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Abstract 
In this paper, we look for solutions to the following Schrödinger-Bopp-Podolsky 
system with prescribed L2-norm constraint  
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 , where 0q ≠ , , 0a ρ >  are constants. 

At first, by the classical minimizing argument, we obtain a ground state solu-

tion to the above problem for sufficiently small ρ  when 82,
3

p  ∈  
. Se-

condly, in the case 6p = , we show the nonexistence of positive solutions by 
using a Liouville-type result. Finally, we argue by contradiction to investigate 

the orbital stability of standing waves for 82,
3

p  ∈  
. 
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1. Introduction 

When one looks for standing waves of the Schrödinger equation coupled with 
the Bopp-Podolsky theory of the electromagnetic field in the purely electrostatic 
situation, it is equivalent to consider the existence of solutions for the following 
Schrödinger-Bopp-Podolsky system 
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where 3, :u φ →  , , 0aω > , 0q ≠ , and ( )2,6p∈ . From the physical stand- 
point, u represents the modulus of the wave function and φ  is the electrostatic 
potential, the parameter q has the meaning of the electric charge and a is the pa-
rameter of the Bopp-Podolsky term [1]. As is known to all, the Bopp-Podolsky 
theory, a second-order gauge theory of the electromagnetic field, was developed 
by Bopp [2] and then independented by Podolsky [3]. According to Mie theory 
[4] and its generalizations in [5] [6] [7] [8], the Bopp-Podolsky theory was in-
troduced to solve the alleged infinity problem in classical Maxwell theory. 

As far as system (1.1) is concerned, there are very few papers related to the ex-
istence of solutions. Indeed, to the best of our knowledge, Siciliano and d’Avenia 
in [9] for the first time showed that system (1.1) possesses nontrivial solutions 
by means of splitting lemma and the monotonicity trick, when p and q belong to 
different scope. Meanwhile, they also demonstrated that in the radial case, as 

0a → , the solutions they found tend to solutions of the classical Schrödinger- 
Poisson system. At the same time, Silva and Siciliano [1] proved by the fibering 
approach that system (1.1) has no solutions at all for large values of q and has 
two radial solutions for small q s′ , when ( ]2,3p∈ . In addition, if system (1.1) 
is dependent on potentials, that is, non-autonomous, or the corresponding non-
linearity is of more general case, the authors in [10] [11] considered the exis-
tence of nontrivial solutions, the main results obtained in [12]-[16] are related to 
the existence of ground state solutions for system (1.1) with critical growth. 

To deal with system (1.1), in the light of its variational structure, it can be re-
duced to search for nontrivial critical points of the associated energy functional. 
Actually, define the Hilbert space  

( ) ( ){ }1,2 3 2 3: : Lφ φ= ∈ ∆ ∈    

normed by  
2 2 22

2 2 ,aφ φ φ= ∆ + ∇


 

then, according to the Gauss law, it can be proved that for every ( )1 3u H∈   
there is a unique solution uφ ∈  of the second equation in system (1.1). Here, 

( )1 3H   is the usual Sobolev space with standard norm  

( )
1

2 2 2
2 2 .u u u= ∇ +  

In other words, a unique element uφ ∈  satisfies  
2 2 24a uφ φ− ∆ = π∆ +  

in the weak sense. Moreover, it turns out to be that  

2 21 e: ,
a

u u uφ

⋅
−

⋅
−

= ∗ ∗                    (1.2) 

where { } ( )3: \ 0 0,1 a→  . 
In view of the solvability of uφ , that is (1.2), system (1.1) can be naturally re-
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duced to the following single equation  
22 .p

uu u q u u uω φ −−∆ + + =                   (1.3) 

As for (1.3), the corresponding energy functional ( )1 3:J H →   is defined 
by  

( ) 3 3 3

2
2 2 21 1d d .

2 4
p

u
qJ u u u x u dx u x

p
ω φ= ∇ + + −∫ ∫ ∫  

 

Based on the above arguments, if ( )1 3u H∈   is a critical point of J, we call 
that the pair ( ), uu φ  is a weak solution of system (1.1). For the simplicity of the 
notations, throughout this paper we just say ( )1 3u H∈  , instead of  
( ) ( )1 3, uu Hφ ∈ ×  , is a solution of system (1.1). 

Just as mentioned above, all the existing results involving system (1.1) focus 
on the case that ω  is a fixed and assigned parameter. Nevertheless, as a model 
coupling the Schrödinger field and the electromagnetic field, the physicists are 
more interested in the existence of “normalized solutions”, that is, solutions with 
prescribed L2-norm. To this subject, we have not found any references dealing 
with system (1.1), except for the recent work [17], in which the authors investi-
gated the normalized solutions to a Schrödinger-Bopp-Podolsky system defined 
on a connected, bounded, smooth open set under Neumann boundary condi-
tions. However, it is must be pointed out that, although there are no results 
about the normalized solutions of system (1.1), as far as we know, many results 
concerning the existence or non-existence of normalized solutions to the elliptic 
problems have been extensively established, see [18]-[22] and the references 
therein. 

Motivated by the above references, especially [1] [9] [18] [19], the purpose of 
this paper is to handle with the existence of normalized solutions for system  

(1.1) when p belongs to the scope { }82, 6
3

  ∪  
. As usual, for any given 0ρ > ,  

searching solution of (1.3) with 2u ρ=  (normalized solution) is equivalent to 
consider nontrivial solution of following constraint problem  

3

22 3

2 2

in ,

d .

p
uu u q u u u

u x

ω φ

ρ

−−∆ + + =


=∫


                (1.4) 

It is worth mentioning that in this situation the parameter ω  arises as a La-
grange multiplier, depending on the solution and is not a priori given. To solve 
the problem (1.4), it can be obtained as a critical point of the following 1C  
functional  

( ) 3 3 3

2
2 21 1d d d

2 4
p

u
qI u u x u x u x

p
φ= ∇ + −∫ ∫ ∫  

           (1.5) 

constrained on the L2-spheres in ( )1 3H    

( ){ }1 3
2: : .B u H uρ ρ= ∈ =                    (1.6) 
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A direct strategy to deal with (1.5)-(1.6) is to consider the constraint mini-
mizing problem  

( )2 : inf
u B

I I u
ρρ ∈

=                         (1.7) 

and verify that the minimizers are critical points of ( ) B
I u

ρ
. 

Up to now, we can state our first result as follows.  

