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Abstract 
In the present theoretical work, superconducting order parameter (∆) and 
electronic specific heat (Ces) of SmOFeAs iron pnictide (IP) superconductor 
has been studied using multiband (MB) model of IP superconductors. At-
tempt has been made to use the MB structure of IP superconductors and ex-
pressions for critical temperature (Tc) and Ces are obtained, calculations being 
made for one, two and three bands of SmOFeAs. It has been found that MB 
results are close to the experimental value of Tc for this compound. Ces calcu-
lations show jump of 1.5 × 10−5 eV/atom K, 4 × 10−5 eV/atom K and 4 × 10−5 
eV/atom K for one, two and three band models respectively. The study brings 
out the importance of MB structure in IPs, highlighting the fact that increas-
ing the number of bands, increases Tc. The specific heat jump (∆C) does not 
correspond to the BCS value, thereby proving that IPs are unconventional in 
nature. 
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1. Introduction 

The year 2006 [1] witnessed a major breakthrough in the field of superconduc-
tivity with the discovery of a new class of iron based superconductors called IPs. 
Further increase in Tc in the same class of SCs was witnessed in the year 2008 
[2]. Researchers all over the world were amused at the discovery made by Hideo 
Hosono [3] and coworkers in the course of exploration of magnetic semicon-
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ductors. These transition metal based superconductors having general formula 
LnOFeAs (Ln = La, Ce, Sm, Gd, Nd, Pr) are layered structures with alternate 
LnO & FeAs layers, superconductivity believed to be present because of the FeAs 
layers. The structure orientation of Fe atoms shows it to be surrounded by four 
arsenic atoms resulting in a distorted tetrahedral geometry. The iron atoms are 
seen to make a square lattice and arsenic atoms are placed at the centre of each 
square being displaced above & below the Fe planes. IPs are second in class after 
the cuprates [4] to have high Tc of around 55 Kas shown by experimental studies 
of Ren and Chen [5] [6] and theoretical study by Mebrahtu [7]. Interest in this 
newly class of discovered materials was generated not only because of its high Tc, 
but also because iron, being the most magnetic material [8] that could have been 
destructive for superconductivity, showed high values of Tc. Within a span of ten 
years, the quantum of research in this field is high because of the extraordinary 
properties exhibited by these compounds. It has been shown that in the normal 
state, these compounds are semi-metals [9] (upon doping [10] or application of 
pressure [11] [12] [13] [14] is seen to increase Tc in IPs). Several experimenta-
tion in this field is trying to study minutely various properties associated with 
them. Angle resolved photoemission experiments [15] have demonstrated that 
IPs are MB [16] [17] in nature. Iron has five bands at the Fermi surface and all 
the five d-bands of iron are relevant in studying the superconducting properties 
of these compounds as opposed to the single band of cuprates [18] [19] and BCS 
[20] superconductors or the two band MgB2 [21] [22] [23]. Previous theories 
have found that MB nature [24] of IPs makes them a significant class in the vast 
area of superconductivity and that MB structure serves as an important ingre-
dient for high Tc [25] for this class of compounds. The four unpaired d electrons 
of iron are seen to hybridise [26] with the three unpaired p electrons of arsenic, 
resulting in bands found at the Fermi surface due to overlapping orbitals [27] 
[28]. Raghu et al. has discussed that a minimal two band model [29] is needed 
for the superconducting IPs. Several others have also studied two bandsuper-
conductivity [30] [31] [32] [33]. Three band superconductivities [34] have also 
been studied using different theories like Eliashberg theory [35], Ginzburg Lan-
dau theory [36], etc. 

Over the years, the MB property of IPs is exploited in understanding these 
materials in a better way. Earlier, also it has been found that interband interac-
tions lead to higher Tc in cuprate SCs [37]. Since IPs are also MB SCs with nest-
ing present at the Fermi surface, therefore it is desirable to investigate the role of 
interband and intraband interactions on various superconducting properties. 
Several properties of IPs are investigated to understand the mechanism of this 
special class of high temperature superconductors (HTS). The electronic specific 
heat of IPs is studied using electron-Cooper pair interaction by Mukubwa [38]. 
Mohamed et al. have explained pressure effect for HTS using pressure depen-
dent Schrodinger equation and string theory [39]. With this motivation in mind, 
Tc and Ces of SmOFeAs compound [40] [41] [42] [43] is investigated using a MB 
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model, employing Green’s function technique and the results are compared with 
experimental values. 

