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Abstract 
Investigation of optimality conditions has been one of the most interesting 
topics in the theory of multiobjective optimisation problems (MOP). To de-
rive necessary optimality conditions of MOP, we consider assumptions called 
constraints qualifications. It is recognised that Guignard Constraint Qualifi-
cation (GCQ) is the most efficient and general assumption for scalar objective 
optimisation problems; however, GCQ does not ensure Karush-Kuhn Tucker 
(KKT) necessary conditions for multiobjective optimisation problems. In this 
paper, we investigate the reasons behind that GCQ are not allowed to derive 
KKT conditions in multiobjective optimisation problems. Furthermore, we 
propose additional assumptions that allow one to use GCQ to derive neces-
sary conditions for multiobjective optimisation problems. Finally, we also in-
clude sufficient conditions for multiobjective optimisation problems. 
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1. Introduction 

Many authors derive the first order necessary conditions for multiple objective 
functions under the same techniques as used in scalar-valued objective function 
[1] [2] [3] [4] [5], but do not provide a useful tool to develop necessary and suf-
ficient conditions for the multiobjective optimisation problem.  

In this paper, we generalise and recall first order optimality conditions. We 
consider objective function to be a vector function with classical inequality and 
equality constraints are considered; furthermore, we suppose that the involved 
functions satisfy suitable differentiability assumptions.  

Many papers [6]-[13] have been devoted to studying first order necessary con-
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ditions for multiobjective problems with a set constraint; the basic idea is to ap-
proximate the constraints with the contingent cone. We review these results care-
fully, stressing the meaningful differences with the scalar-objective case. 

Scalarization techniques are often used in multiobjective optimisation prob-
lem. Many papers have been published where scalarisation approaches are used 
and non-negative Lagrange multipliers associated with the vector-valued objec-
tive functions are considered. So it is possible that due to some zero multipliers, 
the corresponding components of the vector valued objective functions have no 
role in the necessary conditions of multiobjective problems. To get positive La-
grange multipliers, Maeda [14] first then Preda [15] introduced some special sets 
and derived some generalised regularity conditions for the first-order KKT-type 
necessary conditions that ensure the existence of positive Lagrange multipliers 
for first order multiobjective optimality conditions. 

This paper recalls first order necessary and sufficient conditions for multiob-
jective optimisation problems. To derive necessary conditions, we use well-known 
constraint qualifications such as Abadie constraints qualification and Guignard 
constraint qualification, which are considered more general assumptions in the 
literature to establish optimality conditions. 

In Section 2 of this paper, basic notations are presented which are used 
throughout our analysis. Then, in Section 3, first order necessary conditions are 
introduced, whereas constraint qualifications with counterexamples are presented 
in Section 3 to show the gap between scalar and multiobjective optimisation prob-
lems. 

2. Basic Notations 

This section introduces some notations and definitions used throughout the pa-
pers. 

For , nR∈x y , nR  be n-dimensional space. We use the following relations 
to compare n-dimensional points. 

≥x y , if and only if i ix y≥ , 1, ,i n=  , 
≥x y , if and only if ≥x y  and ≠x y , 
>x y , if and only if i ix y> , 1, ,i n=  . 

Now, we consider the following multiobjective optimisation Problem P: 
( )min f x , subject to the constraints set X such that 

( ) ( ){ }0 0| ,nX R g h∈ = ∈ ≤ =x x x x . 

Now, let : n lf R R→ , : n mg R R→  and : n kh R R→  be continuously dif-
ferentiable vector-valued functions defined by ( ) ( ) ( ) ( )( )1 2, , , lf f f f≡x x x x , 
( ) ( ) ( ) ( )( )1 2, , , mg g g g≡x x x x  and ( ) ( ) ( ) ( )( )1 2, , , kh h h h≡x x x x   

where : n
if R R→  for 1, ,i l=  , : n

jg R R→  for 1, ,j m=   and  
: n

rh R R→  for 1, ,r k=  . Assume that active constraints set  
( ) ( ){ }: : 0j jI j g g= =x x , for 1, ,j m=  .  
The solution of the problem (P) is called the efficient point. A more general 

solution of (P) is called the weak efficient point. The following definitions are 
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the standard ones that are used for multiobjective optimisation problems. 
Definition 2.1. A point X∈x  is called an efficient solution to Problem (P) 

if there is no X∈x  such that ( ) ( )f f≤x x . 
A point X∈x  is called a weakly efficient solution to Problem (P) if there is 

no X∈x  such that ( ) ( )f f<x x . 
Because of ordering relations, we can get a problem where all points are effi-

cient solutions or no efficient solution at all, as the following example shows. 
Example 2.1 Consider the problem  

{ }3min ,x x−  and { }|X x x R= ∈ . 

