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Abstract 
In wall-bounded turbulent flow calculations, the past focus has been directed 
to the modelling of the Reynolds-stress gradients. Not much attention has 
been paid to the effects of the numerical methods used to calculate these 
terms and the modelled equations. Discrepancies between model calculations 
and measurements are quite often attributed to incorrect modelling, while the 
suitability and accuracy of the numerical methods used are seldom scruti-
nized. Instead, alternate near-wall and Reynolds-stress models are proposed 
to remedy the incorrect turbulent flow calculations. On the other hand, if care 
is not taken in the numerical treatment of the Reynolds-stress gradient terms, 
physically unrealistic results and solution instability could occur. Previous 
studies by the author and his collaborators on the effects of numerical me-
thods have shown that some of the more commonly used numerical methods 
could enhance numerical stability in the solution procedure but would intro-
duce considerable inaccuracy to the results. The flow cases chosen to demon-
strate these inaccuracies are a backstep flow and flow in a square duct, where 
flow complexities are present. The current investigation attempts to show that 
the above-mentioned effects of numerical methods could also occur in the 
calculation of a developing plane channel flow, where flow complexities are 
absent. In addition, this study shows that the results thus obtained lead to a 
predicted skin friction coefficient that is influenced more by the numerical 
method used than by the turbulence model invoked. Together, these results 
show that numerical treatment of the Reynolds-stress gradients in the equa-
tions play an important role, even for a developing plane channel flow. 
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1. Introduction 

Regardless of whether laminar or turbulent flows are considered, pressure and 
stress gradient terms are always present in the Navier-Stokes or Reynolds equa-
tions. Therefore, using a finite difference scheme to solve these equations, diffi-
culties associated with numerically resolving the pressure-velocity coupling are 
well known (Harlow and Welch (1965) [1]; Patankar (1980) [2]; and van Door-
mal and Raithby (1984) [3]). When central differences are used on an ordinary 
grid system to approximate the pressure gradient terms, the converged results 
reveal the presence of oscillatory pressure and velocity fields. This problem was 
recognized by Harlow and Welch (1965) [1]. In order to prevent these oscilla-
tions from occurring, they suggested calculating the velocity variables at grid lo-
cations staggered with respect to those of the pressure and all other scalar va-
riables. This staggered grid arrangement was later adopted by Patankar and 
Spalding (1972) [4] to solve three-dimensional parabolic flows using a finite vo-
lume scheme and incorporated into the SIMPLE algorithm of Patankar (1980) 
[2]. In the staggered grid arrangement, the velocity is driven by the pressure va-
riables adjacent to it. Thus, a strong linkage between the velocity and pressure 
field is created. On the other hand, when all the variables are calculated at the 
same grid location, the velocities at grid point P are affected by pressure at every 
other grid location except that at P. Consequently, a physically incorrect pres-
sure field could result during each iteration of the governing equations, and the 
final converged solution could give rise to an oscillatory pressure field. This 
phenomenon is commonly known as the checkerboard problem (Patankar 
(1980) [2]). 

When turbulent flows are solved using Reynolds-stress models, a similar 
problem exists due to the presence of the Reynolds-stress gradient terms in the 
Reynolds equations. Like the pressure variable, the Reynolds stresses appear as 
first-order differentials in the coordinate directions. If central differencing is 
used to approximate them, a problem similar to that due to velocity-pressure 
decoupling occurs as explained above. Again, this leads to an oscillatory solution 
field, and usually, the iteration procedure diverges. This problem was recognized 
by Pope and Whitelaw (1976) [5]. Drawing on the pressure-velocity decoupling 
analogy, they suggested calculating the turbulent shear stresses, uv , uw , and 
vw , at control volumes located halfway between the control volumes for the ve-
locity variables. Here, u, v and w are the components of the fluctuating velocity 
along x, y, and z coordinates, respectively. In this way, they were able to create a 
linkage between the Reynolds stresses and their associated strain rates. Without 
this remedy, they were unable to obtain converged solutions. 

