with 
the number of papers and books observed in [10] has grown to a few hundred. 
In 2017, the author noted [2] [3] [4] [5] that AF ( )up x  (1.1) is a composite ob-
ject consisting of two kink functions called AStrings [2] [3] [4] [5] making them 
more generic: 

( ) ( ) ( ) ( )2 1 2 1 .up x AString x AString x AString x′= + − − =        (1.2) 

Moreover, AString is not only a “composing branch” but also an integral of 
( )up x . Mutual relationships (1.1), (1.2) imply that theories and theorems in-

volving AFs can be reformulated via AStrings. Composing AF pulse (1.1) via 
kink-antikink pair (1.2) of nonlinear AStrings resembles “solitonic atoms” (or 
bions) from the theory of soliton dislocations [5] [29] [30]. This led to the theory 

 

 

1Vladimir Logvinovich Rvachev (1926-2005), https://en.wikipedia.org/wiki/Vladimir_Rvachev, Aca-
demician of National Academy of Sciences of Ukraine, author of 600 papers, 18 books, mentor of 80 
PhDs, 20 Doctors and Professors including the author. 
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of Atomic Solitons [3] [5] where AString (1.2) becomes a solitonic kink while 
( )up x  is a “solitonic atom” made of AStrings. The ability of AFs to compose 

polynomials and analytic functions leads to novel interpretations of spacetime 
and field composition from Atomic Solitons [2] [3] [4] [5]. 

AString possesses another important property of composing/partitioning a 
line and curves from a superposition of AStrings resembling the ideas of quanti-
zation of space lines, geodesics, and generally spacetime field published in 2018 
[3] as an “intuition theory”. It assumes the representation of spacetime and 
gravity as a superposition of Atomic Solitons leading to ideas of “atomization of 
spacetime” and supporting some A. Einstein’s aspirations [1] of an “…atomic 
theory with mathematically simplest concepts and the link between them” to 
solve some “stumbling blocks” of continuous field theories to describe quantized 
fields. 

The mathematical foundation of the “fields atomization” theory is based on 
the sequence of 13 Atomization Theorems, also proven in [23]. Starting from 
some known theorems extended here for recently introduced AStrings with the 
so-called Atomic Series, it is extended to new theorems for composite analytic 
functions, nonlinear theories, and finally nonlinear General Relativity (GR) equ-
ations. Interestingly, Atomic AString Functions can be not only introduced into 
GR but deduced from GR to uphold A. Einstein’s ideas of finite “regions of space” 
with “discrete energies” [1] [23].  

The Atomization Theorems are not limited to spacetime but can also be ap-
plied to many physical theories including Quantum Mechanics, electromagnet-
ism, elasticity, heat conductivity, soliton theories, and field theories [7]-[12] 
[22]-[27] [29]-[50]. Unified representation of fields composed of Atomic AStr-
ing Functions may offer some novel variants of unified theory based on Atomic 
Solitons [2] [3] [4] [5] [23] [42] where, like in string theory, fields become in-
terconnected having a common mathematical ancestor. 

3. Deriving Simple AString Metriant Function 

Let’s consider the problem of composing a straight x and curved ( )x x  space-
line via superpositions over some finite metriant functions ( ) [ ], 1,1m x x∈ − : 

( )( ) ( ) ( )( ); k k kk kx am x ka a x x c m x b a∞ ∞

=−∞ =−∞
= − = −∑ ∑       (3.1) 

composing a spaceline from “elementary pieces” set at regular points ka resem-
bling quanta of width 2a (Figure 1). We seek spaceline x to appear not only as a 
Lego-like translation (3.1) but also in “interaction zones” between quanta ( 1a = ) 
(Figure 1(a), Figure 1(b)): 

( ) ( ) ( )1 1 ;x m x m x m x≡ + − + + + +   

1 1 1 1, , .
2 2 2 2

x m x m x x     ≡ − + + ∈ −          
             (3.2) 

Reformulated for derivatives ( ) ( )p x m x′= , the problem leads to a “partition 
of unity” [2]-[7] to represent a constant via a series of finite pulses: 

https://doi.org/10.4236/jamp.2022.109176


S. Yu. Eremenko 
 

 

DOI: 10.4236/jamp.2022.109176 2608 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( )1 1 1 ;p x p x p x≡ + − + + + +   

1 1 1 11 , , .
2 2 2 2

p x p x x     ≡ − + + ∈ −          
             (3.3) 

It can be achieved with polynomial splines but it leads to a “polynomial trap” 
problem [24] imposing artificial polynomial order on spacetime models and not 
being able to compose a smooth curve ( )x x  of arbitrary polynomial order. In-
stead, seeking a solution amongst finite functions for which derivatives are ex-
pressed via themselves  

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 1. (a) Lego model with interaction zones; (b) desired me-
triant function and its derivative; (c) expansion of space by the 
sum of metriant functions; (d) emergence of line y = x by sum-
ming two metriant functions in “interaction zone”. 

 
( ) ( )( ) ( ) ( )p x f p x cp ax b dp ax b′ = = + + −              (3.4) 

yields so-called atomic function (AF) ( )up x  [2]-[12] discovered in the 1970s 
by V.L. Rvachev and V.A. Rvachev [6] (Figure 1(b)) 

( ) ( ) ( ) ( ) ( )2 2 1 2 2 1 , .up x up x up x p x up x′ = + − − =           (3.5) 

The desired metriant function ( )m x  would be the integral of ( )up x  called 
AString in 2017 [2] [3] [4] [5]: 

( ) ( ) ( ) ( ) ( ) ( )
0

, d , .
x

kp x up x m x up x x AString x x AString x k= = = ≡ −∑∫  (3.6) 

AString shaped as a kink (Figure 1) can compose both straight and curved 
lines from solitary pieces offering spacetime quantization models based on Atomic 
and AString Functions [2] [3] [4] [5] [23] [42] described hereafter.  