Theorem 1.1. For 82,
3

p  ∈  
, there exists 1 0ρ >  (depending on p) such  

that all the minimizing sequences for (7) are precompact in ( )1 3H   up to trans- 
lations provided that  

10 .ρ ρ< <  

That is, there exists a couple of ( ) ( )1 3,u Hρ ρω ∈ ×   being solution of (1.4).  
We take advantage of the techniques used in [18] [19] to finish the proof of 

Theorem 1.1. In fact, for any minimizing sequence { }nu  of (1.7), due to va-
nishing 0nu   (or the dichotomy situation 0nu u ≠  and 20 u ρ< < ) 
may occur, which leads to the main difficulty, that is, the (bounded) minimizing 
sequence { }nu Bρ⊂  is lack of compactness. To avoid the above two cases, the 
effective procedure is to verify that any minimizing sequence weakly converges, 
up to translation, to a function u  which is different from zero, excluding the 
vanishing case; and then, to show that 2u ρ= , which illustrates that the di-
chotomy property does not occur. On account of the above discussions, we 
firstly check that the energy functional I defined in (1.5) for problem (1.4) satis-
fies the hypothesis of Lemma 2.1, which guarantees that the condition (MD) as 
introduced in Remark 2.2 can be recovered. Furthermore, with the help of 
Proposition 2.5, we can examine that ( ) 2I u I

ρ
= . 

Here, it should be noted that, different from [18] [19], to find the existence of 
constraint minimizers for problem (1.7), the main difficulty is caused by the in-
homogeneity of   defined in (1.2), which makes the calculation involving the 
energy functional I more complicated and leads to more difficult to prove strong 
subadditivity with the current method. 

In addition, we prove the nonexistence of the solution when 6p = .  
Theorem 1.2. If 6p = , for any 0ρ > , (1.4) has no positive solution in  
( )1 3H  .  

As previously said, our Theorem 1.1 is the first attempt to consider the exis-
tence of normalized solutions for system (1.1). Notice that, if 0a = , system 
(1.1) reduces to the following Schrödinger-Poisson system  

22

2

,

4 ,

pu u q u u u

u

ω φ

φ

−

π

−∆ + + =

−∆ =

                  (1.8) 

which has been widely studied in recent years, see [23] [24] and the references 
therein. It is well known that system (1.8) is equivalent to  

22 0 ,p
uu u q u u uω φ −−∆ + + =                  (1.9) 

where now  
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0 21: .u uφ =
⋅
∗  

Evidently, if ( )u x  satisfies Equation (1.9), we are readily going to obtain 
standing wave solutions being of the form ( ) ( ), e i tx t u xωψ −=  corresponding to 
the following problem dependent on t  

( )1 2 22 0.p
ti q xψ ψ ψ ψ ψ ψ− −+ ∆ − ∗ + =  

In addition, there are also some papers dealing with the existence of normalized  

solutions of Equation (1.9). For the case that 102
3

p< < , normalized solutions  

can be found by considering the minimization problem, since the functional 0I  
is bounded from below and coercive on Bρ . Bellazzini and Siciliano in [18] [19] 
proved that 2

0I
ρ

 is achieved when 0ρ >  is small for 2 3p< <  and when  

0ρ >  is large for 103
3

p< < , respectively. Subsequently, for the range  

102
3

p≤ ≤ , Jeanjean and Luo in [25] explicated a threshold value of ρ separating  

the existence and nonexistence of minimizers of 2
0I
ρ

. Catto and Lions in [26]  

showed that minimizers of 2
0I
ρ

 exist for 8
3

p =  provided that ( )ˆ0,ρ ρ∈  for  

some suitable ˆ 0ρ >  small enough. When p is L2-supercritical and Sobolev  

subcritical, that is, 10 6
3

p< < , the existence of normalized solutions can be  

generalized to the minimization problem in [27]. 
Since the normalized solution ( )u x  obtained in Theorem 1.1 corresponds to 

the standing wave ( ) ( ), e i tx t u xωψ −=  of the following evolution equation  

( )2 22 0.p
ti qψ ψ ψ ψ ψ ψ−+ ∆ − ∗ + =  

Therefore, the stability of standing wave is the second concerned problem in 
present paper. Explicitly, we will discuss the orbital stability of standing waves 
with L2-norm for the following initial problem  

( )
( ) ( ) ( )

2 22

1 3
0

0,

,0 .

p
ti q

x x H

ψ ψ ψ ψ ψ ψ

ψ ψ

− + ∆ − ∗ + =

 = ∈ 


            (1.10) 

Definition 1.3. Define  

( ) [ ) ( ){ }22e : 0, 2 , , .iS u x u I u Iθ
ρ ρ

θ ρπ= ∈ = =  

Then, Sρ  is orbitally stable if for every 0ε >  there exists 0δ >  such that 
for any ( )1 3

0 Hψ ∈   with ( )1 30infv S Hv
ρ

ψ δ∈ − <


 we have  

( ) ( )1 30, inf , .
Hv S

t t v
ρ
ψ ε

∈
∀ > ⋅ − <



 

Here, ( ), tψ ⋅  is the solution of initial problem (1.10).  
We obtain the strong stability of standing waves for (1.10), which is shown in 
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the following theorem. 

Theorem 1.4. Let 82,
3

p  ∈  
. Then the set  

( ) [ ) ( ){ }22e : 0, 2 , ,iS u x u I u Iθ
ρ ρ

θ ρ= = =π∈  

is orbitally stable for ρ  determined in Theorem 1.1.  
This paper is organized as follows. In Section 2, various preliminary results 

are presented to be used in the sequel. In Section 3, we focus our attention on the 
proofs of Theorem 1.1 and Theorem 1.2. Finally, the orbital stability obtained in 
Theorem 1.4 is established in Section 4. 

2. Preliminaries 

To prove our main results, some preliminaries are in order during this section. 
We first recall an abstract framework introduced in [18], however we could not 
narrate it again in order to avoid the repetition. For the simplicity, we directly 
apply it to our variational framework. Explicitly, for our constrained minimiza-
tion problem (1.7), we rewrite it as follows  

( ) ( )3
21: d ,

2
I u u x T u= ∇ +∫  

where  

( ) 3 3

2
2 1: d d .

4
p

u
qT u u x u x

p
φ= −∫ ∫

 

               (2.1) 

Under suitable assumption on T defined in (2.1), we have the strong conver-
gence of the weakly convergent minimizing sequence. 