The reasoning behind staggering the control volumes for the Reynolds shear 
stresses can be explained by considering the Boussinesq approximation assumed 
for the Reynolds stress and the mean strain-rate tensor, which is usually written 
as 

22
3i j t ij iju u S kν δ− = − .                     (1) 
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In Equation (1), i ju u−  is the Reynolds-stress tensor,  
( ) 2ij i j j iS U x U x= ∂ ∂ + ∂ ∂  is the mean strain-rate tensor, tν  is an isotropic 

eddy viscosity, Ui, ui and x i are the ith components of the mean and fluctuating 
velocity, and coordinates, respectively, and k is the turbulent kinetic energy. Ac-
cording to this expression, i ju u  is driven by Sij. Therefore, in order to provide 
the physical coupling, uv  needs to be calculated at control volumes halfway 
between the control volumes for U and V, uw  between U and W, and vw  
between V and W. There is no need to stagger the normal stresses because, if the 
velocities are computed at staggered grid locations, 2u , 2v , and 2w  are dri-
ven by the differences between the neighboring velocities U, V, and W, respec-
tively, as desired. 

When turbulent flows are solved using Reynolds-stress models, the problem 
associated with the velocity-pressure decoupling is compounded by the veloci-
ty-Reynolds-stress decoupling; both of which need to be addressed. However, if 
the velocity and the Reynolds shear stress variables are calculated at staggered 
control volumes as suggested by Harlow and Welch (1965) [1] and Pope and 
Whitelaw (1976) [5], seven different control volumes need to be specified within 
the code; three for the velocity variables, three for the Reynolds shear stresses, 
and one common control volume for all the other scalar variables, such as the 
pressure and the Reynolds normal stresses. This, in turn, could make the imple-
mentation of the Reynolds-stress models into a computer code a very difficult 
task, especially if a generalized, curvilinear coordinate system is used. 

Furthermore, the absence of turbulent diffusion terms in the mean momen-
tum equations renders the solution procedure less stable. This problem is usually 
avoided by the introduction of a turbulent kinematic viscosity, νt, when two- 
equation models are used. However, since Reynolds-stress models are aniso-
tropic models, this approach is not suitable. Therefore, one has to resort to other 
means to extract diffusion like terms and introduce them into the momentum 
equations. The two issues of velocity-Reynolds-stress decoupling and turbulent 
diffusion are independent of each other and may introduce considerable errors 
to the calculation of complex turbulent flows if not handled properly. These two 
issues were examined by Aksoy et al. (1995) [6] in their study of a square duct 
flow, and by Aksoy and So (1995) [7] in their study of a backstep flow. In these 
studies, they used four different numerical methods (listed in Table 1) to eva-
luate the stress-gradient terms in the governing equations. Among the four nu-
merical methods tested, not one could give consistently stable calculations with 
fairly accurate results for different flow types. Their performance or lack thereof 
could be attributed to turbulence effects generated by flow and geometric com-
plexity. In order to gain further understanding of this insufficiency, it is neces-
sary to scrutinize the performance of these numerical methods used to evaluate 
the pressure- and stress-gradient terms in a simple flow, where turbulence 
created by complex geometry and high shear are essentially absent. The present 
objective is to investigate whether the four different numerical methods used to 
treat the pressure- and stress-gradient terms in the governing equations 
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Table 1. Designation of different numerical methods. 

Desigation 
Numerical treatment of the 
stress gradient terms in the 

mean momentum equations 

Numerical 
algorithm 
adopted 

Placement of the 
variables on the grid 

system 

Method 1 Explicit Source Method SIMPLE/SIMPLEC Velocities staggered 

Method 2 Isotropic Viscosity Method SIMPLE/SIMPLEC Velocities staggered 

Method 3 Anisotropic Viscosity Method SIMPLE/SIMPLEC Velocities staggered 

Method 4 Semi-Coupled Method SIMPLE/SIMPLEC All variables collocated 

 
would also give rise to similar numerical errors in the calculation of a simple 
developing plane channel flow. 