4. Atomic and AString Functions 

Let’s describe Atomic [2]-[12] and AString [2] [3] [4] [5] Functions in more de-
tail.  

4.1. Atomic Function 

Atomic Function (AF) (V.L. Rvachev, V.A. Rvachev, [6], 1971) ( )up x  is a fi-
nite compactly supported non-analytic infinitely differentiable function (Figure 
2) with the first derivative expressible via the function itself shifted and stretched 
by the factor of 2: 

( ) ( ) ( ) ( )2 2 1 2 2 1 for 1, 0 for 1.up x up x up x x up x x′ = + − − ≤ = >   (4.1) 

With exact Fourier series representation [2] [3] [4] [5] [7]-[12]  

( )
( )

( )1 1

1sin 21 e d , d 1,
2 2

k
itx

kk

t
up x t up x x

t

−
∞

−=−

∞

∞ −
= =

π ∏∫ ∫         (4.2) 
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(a) 

 
(b) 

 
(c) 

Figure 2. (a) Atomic Function pulse with its derivative and integral (AStr-
ing); (b) Atomic Function pulse (“solitonic atom”) in 2D; (c) TWO Atomic 
Function pulses (“solitonic atoms” or “atomic solitons”). 
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the values of ( )up x  can be calculated with computer scripts [2] [4] [9] [10] [11] 
[12] [43]. 

Higher derivatives ( )nup  and integrals mI  can also be expressed via ( )up x  
[6]-[12] [25] [26]  

( ) ( )
( )

( )
1

22
2 2 1 112 2 2 1 2 , , , 1;

n
n n

n n n
k k k k kkup x up x kδ δ δ δ δ δ

+

−=
= + + − = − = =∑  

( ) ( )2
2 1,2 1 2 ;mC m m

mI x up x x− −= − + ≤  

( ) ( ) ( )
( )

2
1

1 1
2 2 1 , 1;

1 !
m

m
C m

m

x
I x up x

m

−
− + −

= − + >
−

 

( ) ( ) ( ) ( )1 1
1 12 2 ; .I x up x I x up x− − ′= − =               (4.3) 

AF satisfies partition of unity [2]-[12] to exactly represent the number 1 by 
summing up individual overlapping pulses set at regular points…−2, −1, 0, 1, 
2… (Figure 3(a)): 

 

 
(a) 

 
(b) 
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(c) 

Figure 3. (a) Partition of unity with Atomic Functions; (b) repre-
sentation of flat surface via summation of Afs; (c) curved surface 
as a superposition of “solitonic atoms”.  

 
( ) ( ) ( ) ( ) ( )2 1 1 2 1.up x up x up x up x up x+ − + − + + + + + + ≡     (4.4) 

This property is related to the following double symmetry [2]-[12]: 

( ) ( ) [ ] ( ) ( ) [ ], 1,1 ; 1 1, 0,1 .up x up x x up x up x x= − ∈ − + − = ∈      (4.5) 

Generic AF pulse of width 2a, height c, and center positions b, d has the form 

( ) ( )( ) ( ), , , , 0 , d .
a

a
up x a b c d d c up x b a cup x a x ca

−
= = + ∗ − =∫     (4.6) 

Multi-dimensional atomic functions [2]-[8] [24] [27] (Figure 3, Figure 4) can 
be constructed as either multiplications or radial atomic functions: 

( ) ( ) ( ) ( ), , ,up x y z up x up y up z=  

( ) ( )2 2 2 3, , , d d d .x y zup r up x y z cup x y z ca
a a a

 = + + = 
 ∫∫∫      (4.7) 

4.2. AString Function 

AString function (Figure 4) first proposed in 2018 by the author [2] [3] [4] [5] is 
both an integral (4.3) and “composing branch” of ( )up x :  

( ) ( ) ( ) ( )2 1 2 1 .AString x AString x AString x up x′ = + − − =       (4.8) 

AString has a form of a solitary kink (Figure 4(a)) which can compose a 
straight line y x=  both between and as a translation of AString kinks leading 
to spacetime “atomization”/quantization ideas (§3, 7): 

1 1 1 1, , ;
2 2 2 2

x AString x AString x x     ≡ − + + ∈ −          
 

( ) ( ) ( )
( ) ( )

2 1

1 2

x AString x AString x AString x

AString x AString x

≡ + − + − +

+ + + + +





       (4.9) 

The Elementary AString kink function can be generalized in the form  
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) Atomic String Function (AString); (b) atomic 
function as a combination of two AStrings; (c) representation 
of a straight line segment by summing of AStrings. 

