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Abstract 
Turing demonstrated that spatially heterogeneous patterns can be self-orga- 
nized, when the two substances interact locally and diffuse randomly. Turing 
systems have been applied not only to explain patterns observed within the 
biological and chemical fields, but also to develop image information proces- 
sing tools. In a twin study, to evaluate the V-shaped bundle of the inner ear 
outer hair, we developed a method that utilizes a reaction-diffusion system 
with anisotropic diffusion that exhibited triangular patterns with the intro-
duction of a certain anisotropy strength. In this study, we explored the para-
meter range over which these periodic triangular patterns were obtained. 
First, we defined an index for triangular clearness, TC. Triangular patterns 
can be obtained by introducing a large anisotropy δ, but the range of δ de-
pends on the diffusion coefficient. We found an explanatory variable that can 
explain the change in TC based on a heuristic argument of the relative dis-
tance of the pitchfork bifurcation point between the maximum and minimum 
anisotropic diffusion function values. Clear periodic triangular patterns were 
obtained when the distance between the minimum anisotropic function value 
and pitchfork bifurcation point was over 2.5 times the distance to the aniso-
tropic diffusion function maximum value. By changing the diffusion coeffi-
cients or the reaction terms, we further confirmed the accuracy of this condi-
tion using computer simulation. Its relevance to diffusion instability has also 
been discussed. 
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1. Introduction 

Turing showed that a coupled reaction-diffusion (RD) equation with two com-
ponents admits spatially periodic solutions when certain conditions are satisfied 
[1]. Without diffusion, the local reaction of these two substances is stable and 
converges to an equilibrium. However, with diffusion, the uniform steady state 
becomes unstable. This mechanism is designated as a Turing system. Two di-
mensional (2D) RD models of the Turing system can generate stationary peri-
odic patterns, such as stripe or spot patterns, and have been applied to generate 
biological textures, patterns and structures [2] [3].  

In a twin paper, we proposed the use of the Turing system including aniso-
tropic diffusion for the image analysis of V-shaped bundles [4]. The outer hair 
cells are arranged in three rows near the saccule [5]. We developed a method to 
quantify the arrangement of the V-shaped bundles of stereocilia utilizing infor-
mation provided by the Turing model [4]. In the proposed RD system, periodic 
triangle patterns were obtained by selecting relevant parameters, which allowed 
us to evaluate the V-shaped bundle pattern.  

In the present follow-up study, we further examined the anisotropic Turing 
model. In Shoji and Iwamoto [4], we primary used one set of the parameters to 
generate the periodic triangular patterns. However, the period of V-shaped bun-
dles in the images acquired by each experimenter will be varied. For the effective 
extraction of a given image, adjusting the parameters is necessary to obtain pat-
terns with a suitable frequency period. Parameters in the diffusion terms are 
useful for this purpose [2]. In contrast to studying using the parameters, we ex-
plored the conditions that allowed for the emergence of periodic triangular pat-
terns.  

The organization of the present paper is as follow. In Section 2, we described 
the reaction-diffusion model with anisotropic diffusion. In Section 3, the model 
was solved numerically. The behavior of pattern formation differs depending on 
the anisotropic strength. The linear stability analysis of the model revealed that 
the obtained modes were unchanged regardless of the anisotropic strength, which 
could be seen in first stage of pattern formation. Then, final patterns were com-
pared by the frequency distributions considering the null clines of the reaction 
terms. We found the distribution near the equilibrium point of reaction term 
was different in the case where stable triangular pattern obtained. In order to 
characterize this feature based on the index of the obtained patterns, a statistical 
index of triangular clearness to quantify clear triangular pattern was prepared in 
Section 4. We derived an explanatory variable based on a heuristic argument re-
garding the relative position of pitchfork bifurcation in Section 5. In Section 6, 
we compared the prepared index and the explanatory variable. Using the statis-
tical procedure, we derived the condition for emerging triangular patterns. In 
Section 7, we examined Schnackenberg model whether the same conclusion holds. 
Finally, the results are discussed in Section 8.  
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2. Model 
2.1. Reaction-Diffusion System 