Here, all X∈x  are efficient solutions (see, Figure 1). And if we consider a 
problem 

{ }1 2min ,x x  and ( ){ }1 2 1 2, | 0, 0X x x x x= ≤ − ≤ . 

So, no X∈x  (see, Figure 2) are efficient solutions to the problem. 
 

 
Figure 1. Efficient points { }|X x x R= ∈ . 

 

 

Figure 2. Shaded feasible region ( ){ }1 2 1 2, | 0, 0X x x x x= ≤ − ≤ . 
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3. First Order Necessary Conditions 

The study of constraints set X and its image ( )f X  is a difficult task and there-
fore, it is reasonable to consider suitable approximations of these sets. Thus, the 
following concept plays a vital role in developing optimisation theories [6] [14] 
[16] [17]. 

Definition 3.1 Let X be a subset of nR . The contingent cone to X at  
cl X∈x  is the set defined by  

( ) ( ){
}

; lim such that , with

and 0, for all 1, 2, ,

|n
n n n nn

n

T X x R t X

t n

→∞
≡ ∈ = − ∈ →

> =

d d x xx x x



 

where cl X  denotes the closure of X and ( );T X x  is a nonempty closed cone 
and enjoys some important properties [6] [14] [17] [18]; The contingent cone is 
isotone, that is, ( ) ( )1 2; ;T X x T X x⊆  whenever 1 2X X⊆ . It is convex if the 
original set is convex. 

The analysis of optimality conditions can be deepened, developing the con-
nection between the contingent cone and the following linearising cone (see [1] 
[18] [19]). 

Definition 3.2 The linearising cone to X at X∈x  is the set defined by  

( ) ( ) ( ) ( ){ }T; | 0, and 0, 1,2, , .n
j kL X x R g j I h k p≡ ∈ ∇ ∈ ∇ = =≤x xd dxd   

Here ( );L X x  is a nonempty closed convex cone. 
The following lemma is a well-known established property for scalar and mul-

tiobjective optimisation problems. The property and proof can be seen in the li-
teraturesee, [14] [15] [20] [21] [22]. However, we have included the statement 
and proof here for reader convenience. 

Lemma 3.1 If X∈x  is an efficient solution of P then for any direction  
( );T X x∈d  the system     

( )T 0, 1,2, ,if d i l∇ < =x                      (1) 

has no solution nR∈d . 
Proof. Let ( );T X x∈d , that is ( )lim n nn

t
→∞

= −d x x , where 0nt > , n X∈x  
for each n,  
and lim nn→∞

=x x . By differentiability of f at x , we get 

( ) ( ) ( ) ( ) ( )T
n n nο− = ∇ − + −f x f f x x xx x x            (2) 

where 
( )

0n

n

ο →
→

→

x
x

x
x

 as n →x x  

Since x  is an efficient solution, so there is no n X∈x , where  
( ) ( )n ≤f x f x , and so, from (2), we get  

( ) ( ) ( )T 0n nο∇ − + − ≤xx xx xf , 

( ) ( ) ( )T 0n n n nt tο⇒∇ − + − ≤x x xf x x  

https://doi.org/10.4236/jamp.2022.107160


H. S. F. Alam, G. C. Ray 
 

 

DOI: 10.4236/jamp.2022.107160 2360 Journal of Applied Mathematics and Physics 
 

Since 0nt >  and taking the limit as n →∞ , the above inequality implies 
( )T 0∇ ≤f x d . It implies that (1) has no solution. This completes the proof. 

The converse is no longer true, as the following example shows 
Example 3.1 Consider the problem  

{ }1 2min ,x x  and ( )1 2 2 1 2
1, | 1 0, 1 0
8

X x x x x x = + − ≤ − + ≤ 
 

. 

It is easily verified that: 

1) ( ){ } ( ){ }T T 2
1 2 1 20, 1, 0 1|2 , ,iF f i x x R x x= ∇ < = = ∈ < <dx , where  

( )0,1x = . 