Lemma 2.1. [18] Let ( )( )1 1 3 ,T C H∈   . Let 0ρ >  and { }nu  be a mini-
mizing sequence for 2I

ρ
 weakly convergent, up to translations, to a nonzero 

function u . Assume that the following inequality is satisfied  

2 2 2 2 for all 0 ,I I I
ρ µ ρ µ

µ ρ
−

< + < <              (2.2) 

and that  

( ) ( ) ( ) ( )1 ,n nT u u T u T u o− + = +               (2.3) 

( )( ) ( ) ( )
22
2
2

2

1 , where ,n n n n
n

u
T u u T u u o

u u

ρ
α α

−
− − − = =

−
    (2.4) 

then u Bρ∈ .  
Remark 2.2. In the above lemma, (2.2) is usually called strong subadditivity 

inequality. In order to ensure that any minimizing sequence on Bρ  is relatively 
compact, (2.2) is the necessary and sufficient condition and it is a stronger ver-
sion of the following inequality  

2 2 2 2 for all 0 ,I I I
ρ µ ρ µ

µ ρ
−

≤ + < <             (2.5) 

which is referred as the weak subadditivity inequality. It is worth mentioning 
that in [18] [19], checking (2.2) for the Schrödinger-Poisson system is the essen-
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tial step to solve problem (1.7). As a matter of fact, this is also very important for 
us. However, the inhomogeneity of   makes this more difficult than 0a ≠ . 
To prove (2.2), we adopt the mediate approach which ensures that   

(MD) the function 
2

2
s

I
s

s
  is monotone decreasing.  

Indeed, assuming that (MD) holds for ( )0,µ ρ∈ , we get  

2 2 2 2 2

2 2 2

2 2and .I I I I
ρ µ ρ ρ µ

µ ρ µ
ρ ρ −

−
< <  

Therefore, one has  

2 2 2 2 2 2

2 2 2

2 2 for all 0 .I I I I I
ρ ρ ρ µ ρ µ

µ ρ µ µ ρ
ρ ρ −

−
= + < + < <  

In other words, verifying (MD) helps us to obtain (2.2), but it is not an easy 
work. In order to overcome this difficulty, the following Proposition 2.5 pro-
vides one criterion for (MD).   

Before presenting it, we give some necessary definitions needed in the subse-
quence.  

Definition 2.3. Let ( )1 3u H∈   with 0u ≠ . A continuous path  
( ) ( )1 3:u ug g Hθ θ+∈ ∈   such that ( )1ug u=  is said to be a scaling path 

of u if  

( ) ( ) ( )2 2
22

: is differentiable and 1 0,
u ug u gg uθ θ − ′Θ = Θ ≠        (2.6) 

where the prime denotes the derivative. Furthermore, u  is the set of scaling 
paths of u.   

Definition 2.4. Let 0u ≠  be fixed and u ug ∈ . We say that the scaling path 

ug  is admissible for the functional (1.5) if  

( ) ( )( ) ( ) ( ): , 0
u ug u gh I g I uθ θ θ θ= −Θ ≥  

is a differentiable function.   
Proposition 2.5. Let ( )( )1 1 3 ,T C H∈    satisfy the set of assumptions (2.3) 

and (2.4). Assume that for every 0ρ > . All the minimizing sequences { }nu  
for 2I

ρ
 have a weak limit up to translations different from zero. Assume finally 

(2.5) and the following conditions  

( )( )2 0 for all 0 0 0 ,
s

I s I−∞ < < > =               (2.7) 

2 is continuous,
s

s I                     (2.8) 

2

20
lim 0.s

s

I

s→
=                         (2.9) 

Then, for every 0ρ > , the set  

( ) ( ){ }
( ]

2
0,

:M u B I u Iµ µ
µ ρ

ρ
∈

= ∈ =


 

is nonempty. If, in addition,  

( ) ( )
1

d, is admissible such that 0,
d uu u gu M g h

θ

ρ θ
θ =

∀ ∈ ∃ ∈ ≠     (2.10) 
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then (MD) holds. Moreover, if { }nu  is a minimizing sequence for 2I
ρ

 weakly 
convergent, up to translations, to a nonzero function u ,  

( ) ( ), 1 ,n nT u u O′ =                        (2.11) 

( ) ( ) ( ), 1 as , ,n m n mT u T u u u o n m′ ′− − = → +∞            (2.12) 

then ( )1 3 0n Hu u− → . In particular, it follows that ( ) 2I u I
ρ

= .  
Next, we need to consider the local well posedness for the Cauchy problem 

(1.10). The framework established in [28] helps us to achieve this fact. To make 
our problem better correspond to the abstract results in [28], we will give the 
following details. In fact, the local well posedness considered in the following is 
applicable to more general nonlinearity  

( )
( ) 0

0,

0 .
ti gψ ψ ψ

ψ ψ

+ ∆ + =


=
                     (2.13) 

For the nonlinearity being of the form 1 2g g g= + , we assume that there exist 

( )( )1 1 3 ,jG C H∈    ( 1,2j = ) such that  

.j jg G′=                           (2.14) 

In addition, ( ) ( )( )1 3 1 3,jg C H H −∈   , there exist some [ ), 2,6j jr ρ ∈  such 
that  

( ) ( )( )1 3 3, ,j
jg C H Lρ′∈                     (2.15) 

and for every M < ∞  there exists ( )C M < ∞  such that  

( ) ( ) ( ) ( )1 3, , ,
jj

j j rg g C M H
ρ

ϕ ψ ϕ ψ ψ ϕ
′

− ≤ − ∀ ∈          (2.16) 

with Mψ ϕ+ ≤ , where ,j jr ρ′ ′  represent the conjugate exponent of ,j jr ρ . 
Finally, we assume that for every ( )1 3 ,Hψ ∈     

( )( ) 3Im 0 a.e. in .jg ψ ψ =                   (2.17) 

Let 1 2G G G= +  and define the energy E by  

( ) ( )3
21 d

2
E x Gψ ψ ψ= ∇ −∫  

for ( )1 3 ,Hψ ∈   . Then, according to ([28], Theorem 4.3.1), the following 
proposition is a direct consequence.  

Proposition 2.6. [28] If g is defined as above. the initial-value problem (2.13) 
is locally well posed in ( )1 3H  . Furthermore. there is conservation of charge 
and energy i.e.  

( ) ( )( ) ( )0 022
,t E t Eψ ψ ψ ψ= =  

for all ( )min max,t T T∈ − , where ( )tψ  is the solution of (2.13).  

3. Proofs of Theorem 1.1 and Theorem 1.2 

Firstly, we focus our attention on verifying the hypotheses of Proposition 2.5 to 
finish the proof of Theorem 1.1. We start this section to give some properties of 
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uφ  (see [9], Lemma 3.4), which will be used frequently in the later.  
Lemma 3.1. ([9], Lemma 3.4]) For any ( )1 3u H∈  . uφ  has following prop-

erties:   
1) 0uφ ≥ , 2

tu utφ φ= ;  
2) 2

6u C uφ ≤ ;  
3) if nv v  in ( )1 3H  , then 

nv vφ φ  in  ;  

4) 3
42
12 5duu x C uφ ≤∫ .  