Turing [1] showed that two diffusive chemicals that react locally can generate a 
spatially heterogeneous pattern in a uniform field. The system is written as fol-
lows: 

( )2 ,t uu d u f u v∇ += ,                      (1) 

( )2 ,t vv d v g u v∇ += ,                       (2) 

where u and v are the concentrations of two substances that differ in diffusivity. 
In this case, we assume that v diffuses faster than u; hence, vd  is larger than 

ud . 
We consider the solution ( )0 0,u v  such that ( )0 0, 0f u v =  and  
( )0 0, 0g u v = . We are concerned with the monostable situation when the diffu-

sion are absent. Putting ( ) ( )( )0 0, ~ exp x yu u v v i k k x tλ− − + + , the linear stabil-
ity analysis of the uniform solution is carried out. The eigenvalue λ  is a solu-
tion of the algebraic equation 

( ) ( ){ } ( )( )2 2 2 2 0,u v u v u u v v v ud d k f g d k f d k g f gλ λ+ + − + + − − − =    (3) 

where 2 2
x yk k k= + , ( )0 0,u u vf f u= ∂ ∂ , ( )0 0,v u vf f v= ∂ ∂ , ( )0 0,u u vg g u= ∂ ∂  

and ( )0 0,v u vg g v= ∂ ∂ . Solution ( )0 0,u v  becomes unstable when the real part of 
λ  is positive. The eigenvalue becomes positive at the critical wave number giv-
en by ( ) ( )2 2c v u u v u vk d f d g d d= + . The parameter region where ( )0 0,u v  is li-
nearly unstable is given by the condition 

( ) ( )
2

0
4

v u u v
u v v u

u v

d f d g
f g f g

d d
+

− − > .                 (4) 

The model satisfying the condition above is referred to as the Turing system 
[2]. 

At the bifurcation point where the uniform solution ( )0 0,u v  becomes unsta-
ble, we require the equality in Equation (4). For fixed parameters, except ud , 
this defines a critical diffusion coefficient c

ud , that is, the pitchfork bifurcation 
point [2]. The pitchfork bifurcation point c

ud  is derived as the appropriate root 
of  

( ) ( )
22 2 22 2 2 0c c

v u v u v v u v v v u u v ug d d f g d f g d f g d d f+ − + + =         (5) 

2.2. Anisotropic Diffusion  

In Shoji and Iwamoto [4], we introduced anisotropic diffusion based on the pla-
nar cell polarity of hair cells [5]. We considered a situation where the speed of 
the diffusion process changes depending on the direction of connection with the 
adjacent reaction cells. 

Shoji and Iwamoto [4] showed that periodic triangular patterns can be ob-
tained by setting sufficiently strong anisotropy. Here we further examined the 
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periodic triangular patterns obtained using an RD system with anisotropic diffu-
sion considering the following dynamics:  

( )( ) ( )21t u u uu d D u u u vθ= ∇ ⋅ ∇ + − − ,                 (6) 

( )2
t vv d v u vγ α β= ∇ + − − .                     (7) 

The diffusion coefficient of u is 

( ) ( ) 1 21 cos3u u uD θ δ θ −= −                       (8) 

where uθ  indicates the angle of the gradient vectors of u according to 

arctanu
u u
y x

θ  ∂ ∂
=  ∂ ∂ 

.                       (9) 

The flux of u is proportional to the gradient vector, but the multiplication 
coefficient depends on the angle of the vector. Equation (9) implies that the dif-
fusivity of u is the largest for θu = 0, 2π/3, and 4π/3 and that it is the smallest for 
the directions to θu = π/3, π and 5π/3. δ is the magnitude of anisotropy for u. 
This satisfies the condition 0 1δ≤ < . The special case of δ = 0 implies an iso-
tropy in the diffusion.  

This form of anisotropic diffusion was adopted by Kobayashi [6] when study-
ing dendritic crystal formation, but the functional forms of ( )u uD θ  that he 
adopted were different. Furthermore, in our previous study [7], this form of 
anisotropy was adopted to explain the directionality of stripes on fish skin.   