To enhance comprehension, the present paper is organized into the following 
sections: 2) Objective, 3) Numerical Methods and Their Characteristics, 4) 
Near-Wall Modelling, 6) Numerical Treatment of the Stress-Gradient Terms, 7) 
Numerical Solution, 8) Results and Discussion, and 9) Conclusion. 

2. Objective 

The objective of the present study is focused on studying the effect of veloci-
ty-pressure and velocity-Reynolds-stress decoupling on the calculation results. 
Therefore, the present investigation limits the examination to the effects of nu-
merical methods on the velocity-Reynolds-stress-gradient problem, and its asso-
ciated effects on the near-wall Reynolds-stress modelling of simple turbulent 
flows. In particular, the ability to correctly replicate the development of the skin 
friction coefficient Cf is compared. Therefore, the nature of the present investi-
gation is different from those where the emphasis is concentrated on the more 
general effects of physical and numerical influences on turbulent flow calcula-
tions. Some relevant studies on the more general physical and numerical influ-
ences are represented by Launder and Spalding (1974) [8], Gunzburger and La-
bovsky (2012) [9], Junqueire-Juniot et al. (2013) [10], Ahsan (2014) [11], 
Nguyen and Kempf (2017) [12], and Shahjada Tarafder and Al Mursaline (2019) 
[13]. 

The developing plane channel flow is free of turbulence complexities created 
by rapid change of flow geometry and the high shear thus created. Therefore, 
differences in the calculated results, if any, given by the numerical methods ta-
bulated in Table 1 could be attributed to the effects of the method itself, and not 
to the turbulence models invoked for the stress-gradient terms in the governing 
turbulent flow equations. Validation of current calculations are achieved by 
comparing them with the channel flow expirements of Laufer (1951) [14] and 
the direct numerical simulation (DNS) data of Kim et al. (1987) [15]. 

3. Numerical Methods and Their Characteristics 

Various numerical methods, which differ in the way they treat the stress-gradient 
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terms in the momentum equations, are available. Merits and/or defects of each 
method had been thoroughly discussed in So (1996) [16] with the calculations of 
swirling and non-swirling flow modelling in mind. In the discussion, four me-
thods (refer to Table 1) were identified as more commonly used and they had 
been adoped by Aksoy et al. (1995) [7] and Aksoy and So (1995) [8] in their in-
vestigations of square duct flow and backstep flow, respectively. These methods 
are labeled as: Method 1: explicit source method, Method 2: isotropic viscosity 
method, Method 3: anisotropic viscosity method, and Method 4: semi-coupled 
method. These methods and their characterists are briefly descriped below, while 
their mathematical details are provided in a later section. 

Method 1 It evaluates the Reynolds-stress gradients in a straightforward 
manner and treats them as explicit source terms. It pays no attention to the ab-
sence of turbulent diffusion and the decoupling of the Reynolds stresses and the 
mean velocity variables. This scheme is expected to be stable for a wide range of 
simple flows, where streamline curvature and/or other external body force ef-
fects are absent or relatively small.  

Method 2 It adopts Equation (1) directly and is similar to the calculations 
carried out by Amano and Goel (1985) [17] and Demuren (1992) [18]. It is 
commonly known as the isotropic viscosity method, or Method 2 as designated 
in Aksoy et al. (1995) [6]. The Reynolds stresses in the momentum equations are 
replaced by Equation (1) with tν  defined by k and its dissipation rate, ε. As a 
result, the explicit coupling between the Reynolds stresses and the momentum 
equations is removed. The Reynolds stresses are still obtained from their respec-
tive transport equations and the normal stresses are used to evaluate k and ε. 
Therefore, this method not only models i ju u− , but also the coupling between 

i ju u−  and the mean momentum equations. 
Method 3 It assumes anisotropic viscosity and replaces tν  in Equation (1) 

by n
tν , whose components: 1

tν , 2
tν  3

tν , 4
tν , 5

tν , and 6
tν  are obtained from 

the 11, 22, 33, 12, 13, and 23 components of the Reynolds stress tensor, respec-
tively. The method brings in stability to the solution procedure by introducing 
implicit diffusion to the momentum equations and yet without completely sacri-
ficing the anisotropic behavior of the Reynolds stresses with the associated mean 
strain rates; thus, strongly couples the Reynolds stresses to the velocity variables. 
However, the calculated anisotropic viscosities could become negative or very 
large during calculations; thus, the method requires the use of limiters, which are 
usually applied as multiples of tν  (So et al. (1988) [19]; Lai et al. (1991) [20]). 
This could lead to numerical errors in the results.  