Hereafter, we use 1, ,C C   to denote suitable positive constants whose value 
may also change from line to line. The following lemma shows that problem  

(1.7) is well-defined for 82,
3

p  ∈  
. 

Lemma 3.2. For every 0ρ >  and 82,
3

p  ∈  
. the functional I as shown in  

(1.5) is bounded from below and coercive on Bρ .  
Proof. In view of Lemma 3.1 and using the Gagliardo-Nirenberg inequality 

(see [29], Proposition 1.16), we have  

( )

( )

( )

3 3 3

3 3

2
2 2

2

2 1
2 2 2

12
2 2

1 1d d d
2 4
1 1d d
2
1
2
1 ,
2

p p

p p

p
u

p

p p

p p

qI u u x u x u x
p

u x u x
p

u C u u

u C u

γ γ

γ γ

φ

ρ

−

−

= ∇ + −

≥ ∇ −

≥ ∇ − ∇

= ∇ − ∇

∫ ∫ ∫

∫ ∫

  

 

         (3.1) 

where ( )3 2
2p

p
p

γ
−

= . Since 82,
3

p  ∈  
, it results 1ppγ < , which concludes  

the proof.                                                         □ 
Remark 3.3. For 0 2ppγ< < , observing the above inequality (3.1) yields that 

the functional I is bounded from below and coercive on Bρ . That is, Lemma 3.2  

is effective for 102,
3

p  ∈ 
 

. In addition, as a consequence of this lemma,  

whenever ρ  is fixed and { }nu  is a minimizing sequence for 2I
ρ

, we obtain 
that { }nu  is bounded in ( )1 3H   and exists a weakly convergent subsequence.   

In order to verify all the hypothesis of Proposition 2.5, we begin with the weak 
subadditivity inequality (2.5). 

Lemma 3.4. For the functional I defined in (1.5). The weak subadditivity in-
equality (2.5) is satisfied.  

Proof. According to the definition of infimum, for any 0ε > , there are  
,u vε ε  such that  

( )

( )

2 2

2 2 2 2

2 2
2

2 2 2
2

, ,

, ,

I I u I u

I I v I v

ε εµ µ

ε ερ µ ρ µ

ε µ

ε ρ µ
− −

 ≤ ≤ + =


≤ ≤ + = −

            (3.2) 
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where 0ρ µ> > . Denote ( )nv v nε ε χ= ⋅+ , where χ  is some given unit vector 
in 3 . By ([9], Lemma B.5), we get ( ) 0v nε χ⋅+   in ( )1 3H   and  

( ) 0v nε χ⋅+ →  a.e. in 3 , up to a subsequence if necessary. And, according to 
Brézis-Lieb Lemma (see [30], Lemma 1.32), we have  

( )2 2 2

22 2
0;n nu v v uε ε ε ε+ − + →  

by ([9], Lemma B.2), we derive that  

( ) ( ) ( )( ) 0.n nI u v I u I vε ε ε ε+ − + →  

Moreover, since 2
2u  and ( )I u  are translation-invariant, we can infer from 

(3.2) that  

( ) ( ) ( ) ( )( )
( )

2 2 2

2 2 2

lim

2

n

n

n

I I I u I v I u I v

I u v I I

ε ε ε εµ ρ µ

ε ε µ ρ µ
ε

− →∞

−

+ ≤ + = +

= + ≤ + +
 

and  

{ }2 22 2 2 2 2 2 2
2 2 22 2

lim .n n

n
u v u v u vε ε ε ε ε ε µ ρ µ ρ

→∞
+ = + = + = + − =  

As a result, according to the definition of infimum for 2I
ρ

, it is achieved that  

2 2 2 2 .I I I
ρ µ ρ µ−
≤ +  

□ 
Lemma 3.5. The functional T defined in (2.1) satisfies (2.3) and (2.4).  
Proof. For the convenience of notation, we redefine (2.1)  

( ) ( ) ( )3 3

2
2 1d d : .

4
p

u
qT u u x u x N u M u

p
φ= − = −∫ ∫

 

 

It is obvious that ( )1 3 ,T C∈   . Therefore, we only need to verify that both 
M and N hold true for the relationships (2.3) and (2.4). By Lemma 3.2, for { }nu  
being an arbitrary minimization sequence for ( )I u , { }nu  is bounded in  

( )1 3H  . Due to the Sobolev embedding theorem, { }nu  is also bounded in sL
-norm for *2, 2s  ∈    and there is ( )1 3u H∈   such that ( )1 3

nu u H∈  . 
Note that, M and N satisfy the condition (2.3) which were proved by ([9], 

Lemma B.2). Therefore, it is sufficient to verify that the condition (2.4) is satis-
fied for M and N. Actually, by Hölder inequality and Lemma 3.1, we have  

( ) 3

2
2 2 2 2

12 121 6 5 5
d .

4 n nn u n u n n n
qN u u x C u C u uφ φ= ≤ ≤∫



 

Then, ( )nN u  is bounded. In addition, once 
22
2
2

2

1n
n

u

u u

ρ
α

−
= →

−
, we conclude  

the proof from  

( )( ) ( ) ( ) ( )4 1n n n n nN u u N u u N u uα α− − − = − −  

and  

( )( ) ( ) ( ) ( )1 .p
n n n n nM u u M u u M u uα α− − − = − −  
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Indeed, since 0nu u−   in ( )1 3H  , up to a subsequence if necessary, by 
Brézis-Lieb Lemma we get  

( )2 22
22 2 1 .n nu u u u o− + = +  

Hence,  
22
2
2

2

1,n
n

u

u u

ρ
α

−
= →

−
 

which implies that ( )( ) ( ) ( )1n n nM u u M u u oα − − − =  and  
( )( ) ( ) ( )1n n nN u u N u u oα − − − = . So we deduce immediately that  
( )( ) ( ) ( )1n n nT u u T u u oα − − − =  and complete the proof.                 □ 

We are now concentrating on testing that conditions (2.7)-(2.9) are achieva-
ble.  

Lemma 3.6. If 2 8 3p< ≤ . then condition (2.7) is satisfied.  
Proof. By Lemma 3.2, we have 2s

I > −∞  for all 0s > . Hence, it only needs 
to prove that 2 0

s
I <  for every 0s > . Let ( )1 3u H∈   and choose the family 

of scaling paths of u parameterized with β ∈  given by  

( ) ( )
31
2 ,u u ug u x
ββ βθ θ θ

−  = = ⊂ 
  

   

such that ( ) 2
ug θ θΘ =  and ( ) 2ug θ θ= , where θ +∈  and ( )

ug θΘ  is giv-
en in Definition 2.3. For the simplicity of notations, we introduce the following 
quantities  

( ) ( ) ( )3 3 3
2 2: d , : d , : d ,p

uA u u x B u u x C u u xφ= ∇ = =∫ ∫ ∫
  

 

which gives that  

( ) ( ) ( ) ( )
21 1: .