 
( ) ( )( ), , , , 0 .AString x a b c d d c AString x b a= = + ∗ −        (4.10) 

Importantly, Atomic Function pulse (4.6) can be presented as a sum of two 
opposite AString kinks (Figure 4(b)) making AStrings and AFs deeply related to 
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each other: 

( ), , , , , , , , , .
2 2 2 2
a a a aup x a b c AString x b c AString x b c   = − + + −   

   
   (4.11) 

4.3. Atomic Series and “Mathematical Atoms” 

Atomic and AString Functions (Atomics) possess unique approximation prop-
erties described later in §5, 6. Like from “mathematical atoms” [6]-[12], as V.L. 
Rvachev called them, flat and curved smoothed surfaces/functions (Figure 3) 
can be composed of a superposition of Atomics via the so-called Generalized 
Taylor’s Series [7] [8] [9] [24] [25] [26] [27] (or simply, Atomic Series) with an 
exact representation of polynomials of any order 

( )1 ;
4 2

k k
k k

kkup x AString x k x=+∞ =+∞

=−∞ =−∞

 − ≡ − ≡ 
 

∑ ∑  

2
21 ,

64 36 4
k
k

k kup x x=+∞

=−∞

   − − ≡   
  

∑  

( )
( )( ) ( )( )( )

2

2 2 1 2 2 1 .

kn n
kk

k n n
kk

x C up x k

C AString x k AString x k

=+∞ −
=−∞

=+∞ − −
=−∞

≡ −

= − + − − −

∑

∑
 (4.12) 

Notably, only a limited number of neighboring finite “atoms” are required to 
calculate a polynomial value at a given point. 

It means Atomics can also represent/atomize any analytic function [28] (a func-
tion representable by converging Taylor’s series) with known calculable coefficients: 

( )
( ) ( ) ( )

( )

0 0 0

0
2

!

, , , .

m
km m m

m m km m m k

lmk
mk l l lmk l

mk

y
y x x B x B C up x k

m
x b

c up AString x a b c
a

∞ ∞ ∞ =+∞ −
= = = =−∞

∞ =+∞

=−∞ =−∞

= = = −

 −
= = 

 

∑ ∑ ∑ ∑

∑ ∑
 (4.13) 

Analytic functions [28] represent a wide range of polynomial, trigonometric, 
exponential, hyperbolic, and other functions, their sums, derivatives, integrals, 
reciprocals, multiplications, and superpositions. Therefore, they all can be ‘ato-
mized’ via superpositions of Atomic and AString Functions with any degree of 
precision, which is the most important property.  

Instead of sums (4.12), and (4.13), we will be using short notation with loca-
lized basis atomic functions ( )kA x  and function values ky  at node k assum-
ing summation over repeated indices k:  

( ) ( ) ( ) ( ), ,; , , .k k
k ky x A x y f x y z A x y z f= =              (4.14) 

4.4. Atomic Solitons 

Being solutions of special kinds of nonlinear differential equations with shifted 
arguments (4.1), (4.8), AStrings and Atomic Functions possess some mathemat-
ical properties of lattice solitons [29] [30] [31] [32] and have been called Atomic 
Solitons [2] [3] [4] [5]. AString is a solitonic kink whose particle-like properties 
exhibit themselves in the composition of a line (4.9) and kink-antikink “atoms” 
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(4.8) (Figure 4). Being a composite object (4.8) made of two AStrings, AF ( )up x  
is not a true soliton but rather a solitonic atom, like “bions” or “dislocation atoms” 
[2] [4] [29] [30], as described in [2] [4]. 

5. Atomization Theorems 

Unique properties of Atomic and AString Functions (Atomics) allow formulat-
ing Atomization Theorems stating how scalar, vector, tensor functions, and so-
lutions of linear and nonlinear differential equations can be represented via a se-
ries of Atomics/Atomic Solitons leading to spacetime quantization and field un-
ification ideas. To shorten the content, the proof would be provided only to a 
few theorems referring to [23] for more detailed descriptions with proof.  

Theorem 1 (Polynomial atomization theorem). Polynomials of any order can 
be exactly represented/atomized via the Atomic Series of Atomic and AString 
Functions: 

( )( ) ( ) ,
n kn

kx c up x k c=+∞

=−∞
= − ≡∑  

( )( ) ( )2 .k kn n
n kk kx I c up x k C up x k=+∞ =+∞ −

=−∞ =−∞
= − = −∑ ∑         (5.1) 

( )

( ) ( )

1
1

, , , .

n n
n n kk

k
k k k k nk

x kaP x x a x a C up
a

AString x a b c A x P

− − = + + + ≡  
 

= =

∑

∑



          (5.2) 

Based on (4.12) and finiteness, it states that only a few neighboring Atomics 
are required to calculate a polynomial value at a given point (Figure 5(a)). 

Theorem 2 (Analytic atomization theorem). Analytic functions representable 
by converging Taylor’s series via polynomials can be represented/atomized via 
converging Atomic Series of localized Atomic and AString Functions: 

( )
( ) ( ) ( )

( ) ( )

0 0

0
2

!

, , , .

m
km m m

m m km m k

l kmk
mk l l l kmk l

mk

y
y x x B x B C up x k

m
x b

c up AString x a b c A x y
a

∞ ∞ =+∞ −
= = =−∞

∞ =+∞

=−∞ =−∞

= = = −

 −
= = = 

 

∑

∑ ∑

∑ ∑
 (5.3) 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 5. Representing sections of polynomials and analytic 
functions with AStrings and Atomic Functions (a) cubic pa-
rabola via 8 Atomic Functions; (b) Schwarzschild metric func-
tion; (c) wave-like formation; (d) 2d surface. 

 
By definition, an analytic function [28] is representable via conversing Tay-

lor’s series by polynomials which in turn can be expressed via Atomics (5.1). It 
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means physical fields described by exponential, trigonometric, hyperbolic, and 
other analytic functions are also atomizable. This theorem proven in [23] can be 
generalized to various combinations of analytic functions [23] [28] [45] with the 
following. 