2) ( ) ( ){ }T T2
1 2 1 2|, ,T x x R x x X= ∈ ∈ . 

3) F T ϕ= . 
4) ( )0,1x =  is not an efficient solution to the problem. It is noted that x  is 

a weak efficient point. 
5) Figure 3 
The relation between contingent and linearization cone is presented as fol-

lows. 
Lemma 3.2 Let X∈x . Then ( ) ( ); ;T X x L X x⊆  
[see [14] for its proof]. 
Now we introduce Motzkin theorems that are used to derive the necessary 

conditions of optimality. These theorems say the impossibility of one system to 
the solvability of another one; see [11] [23] for its proof. 

Theorem 3.1 Motzkin theorem of the Alternative 
 

 
Figure 3. Shaded feasible region X. 
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Let A, B, and C be given matrices, with A being nonvacuous. Then either  
1) 0Ax > , 0Bx ≥  and 0Cx =  has a solution x 

or 

2) 
T T T

1 2 3

1 2

0
0, 0

A y B y C y
y y
+ + =
≥ ≥

 has a solution y1, y2, y3 

but never both. 

4. Constraint Qualifications 

To obtain Lagrange multipliers associated with the objective function which are 
all positive ({ }| 0, 0lRλ λ λ∈ ≥ ≠ ) that is, at least one multiplier is non-zero. To 
restrict multiplier associated objective functions that are not equal to zero and 
establish necessary conditions for optimality, we require some assumptions 
called constraint qualifications (CQ). This is because if 0λ =  then the objec-
tive function has disappeared and any other function could have played this role. 
In our analysis, we consider two well-known constraint qualifications intro-
duced below. 

Definition 4.1 The constraint set X satisfies the Abadie Constraint Qualifica-
tion (ACQ) at x  if  

( ) ( ); ;L X x T X x= . 

Definition 4.2 The constraint set X satisfies the Guignard’s Constraint Quali-
fication (GCQ) at x  if  

( ) ( ); ;L X x clconvT X x= . 

Lemma 4.1 Let X∈x  be any feasible solution to problem P. Assume that 
the ACQ holds at x . If X∈x  is an efficient solution to Problem P, then the 
system 

( )
( ) ( )
( )

T

T

T

0 1,2, ,

0

0 1,2, ,

i

j

k

f i l

g j I

h k p

∇ < =
∇ ≤ ∈ 


∇ = = 

x

x

x

d

d

d

x





                  (3) 

has no solution nR∈d . 
Proof. By Lemma 3.1, X∈x  is an efficient  

( ){ } ( )T| 0, 1, 2, , ,if i l T X x ϕ⇒ ∇ < = =d dx   , If ACQ holds at x  then 

( ){ } ( )T| 0, 1, 2, , ,if i l L X x ϕ∇ < = =xd d   . 

This completes the proof that (3) has no solution. 
Theorem 4.1 Suppose that (ACQ) holds at x . If X∈x  is an efficient solu-

tion to Problem P, then there exist vectors lR∈u , mR∈v  such that  

( ) ( ) ( )1 1 1 0l m p
i i j j k ki j ku f v g hµ

= = =
∇ + ∇ + ∇ =∑ ∑ ∑x x x          (4) 

( ) 0j jv g =x , 1, ,j m=                     (5) 

0≥u , 0≥v                         (6) 
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Proof. Using Theorem 2.1 and Lemma 3.1, there exist 0≥u , lR∈u  and  
0jv ≥ , ( )j I∈ x ,  

such that  

( ) ( ) ( )1 1 0l p
i i j j k ki j I ku f v g hµ

= ∈ =
∇ + ∇ + ∇ =∑ ∑ ∑x x x . 

By setting 0jv = , ( )j I∉ x , we have  

( ) ( ) ( )1 1 1 0l m p
i i j j k ki j ku f v g hµ

= = =
∇ + ∇ + ∇ =∑ ∑ ∑x x x , 

0≥u , 0≥v . 

Since ( ) 0jg =x  for ( )j I∈ x , we have  

( ) 0j jv g =x  for 1, ,j m=  . 

which completes the proof. 
Therefore, ACQ and Motzkin Theorem of the alternative allows restricting mul-

tipliers rule with 0≠u . 
Example 4.1 We take 2n l= = ; Consider the problem  

{ }1 2min ,x x , and ( ) ( )( ){ }1 2 1 2 1 2, | 0, 0X x x x ax ax x a= + + ≤ > . 