Method 4 It makes use of the SIMPLE algorithm of Patankar (1980) [2], Rhie 
and Chow (1983) [21], and Peric et al. (1988) [22] directly. Also, it suggests a li-
near interpolation technique on a collocated grid arrangement where the veloci-
ty variable is coupled to the pressure variable in such a way that the occurrence 
of an oscillatory pressure or velocity field is avoided. Therefore, one common 
control volume can be used for all the variables. This special interpolation tech-
nique has been successfully applied to the solution of vastly different laminar 
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and turbulent flows using finite-volume method by Rhie and Chow (1983) [21], 
Peric et al. (1988) [22], Miller and Schmidt (1988) [23], Majumdar (1988) [24], 
and Lien and Leschziner (1993) [25]. Along similar line, Obi et al. (1991) [26] 
proposed a numerical treatment for the stress-gradient terms by extracting ap-
parent viscosities from the discretized momentum equations and suggested to 
couple the velocity and the Reynolds-stress variables through the use of a special 
interpolation technique analogous to that introduced by Peric et al. (1988) [22] 
for the velocity and pressure variables. In this way, they were able to calculate all 
flow variables at collocated grid locations; thus making the method especially 
favorable when three-dimensional flows are studied in a generalized curvilinear 
coordinate system. This treatment is termed the semi-coupled method since only 
a portion of the Reynolds-stress equations are coupled to the momentum equa-
tions. 

4. Near-Wall Modelling 

The effects of near-wall turbulence models on flow in a square duct have been 
thoroughly investigated by Aksoy and So (1994) [27]. Even then, improvements 
on the overall replication of the corner flow, including the formation of corner 
vortices, are not as satisfactory. The effects of numerical methods on the calcula-
tions of complex turbulent flows in a square duct has also been carried out by 
Aksoy et al. (1995) [6], and the results showed that calculations of the corner 
vortices are influenced more by the numerical methods used to evaluate the 
stress-gradient terms. In their study, they found that Method 3 and Method 4, 
the semi-coupled method, erroneously predict an absence of corner vortices, 
thus giving rise to a zero vorticity field everywhere. Numerical methods were al-
so found to have an effect on the calculation of a backstep flow by Aksoy and So 
(1995) [7], who used Methods 2, 3 and 4 to evaluate the stress-gradient terms in 
the Reynolds-stress equations. According to their study, iterations with Method 
3 divereged rapidly, therefore, it was not possible to obtain a converged solution 
with Method 3. Furthermore, Methods 2 and 3 could give rise to calculation in-
stability. It might be possible to obtain converged solutions if different numeri-
cal algorithms or turbulence models were used. The turbulence field in the cor-
ner of a square duct and behind a backstep are quite complex; therefore, it is not 
clear whether the errors observed in these calculations are the result of in-
apppropriate turbulence models adopted or are given rise by the numerical me-
thods used in modelling the stress-gradient terms in the Reynolds-stress equa-
tions. 

5. The Near-Wall Reynolds-Stress Model 

Incompressible turbulent flows are considered. The flows are described by the 
Reynolds-averaged equations, which can be written in Cartesian tensor form as 

0i

i

U
x

∂
=

∂
                           (2) 
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21 j i ji

i i j j

U u uDU P
Dt x x x x

ν
ρ

∂ ∂∂
= − + −

∂ ∂ ∂ ∂
.                 (3) 