2. Mathematical Technique and Formulation 

In the present theoretical work, the two thermodynamical properties which is ∆ 
and Ces of SmOFeAs are investigated as a function of the number of bands. The 
model Hamiltonian uses itinerant nature of electrons. It is described as: 

' '
'

' '
'

mk mk mk mm mk m k m k mk
mk mkk

mn mk m k n k nk
kk
m n

H E C C V C C C C

V C C C C

σ σ σ
σ

+ + +
↑ − ↓ − ↓ ↑

+ +
↑ − ↓ − ↓ ↑

≠

= −

−

∑ ∑

∑            (1) 

In Equation (1), the first term represents energy of itinerant electrons. The 
second term denotes the intraband interaction term. Vmm is the intraband inte-
raction potential. The third term is the interband interaction term. It represents 
tunnelling between the bands. Vmn is the interband interaction potential. m, n is 
band index, k is wave vector and σ is spin index for fermions. 

Considering the two Green’s functions 

,rq sq
r s q q

G C C↑↑
+

↑ ↑=                       (2a) 

,r q sq
rs qq

G C C+ +
↓↑ − ↓ ↑
−

=                      (2b) 

Here r and s are the band index and q denotes wave vector. 
Using the first Green function (2a), the equation of motion is expressed as: 

( ) 1
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Using the second Green function (2b), the second equation of motion is writ-
ten as: 

( )
m m
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where the OPs are defined as:
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' '
'
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'
'

,r q n k
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is number factor representing number of charge per unit volume. 

2.1. One Band Model (OBM) 

Using the two equations of Motion (3) and (4) and substituting 1r s= = , cal-
culations are done for OBM using 1 1q qE E↑ − ↓=  and 1

11q q
G G ↑ ↑=  and  

2
11 q q

G G ↓ ↑
−

=  
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∆ is defined as: 

11 11 1 1,k k
K

V C C+ +
↑ − ↓∆ = ∑                      (5) 

The correlation function (CF) 1 1,k kC C+ +
↑ − ↓  is related to G2 as: 
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∫             (6) 

where, 1η = −  for fermions, k is Boltzmann constant and T is absolute temper-
ature in kelvin. 

The expression of ∆ is obtained as:  
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Converting summation into integration with cut off energy Dω±�  from the 
Fermi level and substituting CT T→  as 0∆ → : 
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Tc can be expressed as:  
2 2
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Here 11 11 11V∆ = ∆  
For OBM, Ces is defined as:  

1
1 1 1
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Ces for OBM comes out as:  

( )22
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Converting summation into integration,  
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2.2. Two Band Model (TBM) 

Using the two equations of Motion (3) and (4) and substituting the four condi-
tions: r = 1, s = 1; r = 1, s = 2; r = 2, s = 2 and r = 2, s =1, calculations are done 
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for TBM using 1
11q q

G G ↑ ↑= , 2
11 q q
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−

= , 3
12q q
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= , 5
22q q

G G ↑ ↑= ,  

6
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−

= , 1 1q qE E↑ − ↓=  and 2 2q qE E↑ − ↓=  
Similarly for TBM, the following results are obtained: 
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The second CF is obtained as: 
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Converting summation into integration,  
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Ces for the second band corresponding to G5 is defined as: 
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CF 2 2,k kC C+
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esC  is calculated as:  
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Converting summation into integration,  
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2.3. Three Band Model (THBM) 

Using the two equations of Motion (3) and (4) and substituting the following 
eight conditions, 

r = 1, s = 1; r = 1, s = 2; r = 1, s = 3; r = 2, s = 1; r = 2, s = 2; r = 2, s = 3; r = 3, s = 
1; r = 3, s = 2 and r = 3, s = 3, using the ten Green’s functions G1 to G10 and 
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making following substitutions: 

1 1 21 2 3 3, ,q q q q q qE E E E E E↑ − ↓ ↑ − ↓ ↑ − ↓= = =  

For the first band, 
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For the second band, ∆ is obtained as: 
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For the third band, CF related to G10 is written as: 
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The corresponding 33 33 3 3,k kV C C+ +
↑ − ↓∆ =  comes out to be: 
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For THBM, expression for 31
esC  is:  
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Converting summation into integration gives: 
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32
esC  is calculated as:  
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Converting summation into integration,  
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Ces for the third band corresponding to G9 is: 
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Converting summation into integration,  
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3. Results and Discussion 

In this section, the numerical results obtained for Tc and Ces of MB SmOFeAs are 
presented. The results are investigated as a function of the number of bands, ex-
pressions being obtained for one, two and three band models, highlighting the 
MB nature of the superconducting compound. 