It is easily verified that: 
1) ( )0,0x =  is an efficient solution to the problem. 

2) ( ){ } ( ){ }T T 2
1 2 1 20, 1, 0 1|2 , ,iF f i x x R x x= ∇ < = = ∈ < <dx , where  

( )0,0x = . 

3) ( ) ( ){ }T T2
1 2 1 2|, ,T x x R x x X= ∈ ∈ . 

4) F T ϕ= . 

5) ( ){ } ( ) ( ){ }T T T 2
1 2 1 20, 1, |2 , ,iL g i x x x x R= ∇ ≤ = = ∈dx . 

6) ( ) ( ); ;T X x L X x≠ , Abadie Constraint Qualification (ACQ) does not hold 
at ( )0,0x = . 

7) ( ) ( ); ;L X x clconvT X x= ,when 1a ≠ , and thus Guignard’s Constraint 
Qualification (GCQ) holds at ( )0,0x = . 

8) ( )0,0x =  does not satisfy Theorem 4.1. 
9) Figure 4. 
Remarks: In single optimisation, since ( ){ }T: 0F = ∇ <d f dx  lies in open 

half-space, as a result, Theorem 3.1 holds for ACQ and GCQ when 1l = . Theo-
rem 4.1 does hold for ACQ when 1l > , however, the assumption GCQ does not 
guarantee to hold Theorem 4.1. For this instance, GCQ cannot be used in mul-
tiobjective optimisation problems. In Example 4.1, we see that, even if GCQ holds 
at x0, but KKT does not hold at that point. 

Under certain situations GCQ can be used for multiobjective optimisation 
problems, and this illustrates by the following examples given below. 

Example 4.2 We take 2n l= = ; consider the problem  

{ }1 2min ,x x  and ( ){ }1 2 1 2, | 0, 0X x x x x≤− − ≤= . 

It is easily verified that: 
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Figure 4. Shaded feasible region X. 

 
1) ( )0 0,0x =  is a weak efficient solution to the problem. 
2) GCQ holds at ( )0 0,0x = . 

3) ( ){ }T 2
1 2 1 2|, 0, 0F x x R x x= ∈ < < . 

4) T clX clconvT= =  and ( ){ }1 2 1 2, | 0, 0clconvT x x x x= ≥ ≥ . 
Hence, F clconvT ϕ= . That is Lemma 4.1 holds when 1l > . 
Example 4.3 We take 2n l= = , consider the problem 

{ }3
1 1min ,x x−  and ( ){ }1 2 1 2, | 0X x x x x= ≤ . 

It is easily verified that: 
1) ( )0 0,0x =  is an efficient solution to the problem (see Figure 5). 
2) GCQ holds at ( )0 0,0x = . 
3) F ϕ= . 
4) T X=  and ( ){ }2

1 2,clconvT x x R= ∈ . 
Hence, F clconvT ϕ= . That is Lemma 4.1 holds when 1l > . 

5. Sufficient Conditions for Efficiency 

To establish the necessary conditions, we need some sort of constraint qualifica-
tions but do not need convexity assumptions. Necessary conditions generally do 
not turn out to be also sufficient unless additional assumptions hold. In this sec-
tion, we use the concept of quasiconvexity (quasiconcavity) and pseudoconvexi-
ty for the sufficient condition. For the definitions of qausi and psedu convexity 
we refer [17]. Many authors have been devoted to generalise the sufficient con-
dition by using weaker assumption such as generalised convex function see [1] 
[6] [23] [24]. 
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Figure 5. Shaded feasible region. 

 
Now we will check the sufficiency of Lemma 4.1. Let’s state it as follows. 
Lemma 5.1 If the system 

( )
( ) ( )
( )

T

T

T

0 1,2, ,

0

0 1,2, ,

i

j

k

f i l

g j I

h k p

∇ < =
∇ ≤ ∈ 


∇ = = 

x

x

x

d

d

d

x





                   (7) 

has no solution nR∈d  then X∈x  is an efficient solution to Problem P. The 
Lemma 5.1 is no longer true for MOP, as the following example shows. 

Example 5.1 Recall the Example 3.1 
Consider the problem  

{ }1 2min ,x x  and ( )1 2 2 1 2
1, | 1 0, 1 0
8

X x x x x x = + − ≤ − + ≤ 
 

. 