2 4
qI u A u B u C u

p
= + −  

Meanwhile, some direct calculations bring the equalities as follows  

( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

3

2 2

4 2 2

31 3
2

,

1 e d d ,

.

u

x y

a

u

p

u

A g A u

B g u x u y x y
x y

C g C u

β

β

θ
β

β β

θ θ

θ θ

θ θ

−

−

−
−

−

 − + 
 

=

−
=

−

=

∫∫


 

Taking 2β = − , we readily see that  

( )( ) ( ) ( ) ( ) ( )
2

3

6 6 2 4 6
2 21 e d d 0

2 4

x y
pa

u
qI g A u u x u y x y C u

x y p

θθ θ θθ

−
−

−
−−

= + − →
−∫∫



 

as 0θ → , since 4 6 6p − <  and ( ) 0C u > . This signifies that there is a small 

0θ  such that  

( ]2 00, 0, .
s

I s θ< ∀ ∈  
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Letting ( 0 0, 2θ θ θ ∈  , then for every ( ]0 ,s θ θ∈ , we derive from Lemma 3.4 
that  

2 2 2 2
0 0

0,
s s

I I I
θ θ−

≤ + <  

since 2 2 2
0 0s θ θ− < . That is to say, 2 0

s
I <  for s in the larger interval ( ]0,θ . 

Iterating this procedure gives that 2 0
s

I <  for every 0s >  and finishes the proof 
of this lemma.                                                □ 

Lemma 3.7. If 2 8 3p< ≤ , then the function 2s
s I  satisfies (2.8) and (2.9).  

Proof. Firstly, we consider (2.8). Assume that nρ ρ→  as n →∞ , it is equiv-
alent to show 2 2lim

nn
I I
ρ ρ→∞
= . For every n∈ , let 

nn Bρω ∈  such that  

( ) 2
1 1 .

n
nI I

n nρ
ω ≤ + <                        (3.3) 

By the Gagliardo-Nirenberg inequality (see [29], Proposition 1.16), we have  
( )

( )
6 3 2

2 22 2
2 2 2

1 1 1 1 .
2 2

p p
p

n n n n n npC I
p n

ω ρ ω ω ω ω
− −

∇ − ∇ ≤ ∇ − ≤ <  

Since 
( )3 2

1
2

p −
<  and { }nρ  is bounded, we see that { }nω  is bounded in  

( )1 3H  . Thus, ( )nA ω , ( )nB ω  and ( )nC ω  are bounded sequences. So, by 
Lemma 3.1 and (3.3), using the fact that nρ ρ→  as n →∞ , it leads to  

( ) ( ) ( )

( ) ( ) ( )

2

2

2 421 1
2 4

1 1 .
n

p

n n n n
n n n n

n

qI I A B C
p

I o I o

ρ

ρ

ρ ρ ρ ρω ω ω ω
ρ ρ ρ ρ

ω

       
≤ = + −       

       
= + ≤ +

  (3.4) 

On the other hand, given a minimizing sequence { }nv Bρ⊂  for 2I
ρ

, the 
following inequality holds  

( ) ( ) ( )2 21 1 .
n

n
n nI I v I v o I o

ρ ρ

ρ
ρ

 
≤ = + = + 

 
             (3.5) 

Combining (3.4) and (3.5), one has 2 2lim
nn

I I
ρ ρ→∞
= , namely, condition (2.8) is 

established. 

Next, we deal with 
2

20
lim 0

I
ρ

ρ ρ→
= . Note that (2.7) implies that  

2 2

2 2 0,
G I

ρ ρ

ρ ρ
≤ <  

where  

( ) ( )2 3 3
21 1inf and d d .

2
p

B
G G u G u u x u x

pρρ
= = ∇ −∫ ∫

 

 

Therefore, it is sufficient to verify that 2
2 0G

ρ
ρ →  as 0ρ → . Indeed,  

( )G u  is the functional associated to the following pure Schrödinger equation  
2 ,pu u u uω−−∆ − =  

with prescribed L2-norm 
2u ρ= . It is known that, if 2 8 3p< ≤ , then for 
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every 0ρ > , there exists u Bρ ρ∈  such that ( )2 0G G uρρ
= < . For the details, 

we refer the reader to [31] [32]. 
For the minimizer uρ , by the Gagliardo-Nirenberg inequality, there holds  

( )
( )3 26

2
2 2

2 2

10 ,
2

pp

G u u C uρ ρ ρρ
−−

> ≥ ∇ − ∇           (3.6) 

which implies that the sequence { } 0
uρ ρ>

 is bounded in ( )1,2 3D   for 0ρ → . 
On the other hand, since the minimizer uρ  for 2G

ρ
 satisfies the following eq-

uation in weakly sense  
2

,
p

u u u uρ ρ ρ ρ ρω
−

−∆ − =                  (3.7) 

we infer form (3.6) that  

( )

3 3

3

3 3

3

2

2

2

2 2

d d

2 2 d

1 1d d
2 0,

d

p

p

u x u x

u x

u x u x G up

u x

ρ ρρ

ρ

ρ ρ
ρ

ρ

ω

ρ

∇ −
=

∇ −
≤ = <

∫ ∫
∫

∫ ∫

∫

 



 



       (3.8) 

where ρω  is the Lagrange multiplier associated to the minimizer uρ . Observe 
(3.8), it reduces to prove that 0lim 0ρ ρω→ = . 

We argue by contradiction assuming that there exists a sequence 0nρ →  
such that 

n
cρω < −  for some ( )0,1c∈ . Since the minimizers :

nnu uρ=  satisfy 
(3.7), we are led to  

3 3

3 3

3

2 2 2

2 2

d d

d d

d ,
n

n n n

n n

p p
n n

c u u x c u x

u x u x

u x C u

ρω

≤ ∇ +

< ∇ −

= ≤

∫ ∫
∫ ∫
∫

 

 



 

which yields that there exists 0c′ >  such that 
2 0nu c′∇ > >  due to 2p > . 

However, in view of (3.6), it holds that  

( ) ( )10 1 ,
2nG u c o′> ≥ −  

which is meaningless. Thus, we completed the proof.                     □ 
Based on Lemma 3.4-Lemma 3.7, we have shown that ( )M ρ ≠ ∅ . 
Lemma 3.8. For every 0ρ > . all the minimizing sequences { }nv  for 2I

ρ
 

have a weak limit. up to translations. different from zero. Furthermore. the weak 
limit defined in Proposition 2.5 is contained in ( )M ρ .  

