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Abstract 
For nonrelativistic two-electron atoms, we employ a phase-amplitude method to 
derive an energy-dependent three-body force which controls the dynamics of the 
atom near the threshold for double escape. Its potential energy has been taken 
into account to derive beyond a static adiabatic basis a novel partial differential 
equation that replaces an adiabatic basis. That equation whose solutions span a 
Banach space has been solved exactly in the energy window near threshold. In 
that energy range, we find the formation of unstable electron pairs, comparable 
to Cooper pairs. In contrast to Cooper pairs, our pairs are bound by dominant 
correlation rather than by the coupling to a phonon field. These ingredients are 
suspected to allow for a super current independent of the temperature. 
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1. Introduction 

Superconductivity, experimentally known since a long time, see [1], got only 
much later a theoretical explanation by Bardeen et al. [2] usually referred to as 
BCS theory. The key ingredient of this theory is the formation of electron pairs. 
The attractive force between two electrons emerges from the coupling of the 
electrons motion to the lattice vibration, usually referred to as electron-phonon 
interaction. Therefore superconductivity works only at extremely low tempera-
tures (few Kelvin). Some materials show high temperature superconductivity, 
shortly HTS. Actually, however, these “high temperatures” are still much below 
room temperature. Presently we are still away from superconductivity at room 
temperature although several designs have been proposed in the past to open the 
way to superconductivity at room temperature [3] [4] [5]. 

2. Ingredients of the Theory 

It is the aim of this comment to present an electron pair formation mechanism 
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independent of the temperature and therefore different from Cooper pairs. We 
will see shortly that dominant electron correlation in a restricted energy window 
does allow for an unstable attraction between electrons. Before we enter into de-
tails of the new achievement we list necessary ingredients for the development of 
the theory. 

To this end we go back to Wannier’s threshold ionization theory [6]. He con-
siders two electrons in the field of a point nucleus with charge Z. The electros-
tatic potential energy is then for not too heavy nuclei given by 

2 2
1 2 1 2 1 2

1 1 1

2 cos
V Z

r r r r r r

 
= − + + 

+ − Θ 
                (1) 

where the ( )1,2ir i =  are the electron-nucleus distances and Θ is the solid angle 
bewen the electrons directions. We remark that this angle is restricted to  
0 ≤ Θ ≤ π , because larger angles ′Θ > π  may be replaced by 2 ′π −Θ < π . In 
order to study radial correlation Wannier [6] parameterizes the radial distances 
by introducing a pseudo angle α given by 

1 1

2

tan r
r

α −=                            (2) 

with 0 2α≤ ≤ π  
and the so called hyperradius 

2 2
1 2R r r= +                           (3) 

The potential (1) reads in these coordinate 

( ),C
V

R
α θ

=                           (4) 

the charge function ( ),C α Θ  given by 

( ) ( )cos 4 1, 2 2
sin 2 1 sin 2 cos

C Z
α

α
α α

− π
Θ = − +

− Θ
          (5) 

Wannier claims that the charge function has a saddle point located at  
4α = π  and Θ = π . He identifies the saddle point from the Taylor expansion 

centered at ( )4,π Θ = π  

( ) ( )
2

2
0 1 2,

4
C C C Cα θ θ α π = − + − π − − 

 
 

Since C1 is small and does not contribute to the threshold ionization law, we 
fix below θ = π , or alternatively we put a smooth θ dependence into C2. i.e. we 
use below the expansion 

( ) ( )2
0 2, 4C C Cα θ α= − − − π                     (6) 

Thus we arrive at the coefficients are given by 

0
12 2

1 cos
C Z

θ
= −

−
                      (7) 
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( )2 3 2
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1 cos

C θ
θ

= +
−

                       (8) 

The graph of the Expansion (6) describes a local maximum along the coordi-
nate α. The constant C2 represents then the curvature in its maximum whereas 
the constant C0 is the charge of the electron pair in the maximum. 

Geometrically the potential energy surface V C R= , see (4), represents a po-
tential ridge along an evolution coordinate R, the maximum of the ridge is lo-
cated at 4α = π . The width of the ridge depends on the angel θ. For not too 
small angles θ both constants are positive. This implies that the whole potential 
surface puts the electron pair into an unstable equilibrium. 

We go now beyond the classical Wannier work to treat the problem quantum 
mechanically [7]. In terms of the above coordinates the stationary wave equation 
linearized in the coordinate α at the equilibrium point 4α = π  reads 

{ }
2 2

2 5 20 2
2 2 2 2

1 1 15 4 0
2 2 2

C C E R
R RR R R

β
β

− ∂ ∂
− − + − − − Ψ = 

∂ ∂ 
        (9) 

with  

4
β α π
= −                             (10) 

Equation (9) is not separable. We show below that near threshold exists a so-
lution in form of a semiclassical phase-amplitude solution. Due to the smooth-
ness of Coulomb interactions we expect solutions in Eikonal form 

( ) { }5 2 expR A R iSΨ =                       (11) 