Theorem 3 (Complex analytic atomization theorem). Complex functions ( )y x  
that are sums 1 2y y y= + , products 1 2y y y= , reciprocals ( )1 11 0y y y= ≠ , in-
verse ( )1y y x= , derivatives 1y y′= , integrals ( )I y , and superposition  

( )1 2y y y=  of analytic functions ( ) ( )1 2,y x y x  can be represented/atomized by 
Atomic Series over Atomic and AString Functions. 

In general, polynomic, trigonometric, exponential, and other analytic func-
tions are the solutions of some linear differential equations (LDE) implying that 
Atomization Theorems can be extended to differential equations [7]-[12], [23] 
[27]. 

Theorem 4 (LDE atomization theorem). Solutions of linear differential equa-
tions (LDE) with constant coefficients can be represented/atomized via series 
over Atomic and AString Functions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 0;n n

n nL y y x a y x a y x a y x−
− ′= + + + + =  

( ) ( ) .k
ky x A x y=                       (5.4) 

This theorem can be generalized [23] to equations with variable analytic coef-
ficients frequently appearing in mathematical physics. 

Theorem 5 (Variable LDE atomization theorem). Solutions of linear differen-
tial equation with variable coefficients ( )ka x  representable by analytic func-
tions can be represented/atomized via Atomic Series over Atomic and AString 
Functions: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1, 0;n n

k nL y a x y x a x y x a x y x−= + + + =  

( ) ( ) .k
ky x A x y=                        (5.5) 

Atomization of composite functions like ( )( ) ( )arctan exp ,sechx x  satisfying 
nonlinear sine-Gordon and Schrodinger differential equations [31] [32] imply 
that the Atomization procedure is also applicable to some nonlinear differential 
equations. 

Theorem 6 (NDE atomization theorem). Solutions of nonlinear differential eq-
uations (NDE) with linear differential operator ( )L y  and nonlinear analytic func-
tion ( )f y  can be represented/atomized via Atomic Series over Atomic AString 
Functions: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1, ;n n

k nL y a x y x a x y x a x y x f y−= + + + =  

( ) ( ) .k
ky x A x y=                        (5.6) 

The preservation of analyticity and Theorem 3 imply that compositions  
( )1 2y y y=  of analytic functions are also analytic [23] [28] [45], so the theorems 

1-6 can be Generalized to the following theorem.  
Theorem 7 (Complex NDE atomization theorem). Solutions of nonlinear dif-
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ferential equations with functional-differential operator F preserving analyticity 
of function ( )y x  can be represented/atomized via Atomic Series over Atomic 
and AString Functions. 

( ) , 0;
m

n

yF y x
x

 ∂
= ∂ 

 

( ) ( ) ( ) ( ), , , , , , .k
l l l k k k kl ky x up x a b c AString x a b c A x y≡ = =∑ ∑     (5.7) 

Applying Theorem 2 to the widely used Fourier Series leads to the following 
theorem.  

Theorem 8 (Waves atomization theorem). Any smooth function with a finite 
spectrum [7] [8] [9] [23] can be represented/atomized via Atomic Series over 
Atomic and AString Functions: 

( ) ( ) ( )
( ) ( )

1 sin , , ,

, , , .
i i i l l li l

k
k k kk

n

k

y x d e x f up x a b c

AString x a b c A x y
=

≡ − =

= =

∑
∑
∑           (5.8) 

Theorems 1-8 can be extended to multiple noting that multidimensional n-order 
polynomials in m-dimensions ( )1, ,mn n mP P x x=   which are some multiplica-
tions of 1D polynomials exactly representable by Atomics (Theorem 1) are also 
exactly representable by multiplications of Atomic Functions (multidimensional 
atomic functions (4.9) ( ), ,k k ka b cUP  which in turn are AStrings combinations 
(4.8). 

Theorem 9 (3D atomization theorem). Representable by converging Taylor’s 
series, multidimensional analytic functions with their sums, multiplications, re-
ciprocals, derivatives, integrals, and superpositions can be represented/atomized 
via Atomic Series over localized multidimensional Atomic and AString Func-
tions: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

1

, , , , ,

, , , , , , .

m m
mn n m n i i i ik ik ikki i

k
k k k l l l k m mnk l

P P x x P x up x a b c

a b c a b c A x x P
= =

= = =

= = =

∑∏ ∏
∑ ∑UP AString





  (5.9) 

Similar to the 1D case with theorems 4, 5, the atomization procedure can be 
extended to multi-dimensional differential equations containing linear differen-
tial operators like Laplacian and Poisson operators widely used in mathematical 
physics: 

( )( )
2

1 1 2, , , , 0; ; ; ; .
m

i
m m ijmn in

ij i

y
L y y x x a k

xx x
∂ ∂ ∂

= = ∇ = ∆ = ∆ + ∆∆
∂∂ ∂∑   

( ) ( ) ( ), , , , , , .i j i j ijl ijl ijl i j ijk ijk ijkijjkl jjkly x up x a b c AString x a b c≡ =∑ ∑   (5.10) 

In summary, formulated Atomization Theorems, also proven in [23], demon-
strate how polynomials, complex multi-dimensional analytical functions, and so-
lutions of linear and nonlinear differential equations can be represented/atomized 
via superpositions of localized Atomic and AString Functions.  

6. Atomization Theorems in General Relativity 

Theorems 1-9 lead to the following theorems provided with proof and targeting 
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Einstein’s General Relativity (GR) theory [13] [14] [15]. 

6.1. Atomization Theorems for Metric, Curvature, and Ricci  
Tensors  

Considering together multidimensional Atomic Series (5.9), (5.10) and Atomi-
zation Theorems 1-6 leads to the following theorems important for General Re-
lativity. 