Proof. Let { }nv  be a minimizing sequence in Bρ  for 2I
ρ

. Notice that for 
any sequence { } 3

ny ⊂  , the translation invariance guarantees that  
( ){ }n nv y⋅ +  is still a minimizing sequence for 2I

ρ
. Thus, we only need to prove 

the existence of one sequence { } 3
ny ⊂   such that the weak limit of  

( ){ }n nv y⋅ +  is different from zero. By the Lions’ lemma (see [30], Lemma 1.21), 
it follows that if  
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( )13

2lim sup d 0,nB yn y
v x

→∞ ∈

 
= 

 
∫



 

then ( )30 q
nv L→ ∈   for any ( )*2, 2q∈ , where  

( ) { }3 :rB a x x a r= ⊂ − ≤ . So ( ) 0nC v →  as n →∞ , and then  
( )lim 0n nI v→∞ ≥ , which contradicts to Lemma 3.6. Therefore, we must have  

( )13

2sup d 0.nB y
y

v x δ
∈

≥ >∫


 

In this case we can choose { } 3
ny ⊂   such that  

( ) ( )
1

2

0
d 0.

2n nB
v y x δ

⋅+ ≥ >∫  

Due to the compactness of the embedding ( )( )1
1 0H B ↪ ( )( )2

1 0L B , we de-
duce that the weak limit of the sequence ( ){ }n nv y⋅ + , let us call it v, is nontrivi-
al. 

In the next moment, we verify that ( )v M ρ∈ . Indeed, if 
2v ρ= , it is trivi-

al. Thus, we only discuss the case of 
2v ρ< . If 0 2: vµ ρ= < , then using ([19], 

Proposition 3.1), we have 2 2 2 2
0 0

I I I
ρ µ ρ µ−
= +  and ( ) 2

0
I v I

µ
= , which indicates 

that ( )v M ρ∈ ≠ ∅ .                                          □ 
As previously stated, the strong subadditivity inequality (2.2) is only used to 

ensure that (MD) holds, which is the purpose of the following lemma. 
Lemma 3.9. For small ρ . the function ( )

ugh θ  defined in Definition 2.4 sa-
tisfies (2.10).  

Proof. For ( )u M ρ∈ , that is ( ]2 0,u µ ρ= ∈  and ( ) 2I u I
µ

= , we set  

( )
3
2, xv u uθ θ

θ
−  =  

 
 for 0θ > . It is obvious that ( ) 22

,v u uθ µ= = .  

Furthermore, a simple calculation gives that  

( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

1

3 3

2

1 2 2

6 3
2

, ,

1 e, d d ,

, .

x y

a

p

A v u A u

B v u u x u y x y
x y

C v u C u

θ

θ θ

θ θ

θ θ

−

−

−
−

−

−

=

−
=

−

=

∫ ∫
 

 

Since the map ( )( ),I v uθ θ  is differentiable and u is the minimizer of 
( )I u  on Bµ , we infer that  

( )( )
1

d ,
0,

d
I v u

θ

θ
θ

=

=  

which means that  

( ) ( ) ( ) ( ) ( )3 3

2 2
2 2e 6 3d d 0.

4 4 2

x y
aq q pA u B u u x u y x y C u

a p

−
−

−
− − + − =∫ ∫

 

   (3.9) 

Next, for 0u ≠  we compute explicitly ( )
ugh θ  by choosing the family of scal-

ing paths of u parameterized with β ∈  given by  
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( ) ( )
31
2 .u u ug u x
ββ βθ θ θ

−  = = ⊂ 
  

   

Evidently, all the paths of this family have the associated function  
( ) 2

ug θ θΘ =  where 
ugΘ  is defined in (2.6). Denote by  

( ) ( ) ( )3 3
2 21 e, d d ,

x y

a
B u u x u y x y

x y

βθ
θ

−

−
−

−
=

−∫ ∫
 

  

( )
ugh θ  can be rewritten as follows  

( ) ( ) ( ) ( ) ( )

( )

2 2
2 2 2 4 2

31 3
22

1 ,
2 4 4

1 .

ug

p

q qh A u B u B u

C u
p

β β

β β

θ θ θ θ θ θ

θ θ

− −

 − + 
 

= − + −

 
 − −
 
 



      (3.10) 

Obviously, ( )
ugh θ  is differentiable for every u ug β∈ , i.e., the paths in u

β  
are admissible. 

Meanwhile, for u ug β∈   

( ) ( ) ( ) ( ) ( )

( ) ( )3 3

2

2
2 2

31 3 22 21
4

e d d .
4

ug

x y
a

pq
h A u B u C u

p

q u x u y x y
a

β ββ
β

β
−

−

 − + − −  ′ = − + −

+ ∫ ∫
 

 

Hence, it remains to demonstrate that the admissible scaling path satisfies  
( )1 0

ugh′ ≠ , which can be chosen in u
β . To prove this point, we argue by con-

tradiction. Assume that there exists a sequence { } ( )nu M ρ⊂  with  

2 0n nuρ ρ≥ = →  such that for all β ∈   

( ) ( ) ( ) ( ) ( )

( ) ( )3 3

2

2
2 2

31 3 22 21
4

e d d
4

0.

ung n n n

x y
a

n n

pq
h A u B u C u

p

q u x u y x y
a

β ββ
β

β
−

−

 − + − −  ′ = − + −

+

=

∫ ∫
 

 

Then, combining just the above with (3.9), we deduce that  

( ) ( )
2 2 0.

2 n n
q pB u C u

p
−

+ =                   (3.11) 

As a result, it gives that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 3

3 3

2 2
2

2
2 2

2 1 e d d ,
2

e d d ,
2 4 2

x y
a

n n n n

x y
a

n n n n

B u A u u x u y x y
aq

p pqC u A u u x u y x y
p p a

−
−

−
−

= −

= −
− −

∫ ∫

∫ ∫

 

 
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( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )3 3

2

2
2 2

1 1
2 4

43 e d d .
2 8 2

n n n n

x y
a

n n n

qI u A u B u C u
p

q pp A u u x u y x y
p p a

−
−

= + −

−−
= +

− − ∫ ∫
 

 

(3.12) 

In the sequel, we derive the contradiction to four different situations by  

showing that the relationships (3.12) are impossible for 82,
3

p  ∈  
 and ρ  is  

small. Actually, by continuity, we know that  

( )
( ) ( ) ( )

2 0,

, , 0.
n

n

n n n

I u I

A u B u C u
ρ

 = →


→
                  (3.13) 