In the following step, we first studied cases with the reaction terms proposed 
by FitzHugh-Nagumu [8], and written as 

( ) 3,f u v u u v= − − , and ( ) ( ),g u v u vγ α β= − − ,         (10) 

where the constants α, β, and γ are all positive. This set of equations was initially 
introduced as a model equation for impulse propagation along nerve axon [8]. 
Subsequently, we discuss other choices of reaction terms. 

3. Obtained Patterns 

We numerically calculated the model given by Equations (6)-(10). We chose the 
following parameters: α = 0.50, β = 0.01, and γ = 26.0, studied in Shoji and Iwa-
moto [4]. We examined the obtained patterns using different parameter values, 
du and dv. All the simulations were performed with a periodic boundary condi-
tion in a square domain of size: 1.28 × 1.28 (grid size: 128 × 128). A simple ex-
plicit scheme was used. These parameters were chosen to satisfy the stability 
conditions for the numerical analysis. The initial distributions of u and v were 
given as the equilibrium ( )0 0,u v  with small random deviations, except in Sec-
tion 6.3.  

We performed a numerical simulation for t = 1000, considered a sufficiently 
long time to reach the final patterns. Figure 1 shows the time evolution of the 
patterns in a density plot of u. The distributions of v followed the same periodic 
patterns with the same periodicities, but different amplitudes. Without anisotropy,  
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Figure 1. Time evolution of ( ),u tr . (a)-(d) were obtained numer-

ically from Equations (6)-(10) with δ = 0.00; (e)-(h) were obtained 
with δ = 0.50; (i)-(l) were obtained with δ = 0.75; and (m)-(p) were 
obtained with δ = 0.90. Without anisotropy, a stripe pattern was 
obtained, as shown in (a)-(d). In the case of δ = 0.50, a stripe pat-
tern emerged from an initially periodic triangular pattern, as shown 
in (e)-(h). In the case of δ = 0.75, broken triangles form an initially 
periodic triangles pattern, as shown in (i)-(l). In the case of δ = 0.90, 
a periodic triangular pattern emerges, as shown in (m)-(p). 

 
the stripe patterns that we obtained are shown in Figure 1(d). When anisotropy 
was introduced, the generated modes initially formed periodic triangular pat-
terns, as shown in Figure 1(f), Figure 1(j), and Figure 1(n). When the strength 
of anisotropy was not sufficiently large, the triangular patterns were disturbed 
and finally formed a stripe pattern similar to the native pattern without aniso-
tropy, as shown in Figures 1(f)-(h), or broken triangles, as shown in Figures 
1(j)-(l). However, when the anisotropy strength was sufficiently large, the peri-
odic triangular patterns were sustained asymptotically, as shown in Figures 
1(n)-(p). 

3.1. Unstable Modes Obtained by Linear Analysis 

The Turing patterns are known to be related to the critical wavelength at the early 
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stage of pattern formation [2]. We explored the critical modes of ( ),x yk k  at-
taining a constant term of Equation (3) of the lowest magnitude. By setting  
( ) ( )( )0 0, ~ exp x yu u v v i k k x tλ− − + + , we numerically explored ( ),x yk k  with 
the lowest values of the constant term 

( ) ( ){ }
2 2

2 2

1

.

1 cos 3tan

u x y
u v x y v v u

y

x

d k k
f d k k g f g

k
k

δ −

+
− + − −

  
−    

 
 
 
 
 
  
   

      (11) 

Figure 2 shows the contour plot of the values of constant term of Equation 
(11) respect to kx and ky. In the case where δ = 0.00, the point with low values of 
Equation (11) are located in concentric circles equidistant from the (0,0), as 
shown in Figure 2(a). Therefore, no directionality can be observed in the ob-
tained pattern shown in Figure 1(b) and Figure 1(c). However, when δ = 0.50 
and δ = 0.90, the point with low values of Equation (11) are located at the four 
points (two modes) from the (0,0), as shown in Figure 2(b) and Figure 2(c). 
Numerically, we explore the points with the lowest values of Equation (11). Then 
the lowest values −41.3 takes at the (kx, ky) = {(39.5, 68.4), (−39.5, 68.4), (−39.5, 
−68.4), (39.5, −68.4)}, which is correspond to ( )1tan 2 3,4 3u y xk kθ −= = π π . 
This analysis revealed that the obtained mode were unchanged regardless of the 
anisotropy strength. 