S being the classical action. We conclude from the radial kinetic energy  
2 2

2 2

1 1 1
2 2 2

A A A A
RR R

∂ ∂ ∂′′ ′− = − − −
∂∂ ∂

                (12) 

Since near threshold we expect a smooth amplitude A, we reject its second de-
rivative A". To the Wannier phenomenon [7] contribute only long-range Cou-
lomb interactions like the static Coulomb potential (4). We stress that (12) de-
livers another 1/R term hidden in the kinetic energy. That is the first derivative 
term A' in (12) which may be rewritten as follows 

( )AA A iK R A
R A R R

′∂ ∂ ∂′− = − = −
∂ ∂ ∂

                 (13) 

In (13) we have employed the boundary condition for the logarithmic deriva-
tive on the top of the ridge, in detail 

( ) 02
C

K R E
R

 = ± + 
 

                      (14) 

which becomes at threshold E = 0 

( ) 02C
K R

R
= ±                          (15) 
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Our improved channel wave Equation (9) reads therefore in the Coulomb 
zone 

( )
2

20 0 2
2 2

2 1 , 0
2

C C Ci E R
R R R RR

β β
β

 ∂ ∂ − − − − − Φ = 
∂ ∂  


       (16) 

where we have rejected powers Rη  with 1η < − . 
The last steps deserve some comments. The traditional treatment of the two- 

electron problem starts from a Born-Oppenheimer basis [8] [9]. Non-adiabatic 
couplings must then be taken into account. That procedure is rather slow mov-
ing because an infinite number of collision channels must be taken into account 
what in fact is impossible because an infinite number of channels converges to 
the ionization threshold [10]. 

We present here an alternative way. We circumvent the adiabatic channel ex-
pansion, and derive directly from the kinetic energy operator a novel ener-
gy-dependent three-body interaction, see also [11]. Along these lines we have ar-
rived at an entirely new partial differential Equation (16) which replaces the fa-
miliar adiabatic basis. We stress that this new wave Equation (16) is a parabolic 
partial differential equation although we started from an elliptic one. Our (16) is 
a transport equation comparable to the heat equation. The transported material 
is in our case a two-electron charge density, the transport itself occurs via wave 
diffraction.  

The first term in (16), entirely foreign to standard atomic theory, constitutes a 
three-body-Coulomb-interaction which deforms the static Coulomb potential 
surface (4). We stress that a three-body-interaction manifests itself by the fact 
that it cannot be represented by a sum of three two-body interactions. That may 
be seen as follows. It is evident that the classical action for our Coulomb system 
is R∝  where R is the hyperradius. Therefore we get 

( ) ( )020 0 22 1
2

CC C
i i D D

R R R R
α β∂

Φ ∝ Φ = ± Φ
∂

           (17) 

provided we write the exponential in (11) in the form 

( ){ }exp i RD αΦ ∝                        (18) 

Below we combine the two Coulomb potentials (4) plus (16) to one new mod-
ified Coulomb potential given by  

( ) ( ) 0 2C D C
R

β β±
                       (19) 

We stress that the deformation term depends on the direction of a two-electron 
wave propagation, typical for a fictitious force. The presence of a fictitious force 
is here not unexpected since we describe the angular motion (β) in a moving 
frame along the evolution R. 

We complete the non-adiabatic treatment with the calculation of the modified 
action portion ( )D β . To this end, we use in our model a quadratic Ansatz given 
by 
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( ) 2D β κ µβ= +                          (20) 

With (16)-(19) we find immediately 

02Cκ =                            (21) 

and two solutions for μ given by 

0 2 0161 0
4 2 2

C C C
µ+  +

= − >  
 

                 (22) 

2 2161 0
4 2 2

C C Cµ−  +
= − + <  

 
                 (23) 

The indices +/− refer to contraction/expansion of the whole three-body com-
plex; analogous to incoming/outgoing waves in the familiar two-body case. The 
contraction wave describes in our three-body system a pair of dominantly cor-
related electrons approaching the nucleus. It is obvious that the electrons attract 
each other during their correlated path to the nucleus. This resembles to Coop-
per pairs except that Cooper’s electron-phonon interaction has been replaced in 
our treatment by the electron-nucleus interaction. 

The evolution  

( ) { }2, expR A i Rα λ µβΦ = +                  (24) 

constitutes a Fresnel distribution [11], and has an important property. It solves 
initial value-problems. The Appendix of this paper shows that an evolution like 
(24) converges at R →∞  up to a constant factor to a delta distribution  

( )δ β∝ . It solves therefore the channel Equation (16). It constitutes therefore a 
kernel of (16) and delivers solutions of (9) in the form 

( ) ( ) ( )( ){ }24
04

, ; d , ; expR R i Rβ µ β β µ λ µ β β
+π± ± ± +

−π
′ ′ ′Φ = Φ + −∫    (25) 

provided 0
±Φ  is an initial value state. The existence of two kinds of evolutions, 

distinguished by the parameters µ± , compares favorably with Wannier’s clas-
sical results. He has reported two sorts of trajectories, a converging one and a 
diverging one. These correspond one to one to our two evolutions presented here.  