Theorem 10 (Tensor’s atomization theorem). First i
ix

∂
∂ =

∂
 and second de-

rivatives 
2

ij
i jx x
∂

∂ =
∂ ∂

 as well as the metric tensor ijg  defining interval on a  

curved surface ( )2d d dij n i js g x x x=  preserve analyticity and being applied to 
analytic functions ( )k ly x  lead to analytic functions representable/atomizable 
by Atomic Series over Atomic and AString Functions.  

Proof. Being linear differential operators, both first and second derivative op-
erators preserve analyticity because derivatives of multidimensional polynomials 

m
lm lB x  would also be polynomials exactly representable via multidimensional 

Atomic Functions and AStrings (5.9) using Atomic Series (5.2). For curved space-
time surfaces/geometries described by some analytic functions  

( );d di
i i j i j

j

x
x x xx x

x
∂

= =
∂


   , the derivatives and their multiplications would also be  

analytic, hence representable by Atomics (Theorems 2, 3, 9). This theorem can 
be proved in another way by noting that all derivatives and integrals of Atomics 
are expressed via themselves (4.3), (4.8), and if space geometry analytic functions 
( )i jx x  are the sum of Atomics, then all derivatives and metric tensors would 

also be some Atomics combinations: 

( ) ( ) ( ), , , , , , .ij n n ijnk ijnk ijnk n ijnl ijnl ijnlijnk ijnlg x up x a b c AString x a b c= =∑ ∑  (6.1) 

Proof obtained. This theorem means that for analytic spacetime geometries/ 
configurations, their deformations, curvatures, metrics, and geodesics would also 
be some Atomics superpositions, with a range of analytical surfaces and space-
time metrics known in GR [13] [14] [15] described later. Furthermore, due to 
the properties of analytic function superpositions to preserve analyticity (Theo-
rem 3), the last theorem can be extended to nonlinear Ricci tensors important in 
GR [13] [14] [15]. 

Theorem 11 (Ricci tensor atomization theorem). Nonlinear Ricci tensor jkR  
and Christoffel operators k

ijΓ  preserve analyticity and applied to analytic func-
tions would yield analytic functions representable/atomizable by Atomic Series 
via Atomic and AString Functions. 

Proof. Christoffel operators [13] [14] [15], which include multiplications of 
functions to their spatial derivatives, transform analytic metric tensor functions 
(6.1) representable by polynomials into more complex polynomials representa-
ble by Atomics via Atomic Series (5.3). Similarly, Ricci tensors are also a combi-
nation of derivatives and multiplications of Christoffel symbols [13] [14] [15] 
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which preserve analyticity, hence representable via Atomics: 

( )1 ;
2

k kl i i i p i p
ij i jl j il l ij jk i jk j ik ip jk jp ikg g g g RΓ = ∂ + ∂ − ∂ = ∂ Γ − ∂ Γ Γ Γ −Γ Γ   (6.2) 

( ) ( ) ( ), , , , , , .ij n n ijnk ijnk ijnk n ijnl ijnl ijnlijnk ijnlR x up x a b c AString x a b c= =∑ ∑  (6.3) 

Proof obtained. This theorem can be intuitively understood in the sense that 
polynomials are “hard to destroy” because their multiplications, derivatives, in-
tegrals, and superpositions would also be polynomials representable by Atomics. 
It also means that not only spacetime metrics but also curvature tensors can be 
“atomized” using shifts and stretches of finite AString and Atomic Functions 
which, as described later, may be associated with flexible spacetime quanta. 

6.2. Atomization Theorem for General Relativity 

The sequence of theorems 1-10 converges into the theorem for Einstein’s Gener-
al Relativity [13] [14] [15]. 

Theorem 12 (Atomic Spacetime Theorem). For analytic manifolds, Einstein’s 
curvature tensor preserves analyticity and yields spacetime shapes, deformations, 
curvatures, and matter/energy tensors representable via multi-dimensional Atom-
ic and AString Functions superpositions. Solutions of General Relativity equa-
tions can be represented/atomized by converging Atomic Series over finite Atomic 
and AString Functions: 

( )
( )

4

1 8
2

, , ,

, , , .

i i i ii

i i i ii

GG R g R T
c

x a b c

x a b c

µν µν µν µν

µν µν µνµν

µν µν µνµν

π
= − =

=

=

∑
∑

UP

AString

           (6.4) 

Proof. For analytic manifolds—spacetime geometries described by analytic 
functions ( )i i jx xx=   representable by converging Taylor’s series—the metric 
tensors gµν  composed of derivatives and their multiplications would also be 
some analytic functions (Theorem 10). Being injected into Christoffel operators 
(6.2) and then Ricci tensors Rµν , they would yield another set of analytic func-
tions (Theorem 11) representable by Taylor’s series because the derivatives, mul-
tiplications, and superposition of analytic functions would also be analytic 
(Theorem 3). The curvature scalar R g Rµν

µν=  in (6.4) preserves analyticity 
because of the cross-multiplication of polynomials and their derivatives would 
also be polynomials. Injected into (6.4), those tensors produce Einstein’s tensor  

Gµν  and energy-momentum tensor Tµν  ( 4

8 G
c
π  is a constant) supposedly  

representable by polynomials via multi-dimensional Taylor’s series. Because a po-
lynomial of any order is exactly representable/atomizable via Atomic and AString 
Functions (Theorem 1), the spacetime curvature, metric, and energy/momentum 
tensors would be the superpositions of multi-dimensional Atomic UP and AStr-
ing functions, derivatives of which are expressed via themselves. Due to funda-
mental relation (4.8) ( ) ( ) ( ) ( )2 1 2 1up x AString x AString x AString x′= = + − − , 
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the Atomic Function ( )up x  is a sum of two AStrings which can be associated 
with a finite quantum/metriant being able, within one model, to compose straight 

( ), , ,kx AString x a ka a= ∑  and curved ( ), , ,k k kk AString x a b cx = ∑  lines from 
elementary AString pieces resembling quanta (§3, 6, 7, 8).  