As shown in Figure 1(f), Figure 1(j) and Figure 1(n), the exponential growth 
of the specific unstable critical mode revealed by the linear analysis emerged 
from the random initial states when anisotropy was introduced in the early stag-
es of pattern formation. However, as shown in Figures 1(f)-(h) or Figures 1(j)-(l), 
the triangular patterns were eventually disturbed or changed, resulting in a stripe 
pattern or a mixed pattern of stripes and triangles. This process appears to be 
related to the nonlinear evolution of domains that occurs in the second stage, 
converging to asymptotic patterns [2] [9]. Indeed, the linear analysis failed to 
determine whether a triangular pattern could be obtained or not. 

3.2. Frequency Distributions of Patterns 

Shoji et al. [10] compared the nullclines of the reaction terms and asymptotic  
 

 
Figure 2. Contour plots of Equation (11) with respect to kx and ky. (a) δ = 0.00, (b) δ = 
0.50, and (c) δ = 0.90. 
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distributions. We used the frequency distribution of u sampled from a number 
of points in the domain to obtain the patterns and quantify the differences in the 
frequency distributions among the obtained patterns. We applied this concept to 
further explore the conditions that allow triangular patterns to be obtained. 

Figure 3(a) and Figure 3(b) show the isoclines of the reaction terms of Equa-
tions (6), (7) and (10) (in dotted lines) and the distribution plots of (u, v) in the 
(u, v)-plane, obtained from the numerical calculations of Equations (6)-(10). 
Figure 3(c) and Figure 3(d) show the distributions of u sampled from a number 
of points in the domain obtained from the numerical calculations of Equations 
(6)-(10). 

The isocline shows a sharp increase when u is larger than around −0.5 and a 
sharp decline when u was smaller than 0.5. In the case of the Turing diffu-
sion-induced instability, that is, the intersection of ( ),f u v  and ( ),g u v , the 
distribution is maintained within this range though diffusion [2]. Patterns ob-
tained by the RD system without anisotropy were M-shaped, as shown in Figure 
3(c), with two peaks at the highest and lowest values [10]. By contrast, the pat-
terns obtained by the RD system with anisotropy (δ = 0.90) exhibited three 
peaks: which were the peak around u0, including the two peaks explained above. 
Therefore, we could presume that the triangle pattern had not only the Turing 
pattern properties, but also equilibrium distribution properties. 

4. Method of Imaging Process 

Here, we introduce the statistics used to characterize the spatial patterns obtained  
 

 
Figure 3. Isoclines with points of distribution values (a)-(b) and frequency distributions 
(c)-(d). (a) and (c) were obtained from Equations (6)-(10) without anisotropy (δ = 0.00), 
(b) and (d) were obtained from Equations (6)-(10) with anisotropy (δ = 0.90). 
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by the model to distinguish triangular patterns from the obtained patterns. We 
performed a Fourier transformation of the value of u to examine the structure of 
the obtained patterns. For example, in simple case of a stripe pattern, that is, 
( ) ( )cosu A= ⋅r q r  indicating the amplitude A and wave vector q , the Fourier 

transform is as follows: 

( ) ( ) ( )ˆ d exp .u u i= ⋅∫q r r q r                   (12) 

Displaying the intensity ( )û q  in the wavenumber space, the properties of 
the obtained patterns were examined. As shown above, a typical stripe pattern 
obtained exhibits a strong first peak. 

We performed a Fourie analysis of the triangular pattern shown in Figure 
4(a) by comparing another typical Turing pattern, the spot pattern shown in 
Figure 4(b), which was obtained by Equations (6)-(10) using the same parame-
ters as the obtained stripes (δ = 0.00), except for β = 0.08. Figure 4(c) shows the 
intensity of the Bragg peakfor q = q . The blue line and red line in Figure 4(c) 
show the case of the spot and triangular patterns, respectively. It is found that 
peaks is appeared for similar value of q in both cases. However, the intensities of 
the higher peaks (q > 1) of the triangular pattern (red line) are larger than those 
of the spot pattern (blue line), although the first peak (q ≈ 0.6) of triangular pat-
tern is nearly the same as that of the spot pattern. Therefore, to determine 
whether periodic triangular patterns were obtained, we introduce the triangular 
clearness ( )2 2 2