Case 1: 2 12 5p< < . 
By the Hardy-Littlewood-Sobolev inequality (see [33], Theorem 4.3) and the 

interpolation inequality (see [34], Lemma 6.32), we have  

( ) ( ) ( )

( ) ( )

( )

3 3

3 3

2 2

2 2

4
12
5

4 4 1

6

1 e d d

d d

,

x y
a

n n

n n

n

n np

B u u x u y x y
x y

u x u y
x y

x y

C u

C u uα α

−
−

−

−
=

−

≤
−

≤

≤

∫ ∫

∫ ∫

 

 

 

where 
( )

3=
2 6

p
p

α
−

. Then, according to Sobolev embedding theorem and  

(3.11), one has  

( ) ( ) ( )
( )4 14

2 .pn nB u CB u A u
αα −

≤  

Since 12
5

p < , it results in 4 1
p
α
> . Therefore, we are able to deduce that  

( ) ( )
( )4 14 1

21 ,pn nCB u A u
αα −

−≤  

which is a contradiction with (3.13). 
Case 2: 12 5p = . 
Due to (3.11) and Lemma (3.1), we obtain that  

( )12 5 42
12 5 12 53 ,n n nu q B u C u= ≤  

which is impossible, since ( ) 0nB u → . 
Case 3: 12 5 8 3p< < . 
Using the interpolation inequality, it follows that  

( ) ( ) ( ) ( )
2

4 4 4 1 4 14
12 5 2 ,

2 2
p

n n n n n n np p p

pqu B u C u C u u C u
p

α α ααρ− −= ≤ ≤ =
−
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where 
( )

5 12
6 2

p
p

α −
=

−
. Since ( )4 1p α< − , we infer that ( )4 141 p

n n pu ααρ − −≤ ,  

which contradicts (3.13). 
Case 4: 8 3p = . 
To this situation, one has  

( ) ( )4 4 4 1 8 34 3
12 5 2 8 3 8 3 ,n n n n n nB u C u C u u C uα α ρ−≤ ≤ ≤  

where 1 3α = . Noting that ( ) 8 3
2 8 3

1
2n nB u u

q
= , we also get a contradiction  

evidently.                                                         □ 
Remark 3.10. It is worth mentioning that in the above lemmas, except for 

Lemma 3.9, all the conclusions are effective for 2 10 3p< < . Unfortunately, we 
could not say anything more when ( )8 3,6p∈  as did in Lemma 3.9. In fact, 
when 8 3 10 3p< < , as usual, we want to establish the strong subadditivity 
(2.2). However, the appearance of B  in 

ugh , see (3.10), makes it impossible for 
us. In addition, since the functional ( )I u  is unbounded from below on Bρ  if 
10 3 6p< < , the above minimizing method is invalid any more.   

Lemma 3.11. The functional T defined in (2.1) satisfies (2.11) and (2.12).  
Proof. Based on Lemma 3.2, any minimizing sequence { }nu  is bounded in 
( )1 3H  . Hence { }nu  is bounded in all sL  norms for *2, 2s  ∈    and up to 

a subsequence, by Lemma 2.1, there exists ( )1 3u H∈   such that  

nu u Bρ∈ . According to the Gagliardo-Nirenberg inequality, using Lemma 
2.1 and Lemma 3.5, we have  

( )

( ) ( )
( )

1

2 2

1

2 2 2

1 ,

n m n m n mp

n m n m

u u u u u u

u u u u u u

o

αα

α α

∗

∗

−

−

− ≤ − ∇ −

≤ − + − ∇ −

=

 

where 1 1
2 2 p
α α

∗

−
+ =  and 102

3
p< <  discussed in Remark 3.10. As a result,  

using the Hölder inequality, we obtain that  

( ) ( ) ( )3 3 3

1 1
1 d d d 1 ,

p
p p pp p

n n m n n mu u u x u x u u x o
−

− − ≤ − =∫ ∫ ∫
  

 

and then  

( )( )

( ) ( )
( )

3

3

1 1

1 1

d

d

1 .

p p
n m n m

p p
n n m m n m

u u u u x

u u u u u u x

o

− −

− −

− −

= − − −

=

∫

∫





             (3.14) 

Additionally, by the Hölder inequality and Lemma 3.1, it holds that  

( )

( )

3 2 36
2

2 3

d

1 .

n nu n n m u n n m

n n n m

u u u x u u u

C u u u u

o

φ φ− ≤ −

≤ −

=

∫


            (3.15) 
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On the basis of (3.14), (3.15) and  

( ) ( )

( )( ) ( )( )3 3

1 1

,

d d ,
n m

n m n m

p p
u n u m n m n m n m

T u T u u u

u u u u x u u u u xφ φ − −

′ ′− −

= − − − − −∫ ∫
 

 

(2.12) is a direct consequence. Moreover, the boundedness of { }nu  in Ls-norm 
for *2, 2s  ∈    brings that  

( )

( )

3 3

3 3

2 2

2 2

4
12 1
5

, d d

d d

1 .

n

n

p
n n u n n

p
u n n

n

T u u q u x u x

q u x u x

C u C

O

φ

φ

′ = −

≤ +

≤ +

=

∫ ∫

∫ ∫

 

   

Thus, (2.11) is achieved.                                           □ 
Proof of Theorem 1.1.  
Proof. Summing up, we have verified all the hypotheses of Lemma 2.1 and 

Proposition 2.5. Therefore, the limit u  of the minimizing sequence { }nu  makes 
problem (1.7) solved. In other words, u uρ =  and the corresponding Lagrange 
multiplier ρω  is a couple of solution for problem (1.4).           □ 

Next, to prove Theorem 1.2, we first recall a Liouville-type result, see ([35], 
Theorem 2.1).  

Proposition 3.12. Assume that 3N ≥  and the nonlinearity  
( ) ( ): 0, 0,f ∞ ∞  is continuous and satisfies  

( )2
0

liminf 0.
N

N
s

s f s
−

−
→

>  

Then the differential inequality ( )u f u−∆ ≥  has no positive solution in any 
exterior domain of N .  

Proof of Theorem 1.2. First of all, we assert that if u Bρ∈  is a minimizer to 
problem (1.7) for 6p = , then the associated Lagrange multiplier ω  is nega-
tive. Indeed, firstly we have the following Pohozaev type identity ([9], A.3)  

( ) ( )

( ) ( )

3 3

3 3

2
2 2 2 2
2 2

2
2 2

1 3 5 1 e d d
2 2 4

3e d d 0,
4

x y
a

x y
pa
p

qu u u x u y x y
x y

q u x u y x y u
a p

ω

−
−

−
−

−
∇ + +

−

+ − =

∫ ∫

∫ ∫

 

 

 

which can be rewritten as  

( ) ( ) ( ) ( ) ( )3 3

2 2
2 2 21 3 5 3 e d d 0.