Proof obtained. In a nutshell, this theorem tells that the spacetime field is re-
presentable/atomizable via AStrings and Atomic Functions, the derivatives of 
which are expressed via themselves meaning the spacetime shape, deformations, 
curvatures, and energy/momentum tensors can be represented as some superpo-
sition of Atomics. Now, this idea first hypothesized in 2017 [3] is based on a set 
of theorems. It offers an “atomic model” of spacetime [2] [3] [4] [5] probably 
envisaged by A. Einstein in 1933 [1] as a “perfectly thinkable” “atomic theory” 
dealing with “simplest concepts and links between them” (§1). Let’s note that 
Atomization is not a simple discretization of space—separation of a volume into 
adjacent finite elements [22] [24] [38]. Here, the “finite elements” (AStrings) are 
overlapping (§3, Figure 1) and capable to describe both expansions of space (4.9) 
and localized solitonic atoms ( )up x  (4.8).  

Let’s note that reversing Atomization Theorems (12-1) allows deriving Atom-
ic and AString Functions from General Relativity equations (6.4), as described in 
[23]. 

7. Atomization of Spacetime Field 
7.1. Spacetime Atomization Model 

Theorems 10-12 provide a theoretical foundation for atomization/quantization 
of spacetime field based on Atomic and AString Functions when GR equations 
and solution, along with Ricci, curvature, and metric tensors, can be represented 
via Atomic Series over multidimensional Atomic and AString Functions (4.7): 

( )
( )

4

1 8
2

, , ,

, , , ,

i i i ii

i i i ii

GG R g R T
c

x a b c

x a b c

µν µν µν µν

µν µν µνµν

µν µν µνµν

π
= − =

=

=

∑
∑

UP

AString

              (7.1) 

( ) ( )
( )

, , ,

, , , ,

ij n n ijnk ijnk ijnkijnk

n ijnk ijnk ijnkijnl

R x x a b c

x a b c

=

=

∑
∑

UP

AString
            (7.2) 

( ) ( )
( )

, , ,

, , , ,

ij n n ijnk ijnk ijnkijnk

n ijnk ijnk ijnkijnl

g x x a b c

x a b c

=

=

∑
∑

UP

AString
            (7.3) 

( ) ( ), , ,i l l lk lk lkkx x cx a b= ∑ AString .               (7.4) 

These formulae express the mathematical fact that it is possible to compose 
analytical manifolds (Figure 6) by adjusting parameters of localized Atomic and 
AString Functions, or like in Lego-game, compose a smooth shape from ele-
mentary pieces/quanta. If finite Atomics, for which derivatives are expressed via 
themselves, represent spacetime shape ( )i lx x  (7.4), the series over Atomics would 
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also describe spacetime deformations, curvatures, metrics, Ricci’s, Einstein’s, and 
energy-momentum tensors.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Curved spacetime composed of AStrings; (b) join-
ing AStrings of different heights simulates spacetime curving; 
(c) curved spacetime geodesics represented via joints of 3D so-
litonic atoms. 
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Because AString can compose a line and a curve from “elementary pieces” re-
sembling quanta (§3, 6, 8) one can envisage a spacetime field as a complex net-
work of flexible spacetime quanta (Figure 4, Figure 6). The notion of “quantum” 
here is not directly related to Quantum Mechanics and Quantum Gravity [18] 
[19] [34]-[39] but rather to the finiteness of “solitonic atoms” capable to compose 
shapes and fields as described later.  

7.2. Atomization of Known General Relativity Solutions 

The idea of Atomic Spacetime atomization/quantization can be demonstrated 
for known GR solutions [13] [14] [15] [16].  

Einstein-Minkowski solution 0, 1ijT gµν = =  for homogeneous uniform space- 
time/universe [13] [14] [15] [16] [20] is simply atomizable/quantizable via transla-
tions of identical overlapping AString quanta (§3, Figure 3) [2] [3] [4] [5] in 
vector notation: 

( )
( ) ( )
( ) ( )

1 2 3

1 1 2 2

3 3

, , , , , ,

, , , , , ,

, , , , , , ,

l

l l l t

x x x t a c

AString x a a a AString x a a a

AString x a a a AString t a c a c a c

ρ

ρ ρ

ρ ρ

= +

+ +

AQuantum

e e

e e

     (7.5) 

or schematically (Figure 3, Figure 4, Figure 6, Figure 7(c)) 

( ) ( )1 2 3 1 2 3, , , , , , , , , .lkx x x t x x x t a cρ= ∑UniformSpace AQuantum    (7.6) 

Friedmann solution for expanding spatially homogeneous universe with me-
tric [13] [14] [15] [16] 

( ) ( )2 22 2 2 2 2 2 2d d d ; d d dks a t s c t s r S r= − = + Ω            (7.7) 

includes analytic function ( )kS r  representable via Atomic Series (5.4), (5.5) as 
per Theorems 3,4:  

( ) ( )
( )

3 5

6 120

, , , .

k

k
k k k kk k

kr krS r rsinc r k r

r b
c up AString r a b c

a

= = − + −

− = = 
 

∑ ∑



         (7.8) 