2 3 1TC p p p+= , where p1, p2, and p3 represent the intensity of the 
first peak (q ≈ 0.6 in the case of Figure 4(c)), and the second peak (q ≈ 1.05 in 
the case of Figure 4(c)), and the third peak (q ≈ 1.25) in the case of Figure 4(c)), 
respectively. Therefore, when TC is larger, we regarded the pattern as composed 
of a clear triangular. When TC was small, we regarded the pattern as stripe pat-
terns, or the patterns exhibited broken triangles and become stripes. 

Comparing TC values with the obtained patterns shown in Figure 1, TC was 
lower for stripe patterns such as those in Figure 1(d) (TC = 4.24 × 10−15) and (h)  
 

 
Figure 4. (a) The triangular pattern obtained by the numerical simulation; (b) The spot 
pattern obtained by the numerical simulation; (c) The intensity of Bragg spots. The blue 
line and the red line show the case of the spot pattern and the triangular pattern, respec-
tively. 
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(TC = 7.03 × 10−4). On the other hand, the TC value increases when the triangles 
were partially visible, as in Figure 1(l) (TC = 1.26 × 10−2), and if the pattern 
consists of clear triangles, as in Figure 1(p) (TC = 3.05 × 10−2), the TC value be-
came large. 

5. A Heuristic Argument regarding When Stable  
Triangular Patterns Obtained 

We developed a heuristic argument to determine the range of the obtained pe-
riodic triangular patterns. We introduced the anisotropic diffusion coefficient 
function, Equation (8), in the proposed RD model, in which the values of the 
diffusion coefficient function ( )u uD θ  is between the maximum  

max 1u uD d δ= −  and the minimum min 1u uD d δ= + .   
We considered the parameter set used in the computer simulation in Figure 

1, where 45.00 10ud −= × , 25.00 10vd −= × , and pitchfork bifurcation  
46.6 00 1c

ud −×=  obtained using Equation (5). Figure 5 shows the relative ranges 
of the values of coefficient function (8). In the case of δ = 0.00 (no anisotropy), 
the parameters chosen resulted in Turing instability, and the diffusion coeffi-
cient function, Equation (8), is always constant, as indicated by a single point in 
Figure 5. In the case of δ = 0.50, max

uD  and min
uD  were 7.07 × 10−4 and 4.08 × 

10−4, in the case of δ = 0.75, max
uD  and min

uD  were 1.00 × 10−3 and 3.78 × 10−4, 
and in the case of δ = 0.90, max

uD  and min
uD  were 1.58 × 10−3 and 3.62 × 10−4, 

respectively. It is noted that when vd  was fixed Turing instability occurs when 

ud  was decreasing. The ranges were located within the region where the equili-
brium was stable and the region where Turing instability occurs beyond the 
pitchfork bifurcation, c

ud , as given by Equation (5). To quantify the ratio of the 
distances between max

uD  and c
ud  and between c

ud  and min
uD , we define the 

following index 

( ) ( )min maxc c
u u u uA d D D d= − −                     (13) 

We note that A satisfies A ≥−1. In the case of δ = 0.00 (no anisotropy), A is 
−1.0, whereas A increases as the anisotropy δ increased. In the case of δ = 0.50,  
 

 
Figure 5. Schematic showing the ranges of Equation (8). 
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45.00 10ud −= × , and 25.00 10vd −= × , a triangular pattern first appeared before 
being disturbed and was replaced by a stripe pattern as shown in Figures 
1(e)-(h) for A = 0.197. In the case of δ = 0.75, a triangular pattern replaced a 
broken triangles, as shown in Figures 1(i)-(l) for A = 1.22. In the case of δ = 
0.90, a triangular pattern was sustained, as shown in Figures 1(m)-(p) for A = 
3.13. 