3. Mechanism of Charge Transport 

We have now all ingredients for a charge transport design through a multiatom-
ic system; a transport which does not suffer from energy loss due to inelastic col-
lisions. For simplicity we consider a linear chain of identical atoms with one va-
lence electron, the nuclei separated by a lattice constant a. We label the atoms in 
the chain by #1, #2, and so on. We investigate at first a charge transport from #1 
to #2 in three steps. 

Step 1: We hit for instance atom #1 by a slow electron. Its energy should be 
only little (typically < 3 eV) below the ionization threshold of the valence target 
electron. 

As soon as the electron enters the 3-body-Coulomb zone the motion of the 
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target electron plus the scattering electron is controlled by the Fresnel distribu-
tion (25) with the parameter µ+ , see (22). With the initial boundary condition 
( )arbitrary for Rβ ′Φ = →∞  we get at finite values of R a channel function  

( ) ( )( ) ( )4 2

4
d ; exp 0;R i R Rβ β µ β β β

+π +

−π
′ ′ ′∝ Φ − →Φ ≈∫ . i.e. during that step  

the complex performs a contraction in which the electrons attract each other: as 
it was schematically displayed on the basis of classical trajectories in [6]. The 
electrons, however, do not fall into the nucleus because of the static resulsive 
barrier given by  

2

15
8R

+                             (26) 

see (9) which constitutes a centrifugal potential universal for all doubly excited 
target atoms although there is no rotation at all. 

Step 2: 
The barrier has played the role of a mirror: It reflects the two-electron wave. 

The expanding complex is now controlled by the parameter µ−  which causes 
the decay of the pair due to the instability of that mode. One electron is trapped 
into the valence from where it came from whereas the other one escapes. So 
easy, however, is the situation in the case of one nucleus only, see step #3 below. 

Step 3: To this end we remark that the way out meets a dynamical zero of the 
evolution. That unusual feature may be seen by looking to the conservation of 
energy on the top of the ridge, i.e. at 4α = π . The total energy reads then  

2 01
2

C
E R

R
= −                          (27) 

Inspection of (27) shows that for negative values of the energy E the radial ve-
locity has a zero located at a critical radius given by  

0
c

C
R

E
=                            (28) 

see (7) with 0 0C > , for not too small angles θ. That critical radius did not occur 
in Wannier’s study at E > 0. If the escaping wave reaches the sphere with radius 
Rc it comes to rest. It experiences two possibilities: either the wave is reflected to 
its mother nucleus or it continues the way out as uncorrelated electron. If the 
critical radius Rc is larger than a/2. the two spheres overlap at least partially. The 
reflected electron may therefore arrive in the frame of atom #2. In a realistic ex-
perimental setup more electrons will have taken the same way. A return to atom 
#1 is then forbidden by the Pauli principle if the follow electron has already oc-
cupied the Wannier orbital. Note that all atoms have the same critical radius at 
the same energy. The initially outgoing electron controlled by the parameter 
µ+  has been transformed into an incoming wave controlled now by the para-
meter µ− . Actually, the probability for a return is amplified by the fact that the 
force constant for contraction is larger than that for expansion, in terms of pa-
rameters µ µ+ −> . This incoming wave plays now the same role as the initially 
incoming wave described in “Step 1”. In consequence of that a chain reaction 
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can travel along a whole chain of atoms; i.e. a current has been transported along 
the chain. 

4. Final Remarks 

At a first glance, a super current triggered off alone by correlation may surprise. 
However, other surprising dominant correlation effects in few-electron atoms 
are known, see for instance [12]. Finally, we stress that this current does not suf-
fer in any of the three steps from inelastic collisions since the electron transport 
occurred by electron wave diffraction rather than by particle transportation ac-
companied by collisions. 
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Appendix 

It is the purpose of this Appendix to show that the evolution given by (18) solves 
initial value problems of the parabolic Equation (17). 

The initial value is in our case provided by the separated system with one 
electron in a Rydberg orbital. 

The other one is fare away, i.e. R = ∞ . To this end we investigate the quan-
tity 

( ) ( ){ }4 2

4
lim d expRN T i Rβ β µ β β

+π

→∞ −π
′= −∫           (A1) 

Since the exponential oscillates rapidly for R →∞  we extend the integration 
interval to β−∞ < < +∞ , and substitute ( )2 2i R xµ β β ′− = . Thus we obtain 

( ) ( )
1
4 40 e

i
N T R δ β β

µ

π
−π ′= −                   (A2) 

In the last step we have used 

{ }2
0

exp dx x
+∞

− = π∫ .                     (A3) 

Thus we have proven that the Fresnel distribution (18), converges to a delta 
distribution provided 0µ > . Therefore we have identified the Fresnel distribu-
tion for 0µ >  to deliver the quantum analogue of Wannier’s converging tra-
jectory. 

In contrast to that we remark that the expression A1 diverges for 0µ < . That 
is easily seen if we proceed as above we would end with the diverging integral  

2

0
e dx x+∞

∫  
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