Scale factor ( )a t  [13] [14] [15] [16] being an analytic power function [28] is 
also representable via Atomics: 

( ) ( ) ( ) ( )
2

3 1 2 3 1 2
0 ; ~ , 0; ~ , 1 3,wa t a t a t t w a t t w+= = =          (7.9) 

( ) ( ) ( ), , , , , , .k k k l l lk la t up t a b c AString t a b c= =∑ ∑         (7.10) 

Schwarzschild solution (Figure 7) for radial bodies and black holes has space-
time metric [13] [14] [15] [16] [20] 

( ) ( )2 2 2 2 2d d d d ;s A r c t B r r r= − + + Ω  

( ) ( )
1

1 ; 1 .s sr r
A r B r

r r

−
   = − = −   
   

              (7.11) 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Space density function from Schwarzschild GR 
solution; (b) representing Schwarzschild metric via AStrings; (c) 
uniform spacetime field as a superposition of solitonic atoms. 

 
Analytic (outside of singularity) function ( )A r  and it’s reciprocal ( )B r  (al-

so ana lytic as per Theorem 3) representable via converging Taylor’s series is also 
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representable via Atomics (5.4): 

( ) ( ), , , , 0.k
k k k kk k

r b
A r c up AString r a b c r

a
− = = ≠ 

 
∑ ∑       (7.12) 

In summary, the atomization of known GR solutions confirms the main idea 
that analytic spacetime fields are representable via the superposition of finite 
AStrings and Atomic Functions.  

8. Atomic Spacetime Model Interpretations 

Representing the spacetime field as a superposition of Atomic and AString Func-
tions offers the following interpretations discussed in detail in [2] [3] [4] [5] [6] 
[23]. 

1) No point in space—space is rather a superposition of finite “solitonic atoms” 
( )( )cup x b a− . 

2) Spacetime is a field composed of “solitonic atoms” ( )( )cup x b a−  on a lat-
tice with size a which may be associated with Planck’s length 35~ 1.6 10 ma −× . 

3) Finite “solitonic atoms” may be associated with some flexible quanta (§3, 
7). 

4) Atoms/quanta interact in overlapping zones with the preservation of smooth-
ness (§3, §4.1). 

5) Spacetime “emerges” between quanta/atoms  
1 1
2 2

x AString x AString x   ≡ − + +   
   

 (§3, 4). 

6) Spacetime atomization is not a simple space discretization, due to overlap-
ping zones. 

7) Spacetime is a flexible “fabric” of solitonic atoms adjusting their locations 
and intensities to reproduce variable fields between atoms (§7.1, §7.2). 

8) Expansion of spacetime means bigger quanta (7.10) with growing width 
(§7.2). 

9) Space “solitonic atoms” are mathematically “made of” AStrings  
( ) ( ) ( )2 1 1 2up x AString x AString x= + + −  (4.8). 

10) AString kinks pointing in one direction model spacetime expansion  
( )kx AString x k= −∑  while opposite AStrings compose finite atom  

( ) ( ) ( )2 1 1 2up x AString x AString x= + + −  (§3, 4). 
11) AString models a “quantum of length” capable to represent a length func-

tion ( )L x  as a sum of AStrings:  

( ) ( ) ( ) ( )
( )

0 0 0
d d , , , d

, , , .

x x x
k k kk

k k kk

L x x x x up x a b c x

AString a b c

x

x

ρ= = =

=

∑∫ ∫ ∫
∑


 

12) AString may model a “metriant”—space quantum in some General Ther-
modynamics theories [34]. 

13) Spacetime has energy as a sum of discrete energies 3ca  (4.7) of multiple 
solitonic atoms (§7.1). 

14) Spacetime may be solitonic in nature [2] [3] [4] [5] and composed of 
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Atomic Solitons (§4.4). 
15) Spacetime field is both discrete and continuous; discrete, being composed 

of finite solitonic atoms, and continuous, being united with smooth connections 
between “atoms” (§3, §7.1). 

16) Spacetime is fractalic due to fractalic properties of a “length” composed of 
“pieces” [2] [3] [4] [5] [23]. 

17) Atomic spacetime model introduces new constants, mainly lattice size a 
which may be associated with Planck’s length 35~ 1.6 10 ma −× , or another frac-
talic lattice size for macroscopic fields.  

9. Fields Atomization 

Atomization Theorems (§5, 6) provide the foundation for “atomizing” (present-
ing via Atomic Series) not only spacetime but also other fields in theoretical 
physics [2] [3] [4] [5].  

For example, a uniform Higgs field [44] [47] with a constant energy level  
( 2126 GeV cHg = ) (Figure 8) permeating space in arbitrary direction x can be 
represented by smooth joining of atomic pulses ( )up x  with width s: 

2 2x s x s x x s x sHg up up up up up Hg
s s s s s

 − − + +          + + + + + + ≡          
          

  . (9.1) 

Uneven distribution in some direction ix  can be described by a more gener-
ic expression [2] [4]: 

( ) ( )
( )

( ) ( )

, , , ,

, , , ,

.

i i k k k kk

i l l l ll
k

k i i

HF x up x a b c d

AString x a b c d

A x HF x

=

=

=

∑
∑               (9.2) 

In this case an individual “atom”/field excitation ( )HB r  in a radial direction 
with energy hbE  (Figure 8) may be associated with the Higgs boson to uphold 
Quantum Field Theory [34] [46] [47] where particles are interpreted as some ex-
citations of fields: 

 

 
(a) 
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(b) 

Figure 8. (a) S. Carrol’s lecture  
https://www.youtube.com/watch?v=RwdY7Eqyguo features 
Higgs boson as an excitation of a field (obtained with permis-
sion) (b) Higgs boson representation via atomic soliton pulse 

( )up r . 