6. Results 
6.1. Triangular Clearness Index TC 

For the patterns obtained by the RD model given by Equations (6)-(10), we cal-
culated the triangular clearness TC as explained in Section 4. Figures 6(a)-(c) 
show how TC changes as δ changes for the three different cases of diffusion 
coefficients. The results were obtained when ud  was changed to 6.00 × 10−4 in 
Figure 6(b) and vd  to 7.50 × 10−2 in Figure 6(c), based on the diffusion coeffi-
cients 45.00 10ud −= ×  and 25.00 10vd −= ×  in Figure 6(a). 

It could be seen that, at small δ, TC was low, whereas, at sufficiently large δ, 
TC had high values in the three examined cases. However, the points and rates 
of change from low TC values to high TC values were distinctively different. 

Next, we examined the changes in TC using A, as described in Section 5. Fig-
ures 6(d)-(f) show the results for the same diffusion coefficients as those in 
Figures 6(a)-(c), respectively. The changes in the value of TC displayed an S- 
shaped function, whereas the TC value changed from low to high around A = 0.0 
- 3.0 in all the cases. 

 

 
Figure 6. Triangular clearness: TC as defined in Section 4 versus the anisotropy δ in the FitzHugh-Nagumode model (a)-(c) and 
the index A in Equation (13) (d)-(f). The parameters were as follows: α = 0.50, β = 0.01, and γ = 26.0, which were also used in ref-
erence [4], as well as (a) and (d) 45.00 10ud −= × , 25.00 10vd −= × , (b) and (e) 46.00 10ud −= × , 25.00 10vd −= × , and (c) and (f) 

45.00 10ud −= × , 27.50 10vd −= × . 
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6.2. Regression Analysis 

A nonlinear regression was performed using the follows equation:  

( )~ 1 e ,rATC a b+                          (14) 

where a, b and r are parameters. To fit the obtained data in Equation (14), we 
utilized the software “R” in MacOSX. 

In Figures 6(d)-(f), the regression function is represented by a solid lines. 
The fitted parameters are listed in Table 1. All parameters listed in Table 1 ap-
pear to be significantly different (p < 0.001). 

Let ( )0 0 0,Q A TC  be the coordinates of the inflection point of the function 
(14). Then, A0 and TC0 could be obtained as A0 = lnb/r, and TC0 = a/2, respec-
tively [11] [12]. The function (14) is symmetric with respect to its inflection 
point and reaches 50% of its maximal value a. Moreover, the inflection point 
coordinates of the derivative function of Equation (14), ( )1 1 1,Q A TC , and  

( )2 2 2,Q A TC  also calculated [12]. A1, A2 is 

1 0 1.318A A r= − , and 2 0 1.318A A r= + ,               (15) 

whereas the TC values at these points could be calculated as follows: 

( )
( )

1

2

1 1 3 2 ~ 0.211 ,

1 1 3 2 ~ 0.789 .

TC a a

TC a a

= −

= +
                    (16) 

Therefore, these points were subject to change until they reached approx-
imately 21% and 79% of the final TC values in Q1 and Q2, respectively [12]. The 
coordinates of Q0 and Q2 are listed in Table 1. We found that the parameters for 
a and Q2 were similar for the three cases shown in Figures 6(d)-(f), although Q0, 
and the parameters in Equation (14) were different. 

6.3. Triangular Patterns Given as Initial Distributions 

In the previous section, the initial distributions were set as the equilibrium point 
with small perturbations using three different seed types. Here, we provided the 
initial distributions of u and v for the triangular patterns. 

We started the numerical simulations for Equations (6)-(10) by introducing a  
 
Table 1. A summary of the parameters fitted to the function of Equation (14) for the ob-
tained patterns in the FitzHugh-Nagumo model, Equations (6)-(10). 

Figure a b r Q0 Q2 

Figure 6(d) 2.89 × 10−2 7.92 −1.45 (1.25, 1.45 × 10−2) (2.34, 2.28 × 10−2) 

Figure 6(e) 2.95 × 10−2 11.01 −1.48 (1.61, 1.48 × 10−2) (2.49, 2.23 × 10−2) 

Figure 6(f) 2.81 × 10−2 2.05 −0.93 (0.72, 1.47 × 10−2) (2.19, 2.32 × 10−2) 

Figure 7(a) 3.58 × 10−2 4.28 −1.30 (1.11, 1.79 × 10−2) (2.12, 2.82 × 10−2) 