2 2 4 4

x y
aq qA u B u C u u x u y x y

p a
ω ρ

−
−

+ + − + =∫ ∫
 

 (3.16) 

In addition, it is easy to see that  

( ) ( ) ( )2 2 0.A u q B u C uωρ+ + − =                 (3.17) 

Thus, (3.16) together with (3.17) gives that  
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( ) ( ) ( ) ( ) ( )3 3

2 2
2 23 6 e d d 0.

4 2 4

x y
aq p qA u B u C u u x u y x y

p a

−
−−

+ − − =∫ ∫
 

 (3.18) 

As a result, substituting (3.17) into (3.18), it derives that  

( ) ( ) ( ) ( ) ( ) ( )

( )

3 3

2
2 2 2

2

2 6 5 12 e d d

2 3 6 .

x y
apqp A u p q B u u x u y x y

a
p ωρ

−
−

− − − −

= −

∫ ∫
   (3.19) 

For 6p = , obviously one has  

( ) ( ) ( )
2

2 62 6 0, 5 12 0, 0, 2 3 6 24 0,qp p q p
a

− = − − < − < − = >  

which, combining with (3.19), brings that 0ω < . 
By Lemma 3.1, we know that  

( ) ( )

( )

( )

3

3

3

2 2

2

2 2

0 d

1 e d

1 1d .

u

x
a

u x u y x x

u y x x
x

u y x x u
x x

φ

−

≤ = ∗ = −

−
= −

≤ − = ∗

∫

∫

∫







 

           (3.20) 

Moreover, note that ([36], Lemma 2.3) gives that  

( )( )1 2lim 0.
x

x u x−

→∞
∗ =                   (3.21) 

Thus, together with (3.20) and (3.21) means that  

( )( )2lim 0.
x

u x
→∞

∗ =                    (3.22) 

Assume that ( )1 3u H∈   is positive satisfying problem (1.7). In view of (3.22) 
and 0ω < , there exists 0 0R >  large enough such that  

( )( )2
02 for .

2
u x x R

q
ω

∗ ≤ − >  

Therefore, we infer that  

( ) ( )( ) ( )

( ) ( )

42

2
02 for .

22

uu x q u x u x

q u x u x x R
q

ω φ

ω ωω

−∆ = − − +

 
≥ − + ⋅ = − > 
 

 

By applying Proposition 3.12 with ( )
2

f s sω
= − , we have 

2
u uω

−∆ ≥ −  and  

reach to a contradiction.                                             □ 

4. Proof of Theorem 1.4 

In this section, we consider Cauchy problem (1.10). To do this, the first task is to 
establish the local well posedness with aid of Proposition 2.6. In addition, to 
discuss the orbital stability, the solution with given initial value should exist glo-
bally. 
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According to the framework discussed in Section 2, for problem (1.10) our 
nonlinearity is of the following form  

( ) ( ) ( ) ( ) 22 2
1 2 : .pg g g qψ ψ ψ ψ ψ ψ ψ−= + = − ∗ +  

Observe that   defined in (1.2) satisfies the following conditions:   is an 
even real-valued potential and ( )2 3L∈  . Then, by ([28], Proposition 3.2.9), 

1g  holds (2.14)-(2.17). Moreover, according to the discussion in ([28], Remark 
3.2.6), we see that 2g  satisfies (2.14)-(2.17) evidently. So, g fulfils the hypo-
theses of Proposition 2.6, which means that the local well posedness is estab-
lished. 

Lemma 4.1. maxT = ∞ . i.e. the solution of problem (1.10) is global.  
Proof. Let ( ),x tψ  be the solution of (1.10) and ( ]max 0,T ∈ ∞  is its maximal 

time of existence. Then we either have  

maxT = ∞  

or  

( )
max

2
max 2

and lim , .
t T

T x tψ
→

< ∞ ∇ = ∞  

If maxT < ∞ , due to  

( )( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3 3

3

3 3

2
2 2

2

2 1

2 2 2

2 1

2 2

1, , d , , d
2 4

1 , d

1 1, d , d
2

1 , , ,
2
1 , , ,
2

p p

pp

p

p

p p

pp

qI x t x t x x t x t x

x t x
p

x t x x t x
p

x t C x t x t

x t C x t

ψ

γ γ

γγ

ψ ψ φ ψ

ψ

ψ ψ

ψ ψ ψ

ψ ρ ψ

−

−

= ∇ +

−

≥ ∇ −

≥ ∇ − ∇

= ∇ − ∇

∫ ∫

∫

∫ ∫

 



 

 

where ( )3 2
2p

p
p

γ
−

=  and 2ppγ < , we infer that ( )( ),I x tψ →∞  as  

maxt T→ . However, this contradicts the conservation of energy  
( )( ) ( )( )0,I x t I xψ ψ= , ( )max0,t T∀ ∈ . Hence, maxT = ∞ .                 □ 

Proof of Theorem 1.4. Observe that Sρ  is invariant by translation, namely, 
if v Sρ∈  then also ( )v y Sρ⋅ − ∈  for any 3y∈ . Assume that for some  

0ρ >  small enough Sρ  is orbitally unstable, that is, there exist 0ε > , a se-
quence of initial value { } ( )1 3

,0n Hψ ⊂   and { }nt ⊂   such that the solution 

nψ , which is global and ( ) ,0,0n nψ ψ⋅ = , satisfying  

( ) ( ) ( )1 31 3,0lim inf 0 and inf , .n n n HHn v S v S
v t v

ρ ρ
ψ ψ ε

→∞ ∈ ∈
− = ⋅ − ≥


      (4.1) 

Consequently, there exists ( )1 3u Hρ ∈   minimizer of 2I
ρ

 and θ ∈  such 
that eiv uθ ρ= ,  

( ) ( ) 2,0 ,022
and .n nv I I v I

ρ
ψ ρ ψ→ = → =  
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Indeed, we can assume that ,0n Bρψ ∈ , because there exists ,0 2
1n nα ρ ψ= →  

such that ,0n n Bρα ψ ∈  and ( ) 2,0n nI I
ρ

α ψ → . In other words, ,0nψ  can be re-
placed by ,0n nα ψ . Thus, { },0nψ  is a minimizing sequence for 2I

ρ
. Since  

( )( ) ( ),0,n n nI t Iψ ψ⋅ = , we know that ( ){ },n ntψ ⋅  is also a minimizing sequence 
for 2I

ρ
. However, we have proved that every minimizing sequence has a subse-

quence converging (up to translation) in 1H -norm to a minimizer on the sphere 
Bρ , which leads to a contradiction with (4.1).                     □ 
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