 

( ) ,r bHB r d c up
a
− = + ∗  

 
 

( ) 2d ;hb
r cE HB r cup r ca a
a a

ρ ρ = = = = = 
 ∫ ∫           (9.3) 

In the same “atomized” way, it is possible to describe the distributions of oth-
er macroscopic and fundamental physical fields [2] [3] [4] [5], eq quantum va-
cuum zero-point field [40] [41]: 

2 2 .x s x s x x s x sZpf up up up up up Zpf
s s s s s

 − − + +          + + + + + + ≡          
          

   (9.4) 

10. Conclusion and Future Research Directions on an  
Atomic Unified Theory 

Atomization theorems provide a theoretical foundation for applications of AStr-
ings and Atomic Functions in many physical theories being researched further 
[2] [3] [4] [5] [42]. The common feature of these theories is the unified descrip-
tion of fields as superpositions of flexible overlapping solitonic atoms 

 
( )( )cup x b a−  made of two AStrings  

( ) ( ) ( ) ( )2 1 2 1up x AString x AString x AString x′= + − − = . It means that mathe-
matically field distributions are just complex combinations/lattices/networks of 
flexible AStrings. Moreover, due to properties (4.1), (4.8) of Atomics to have de-
rivatives expressed via the functions themselves, not only the fields but their de-
rivatives expressing fields deformations and curvatures, would also be some AStr-
ings combinations. This invites the hypothesis raised in [2] [3] [4] [5] whether 
AString mathematically describes some fundamental solitonic object from which 
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everything is made, and having a common “ancestor”, different fields may be 
deeply related to each other.  

The obvious candidate for a “particle of everything” is a new kind of string [2] 
[3] [4] [5] from string theory [15] [35] [36]. Rather than consider a string as a 
“linearly vibrating” filament, one can hypothesize that a string with length a may 
vibrate “nonlinearly” with compact ( )cup x a  “solitonic atom” shape composed 
of two AStrings (Figure 4) with intensity/amplitude c and energy/integral ca (ca3 
in 3D). Two neighboring strings may overlap and produce either constant or va-
riable smooth field while continuous space x “emerges” between strings  

, ,
2 2 2 2
a a a ax aAString x aAString x x     ≡ − + + ∈ −          

 and extends by adding  

more strings ( )( )kx aAString x ka a≡ −∑  (§3, 7). Then, electron, quark, or 
Higgs “particles” may be the spatial excitation of strings with their own intensity, 
energy, and size (§9). Because these fields have a common “string ancestor”, they 
become deeply related to each other, with the preservation of energy during ex-
changes. 

Interestingly, this Atomic String model assumes the existence of a “string with 
length” a embedding the concepts of a “length”, “dimensionality”, and “lattice”. 
It looks like every particle (electron, boson) apart from unique physical charac-
teristics (eq electric charge) includes some “quanta of space”, or metriants (§8), 
as A. Veinik [34], call them in the 1980s. Like the Higgs field giving matter “a 
property of mass” [44] [47], metriants “give the matter the property of size” and 
“order of location” [34]. AString function not only offers a mathematical model 
for the metriant (§3, 7) but also allows the building of “solitonic atoms”  

( ) ( ) ( )2 1 2 1up x AString x AString x= + − −  capable to compose different fields in 
superposition. This concept of AString metriants as “common blocks” of fields 
has synonyms like “quantum of length”, “elementary distortion of spacetime”, 
and “ripple/excitation” of spacetime used by other authors [16] [20] [38] [46] 
[47]. 

Hopefully, verified by physicists and string theorists, these string and metriant 
models [2] [3] [4] [5] may contribute to spacetime physics, quantum field theo-
ries, and unified theories of nature [16] [34] [35] [38] [46] [47] [48] [49] [50]. 

11. Atomic Spacetime and “Atomic Theory” of A. Einstein 

To conclude the paper let’s recall again A. Einstein’s 1933 paper [1] cited in §1 
where he envisaged a “perfectly thinkable” “atomic theory” with “simplest con-
cepts and links between them” resolving “stumbling blocks” of theories operat-
ing “…exclusively with continuous functions of space” and explaining how a fi-
nite region of space can have quantized energy levels. The described Atomic 
Spacetime theory may be that theory sought by A. Einstein. Indeed, the theory is 
“atomic” assuming atomizing/quantizing spacetime field with finite Atomic 
String Functions. Atomic Functions, as “solitonic atoms” made of two AStrings 
(4.8), are “simple concepts”. “Links between them”, in the form of overlapping 
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superpositions (4.9), (4.12), (7.1), allow describing flat and curved spacetime and 
other physical fields. The theory also overcomes “stumbling blocks” of theories 
dealing “…exclusively with continuous functions of space” [1]; here, atomized 
spacetime is both discrete and continuous (§7, 8). Also, Einstein’s “…region of 
three-dimensional space at whose boundary electrical density vanishes every-
where” [1] naturally leads to a finite Atomic Function (Figure 2) with discrete 
energy (integral (4.7)) levels ca3. Atomic Spacetime theory seems to support 
another Einstein’s quote: “I have deep faith that the principle of the universe will 
be beautiful and simple”. This “principle” may be realized with the simple model 
of spacetime and field composition from Atomic Solitons composed of simple 
AString metriant functions.  
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