It is easily verified that: 

1) ( ){ } ( ){ }T T 2
1 2 1 20, 1, 0 1|2 , ,iF f i x x R x x= ∇ < = = ∈ < <dx , where  

( )0,1x = . 

2) ( ) ( ){ }T T2
1 2 1 2|, ,T x x R x x X= ∈ ∈ . 

3) F T ϕ= . 

4) ( ){ } ( ) ( ){ }T T T2
1 2 1 20, 1, 2 , ,|iL g i x x R x x X= ∇ ≤ = = ∈ ∈dx . 

5) ( ) ( ); ;L X x T X x= , Abadie Constraint Qualification (ACQ) holds at 
( )0,1x = . 

6) ( ) ( ); ;T X x clconvT X x= , therefore, ( ) ( ); ;L X x clconvT X x= , and thus 
Guignard’s Constraint Qualification (GCQ) holds at ( )0,1x = . 

7) ( )0,1x =  is not an efficient solution to the problem. It is noted that x  is 
a weak efficient point. 
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8) Figure 3. 
Unfortunately, there is no suitable theorem of the alternative, which allows 

turninglemma into a sufficient multipliers rule: convexity assumptions have to 
be added to achieve this type of result [8] [10]. 

Theorem 5.1 Let X∈x  be a feasible solution of problem P. Let  
{ }: 0kR k µ= >  and { }: 0kK k µ= < . Suppose that f is pseudoconvex at x , 

jg , ( )j I∈ x  are quasiconvex at x , kh  for k R∈  are quasiconvex at x  
and kh  for k K∈  are quasiconcave at x . If there exist 0iu > , 0jv ≥  such 
that (4) and (5) hold at x , then x  is an efficient solution for problem P on X. 

Proof. Let ( ) ( ){ }: 0 forjS j g j I= < ∉x x . Since 0jv ≥  and ( ) 0j jv g =x  
for 1, ,j m=   and hence 0jv =  for j S∈ .  

Now ( ) ( )0j jg g≤ =x x , ( )j I∈ x  for all X∈x . It follows by quasicon-
vexity of jg , ( )j I∈ x  at x .  

( ) ( )T 0jg ≤∇ −xx x  X∀ ∈x  and ( )j I∈ x  

( ) ( )T 0j jg v ⇒ ∇ −  ≤x xx , ( )j I∈ x                 (8) 

Similarly, since kh  for k R∈  are quasiconvex at x  and kh  for k K∈  
are quasiconcave at x , we have  

( ) ( )T 0kh ≤∇ −xx x  for k R∈                   (9) 

and  

( ) ( )T 0kh ≥∇ −xx x  for k K∈                  (10) 

Multiplying (9) and (10) by 0kµ >  and 0kµ <  respectively, and adding  
with (8),we get  

( )( ) ( ) ( )
T

0j j k kj I k R Kv g hµ
∈ ∈

 ∇ + ∇ − ≤∑ ∑x x x xx


        (11) 

Multiplying (3.16) by ( )−x x  we get, 

( ) ( ) ( ) ( )
T

1 1 1 0l m p
i i j j k ki j ku f v g hµ

= = =
 ∇ + ∇ + ∇ − = ∑ ∑ ∑ xx x x x  

and compared with (12) we write  

( ) ( )
T

1 0l
i ii u f

=
 ∇ −  ≥∑ xxx  

( ) ( )T 0i iu f ≥⇒ ∇ −x xx  

( ) ( )T 0if ≥⇒∇ −xx x , since 0iu >  and for all X∈x . 
Which, by the pseudo convexity of f at x , implies that ( ) ( )f f≥x x  for all 

X∈x . 
Hence, the proof is complete. 

6. Conclusion 

This paper reviewed first-order optimality conditions for multiple objective func-
tions. Combining the result of [25] [26], we have derived KKT type necessary 
conditions. Furthermore, concepts of constraint qualification are introduced, which 
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are required in the necessary conditions. The main result of this paper is that it 
ensures the existence of GCQ for Multiobjective optimisation problems. Coun-
terexamples are provided to show the restrictions that do not allow one to use 
well-known GCQ in Multiobjective optimisation problems. In our future re-
search, we intend to investigate the sufficiency conditions of KKT conditions for 
Multiobjective optimization problem under more general assumptions. 
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