Figure 7(b) 3.64 × 10−2 4.56 −1.32 (1.07, 1.82 × 10−2) (2.16, 2.99 × 10−2) 

Figure 7(c) 3.59 × 10−2 6.01 −1.51 (1.19, 1.79 × 10−2) (2.06, 2.83 × 10−2) 
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Gaussian noise source uξ  in Equation (6) and vξ  in Equation (7) of the three 
types of amplitudes of random forces up to 4 × 105 time steps. We then turned 
off the random forces and continued the numerical simulations up to the same 
steps as the above and observed the index TC. We tested three sets of random 
force strengths: 21.00 10u vξ ξ −×= = , 2.00 × 10−2, and 3.00 × 10−3. The relation-
ship between each TC and A is shown in Figures 7(a)-(c). 

In the case of 21.00 10u vξ ξ −×= =  and 2.00 × 10−2, it can be seen that the TC 
value varies in curves, except for A = 0.80 - 1.60. However, for  

3.00 10u vξ ξ −×= = ２ , the change in TC also shows a combination of subtle 
changes in the values, similar to the changes shown in Figures 6(d)-(f), where 
the initial distribution were set as equilibria with small perturbations. This sug-
gests that the effect of the initial distribution can be seen as shown in Figure 
7(a) and Figure 7(b). However, in Figure 7(c), the random force is too strong 
and the effect of the initial distribution is lost. 

A nonlinear regression was also performed as explained above. The values of 
a, b, r and coordinates Q0 and Q2 are shown in Table 1. Even in these cases, it 
can be found that the parameter for a and Q2 were similar. 

6.4. Ranges of δ 

In the previous section, we found that the last phase of changing the TC values 
in the logistic function was similar for all cases of diffusion coefficients. There-
fore, we determined that A2 is the bifurcation point for obtaining triangular pat-
terns, and the maximum value of A2 (2.5) as the threshold for A as the explana-
tory variable. 

We then returned to the function of the value of δ according to Equation (13) 
and predicted the bifurcation point as a function of δ. 

( )21 1c c
u u u ud d A d dδ δ− − ≤ − + .               (17) 

Transforming to the δ condition, we obtained: 
21 1 Bδ ≥ −                           (18) 

 

 
Figure 7. Triangular clearness: TC as defined in Section 4 versus the index A in Equation (13) when the initial distribution of tri-
angular patterns were given and different strengths of random forces added to Equations (6)-(10) before the numerical simulation 
were performed. The parameters were as follows: α = 0.50, β = 0.01, and γ = 26.0, as well as (a) 45.00 10ud −= × , 25.00 10vd −= × , 

(b) 46.00 10ud −= × , 25.00 10vd −= × , and (c) 45.00 10ud −= × , 27.50 10vd −= × . 
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where ( )2 21 2c
u uB A d d A= + − . Once ud  and vd  were determined, c

ud  
could be calculated using Equation (5). Subsequently, the bifurcation point of δ 
was determined. 

In the case of α = 0.50, β = 0.01, γ = 26.0, 25.00 10vd −= × , and 45.00 10ud −= ×  
which are the same parameters in Figure 6(d) and Figure 7, as well as those 
used in [4], the bifurcation point of δ was 0.856. 

7. Another Model of Turing Type 

Thus far, we have concentrated on the FitzHugh-Nagumo equation given by 
Equation (10). The result suggests that the index A can predict the range of the 
triangular pattern obtained in the Equations (6)-(10). In this section, we ex-
amine whether the same conclusion holds for another choice of reaction terms, 
we examined the following alternative model, which is known as “the substrate- 
depleted model” [13] given by the following reaction terms 

( ) 2,f u v u u vα= − + , and ( ) 2,g u v u vβ= − ,               (19) 

where α, and β were positive constants. The parameters in the reaction terms 
were set as α = 2.5 × 10−2, and β = 1.55 were set to obtain stripe patterns without 
anisotropy (δ = 0.00) [2] [10]. Here, we set the diffusion coefficients as follows: 
1) 47.00 10ud −= × , 21.45 10vd −= ×  (pitchfork bifurcation point of  

49.4 09 1c
ud −×= ), 2) 46.70 10ud −= × , 21.45 10vd −= ×  (pitchfork bifurcation point 

of 49.4 09 1c
ud −×= ), and 3) 47.00 10ud −= × , 21.40 10vd −= ×  (pitchfork bifur-

cation point of 49.1 06 1c
ud −×= ). 