3.1. Variation of ∆ with T 

∆ is a measure of the binding energy of Cooper pair. Its variation is studied with 
T as a function of the number of bands. 

Figure 1 shows the combined variation of ∆11, ∆22 and ∆33 with T for OB, TB 
and THBMs illustrating the rise in Tc with increasing number of bands. It is seen 
that with increasing T, ∆ decreases and at T =Tc, ∆ = 0. This is the usual beha-
viour of ∆ vs T and hence justified. Tc for OBM comes out to be 11 K; for TBM, 
Tc is 45 K and for THBM it is 57 K. During calculations, the values of  ћωD = 
0.05 eV, N = 1027 eV/atom, NoV11 = 0.24. NoV12 = 0.12, NoV13 = 0.06. The highest 
value of Tc is seen to be 57 K which is very well in agreement with experimental 
results [5]. 

3.2. Variation of Ces with T 

Ces is the amount of heat per unit mass required to raise the temperature by one 
unit. Its variation is studied with T as a function of the number of bands. 

Using Equation (13), the variation of 1
esC  with T for OBM shows that initial-

ly the SH for SC is less than the SH for normal state (NS), it then suddenly  
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Figure 1. ∆11, ∆22 and ∆33 (meV) versus T (K) for OB, TB and THBM. 

 

 
Figure 2. 1

esC  (eV/atom-K) versus T (K) for OBM. 

 
increases and then drags down at a particular T which is the Tc of the system 
which is 11 K as seen in the Figure 2. At Tc, the curve shows a jump ∆C of 1.5 × 
10−5 eV/atom K which is contrary as seen in the BCS model [44]. ∆C/ᵞTc is cal-
culated as 1.101 for the model which is also not in accordance with BCS model 
[45], thus signifying that IPs are unconventional SCs [46] [47]. 

Figure 3 shows the combined graph of the variation of 21
esC  and 22

esC  with T 
for TBM illustrating that initially the SH of SC is less than the SH for NS, it then 
suddenly increases at 7 K and then drags down atthe Tc for the system, observed 
at 45 K. ∆C is 4 × 10−5 eV/atom K and ∆C/ᵞTc is calculated as 0.718 for the mod-
el. Both these values are not in accordance with BCS model, thereby showing 
that IPs are unconventional SCs. 
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Figure 3. 21

esC  and 22
esC  (eV/atom-K) versus T (K) for TBM. 

 

 
Figure 4. SH 31
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esC  (eV/atom-K) versus T (K) for THBM. 
 

Figure 4 shows the combined graph of the variation of 31
esC , 32

esC  and 33
esC  

with T for THBM illustrating that initially the SH of SC is less than the SH for 
NS, it then suddenly increases and then drags down at the Tc for the system ob-
served at 57 K. ∆C is 4 × 10−5 eV/atom K and ∆C/ᵞTc is calculated as 0.567 for the 
model. Both these values are not in accordance with BCS model proving IPs to 
be unconventional in nature. The value of Sommerfeld coefficientᵞ for the com-
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behaviour of Tc and electronic specific heat for superconducting SmOFeAs. It is 
seen that upon increasing the number of bands has shown an increase in Tc which 
is very well in agreement with experimental results, thereby proving that inter-
band interactions play an important role in enhancing the Tc. Thus this study 
also supports that MB structures are helpful to stabilize superconductivity and 
for obtaining high Tc in this class of compounds. This appears reasonable as in-
terband interactions are already found to enhance Tc [25]. The specific heat cal-
culations reveal that IPs are governed by a mechanism other than the BCS one 
[46]. The sharp peak observed in the specific heat curve is attributed to AFM 
ordering of Sm3+ magnetic ions in the system which is otherwise not seen in the 
lanthanum compound that has non-magnetic La3+ ions [47]. The theoretical mod-
el is restricted uptil three bands as suggested by Ummarino [35] that a simple 
THBM in strong-coupling regime [48] [49] [50] can reproduce in a quantitative 
way the experimental Tc. 
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