Figure 8 shows the results of the changes in TC using A in Equation (13). The 
change in TC value displays an S-shaped function. A regression analysis was 
performed using the method described above. The regression function is shown 
as a solid line in Figures 8(a)-(c). The fitted parameters and the coordinates Q0 
and Q2 are listed in Table 2. The fitted parameters Q2 were similar in all cases. 

Comparing the results between the models, the value of A2 was similar as the 
parameter obtained by FitzHugh-Nagumo model. By using the argument de-
scribed in the previous section, we estimated the range of δ over which triangular  

 

 
Figure 8. Triangular clearness: TC as defined in Section 4versus the index A in Equation (13) in Schnackenberg model given by 
Equations (6)-(9) and (19) with α = 0.025, β = 1.55, as well as (a) 47.00 10ud −= × , 21.45 10vd −= × , (b) 46.7 10ud −= × ,  

21.45 10vd −= × , and (c) 47.00 10ud −= × , 21.40 10vd −= × . 
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Table 2. A summary of the parameters fitted to the function of Equation (14) for the ob-
tained patterns in the Schnackenberg model, Equation (6)-(9) with reaction terms (19). 

Figure a b r Q0 Q2 

Figure 8(a) 5.34 × 10−2 4.94 −1.18 (1.34, 2.67 × 10−2) (2.47, 4.22 × 10−2) 

Figure 8(b) 4.56 × 10−2 3.38 −1.13 (1.07, 2.28 × 10−2) (2.23, 3.60 × 10−2) 

Figure 8(c) 4.85 × 10−2 5.03 −1.31 (1.33, 2.42 × 10−2) (2.41, 3.83 × 10−2) 

 
patterns were obtained as δ ≥ 0.883 when 47.00 10ud −= ×  and 21.45 10vd −= × , 
δ ≥ 0.889 when 46.70 10ud −= ×  and 21.45 10vd −= × , and δ ≥ 0.868 when  

47.00 10ud −= ×  and 21.40 10vd −= × . 

8. Discussion 

The parameter region where the triangular patterns were obtained was investi-
gated. By examining the asymptotic patterns, we inferred that the distributions 
of the obtained patterns were related to the ratio of the width belonging to the 
equilibrium of the diffusion coefficient to the width belonging to the diffusion- 
induced instability, A. Even if the diffusion coefficients changed and other reac-
tion terms were used, clear triangular patterns were obtained when A value was 
large. 

In this study, the threshold value of A was set to 2.5 which satisfies approx-
imately 80% of the fitting parameter and statically equal to the maximum value 
of TC and the parameters examined in this study. Although this threshold was 
determined using the aforementioned statistical process, Figures 6-8 show that 
when A = 2.5 or higher, the value of TC is consistently high. 

Considering the time evolution of the morphogenesis of triangular patterns, 
as described in Section 3, nonlinear analysis is required for rigid mathematical 
analysis. In the present study, we focused on different aspects, namely the clear-
ness of the triangular pattern that filled the entire space of parameters. In the 
present study, we discovered that a very simple index A could be useful for pre-
dicting the parameter region where the triangular patterns were obtained, and 
the condition of anisotropic strength δ for obtaining triangular patterns could be 
easily derived from the relation A in a straightforward manner, as shown in Eq-
uation (18). 

In this study, anisotropy was introduced only for the diffusion of u, which has 
a small diffusion coefficient. However, it is also possible to introduce anisotropy 
only in the diffusion of v with a large diffusion coefficient, or in the diffusion of 
both u and v. The effect of the diffusion coefficient introduced here may become 
clearer in future studies. 

This study indicates that defining a simple index characterizing the spatial 
patterns formed and relating this index to the properties of the model used would 
be useful for gaining a better understanding of pattern formation. This know-
ledge may be applied not only to biological pattern formation, but can also serve 
the development of methods for image information processing. 
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