Here, the Einstein summation convention is followed, Ui is the velocity in the 
ith direction, xi is the coordinate system with x1 denoting the stream direction, x2 
denotes the normal to x1 in the flow plane and x3 is normal to the flow plane, P is 
the mean pressure, ρ is the fluid density and ν is the kinematic viscosity. If a 
Reynolds-stress model is invoked, the equation governing the transport of the 
Reynolds stresses can be symbolically written as 

t
ij ij ij ij ij ijC D D Pν ε= + + +Π − ,                    (4) 

where the terms from left to right represent the convection, molecular diffusion, 
turbulent diffusion, production, velocity-pressure-gradient correlation and 
viscous dissipation of the Reynolds stress tensor, i ju u− . The pressure-strain 
model of Speziale et al. (1991) [28] is adopted as the high-Reynolds-number 
model for ijΠ  and a near-wall correction, w

ijΠ , is formulated so that the pres-
sure-diffusion near a wall is also accounted for. Thus modified, the model for 

ijΠ  can be written as  

( ) ( ) ( )
( ) ( )

*
1 1 2

*
1

1
1 3

2

3 2 3

2 3 2 2

ij ij ik kj ij ij ij

w
ij ij ij ij

C C P b C b b P P

D P C kS

ε ε δ δ

β δ γ

Π = − + + −Π − −

+ − − + Π +Π

 



       (5) 

where ( )2 3 2ij i j ijb u u k kδ= −  is the anisotropic tensor, 2iiP P=  is the 
production of k, ij ijb bΠ = , and the near-wall correction is derived to be 

( ) ( )
( )

*
1 1 1 2

* *

3

2 3 2

w
ij w ij ik kj ij

P
ij ij ij ij

f C C P b C b b

P P kS

ε ε δ

ε δ γ

Π = + − −Π
+ − + +Π





            (6) 

with 

1
3

1
3

j kP i k
ij k j k i

l l l l

l k
k l i j

m m

u uu u
n n n n

x x x x

u u
n n n n

x x

ν ν

ν

    ∂∂∂ ∂  Π = +    ∂ ∂ ∂ ∂     
 ∂∂

+   ∂ ∂ 

           (7) 

The model for the dissipation rate tensor is given by 

1
2 2
3 3 1 3 2

i j i k k j j k k i i j i k l k
ij ij w ij

k l l k

u u u u n n u u n n n n u u n n
f k

k u u n n k
εε εδ δ
 + + +

= + − + 
+  

.  (8) 

In these equations, ni = (0, 1, 0) is the wall unit normal and fw1 is a damping 
function defined as ( )2

1 exp Re 200w tf  = −  , where 2Ret k νε=  is the tur-
bulent Reynolds number. The high-Reynolds-number model of Hanjalic and 
Launder (1972) [29] is adopted for t

ijD , or  

j k i jt k i
ij s i l j l k l

k l l l

u u u uu ukD C u u u u u u
x x x xε

  ∂ ∂∂∂   = + +
 ∂ ∂ ∂ ∂   

.         (9) 

Since the exact and modelled terms are of order y3 and higher near a wall, no 
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near-wall correction for t
ijD  is necessary. The ε transport equation is also for-

mulated to allow integration to the wall by appropriately modifying the 
high-Reynolds-number modeled equation. Its final form is given by 

1 2i j
j j j i

D kC u u C P C
Dt x x x x k kε ε ε
ε ε ε ε εεν ξ

ε

   ∂ ∂ ∂ ∂
= + + − +    ∂ ∂ ∂ ∂  



 ,      (10) 

where 
2

2wf N M L P
k k k
εε ε εξ

 
= − + − 

 



 ,                  (11) 

is the near-wall correcting function and decays to zero away from the wall, 

( )2
2 ik xε ε ν= − ∂ ∂  and 2

22 k xε ε ν= −  are reduced ε, and x2 is the normal 
coordinate. The damping function in (11) is given by ( )2

2 exp Re 40w tf  = −   
and the model constants are C1 = 3.4, C2 = 4.2, 1C∗  = 1.8, 3C∗  = 1.3, α1 = 
0.4125, β1 = 0.2125, γ1 = 0.01667, α* = −0.29, γ* = 0.065, Cs = 0.11, Cε = 0.12, Cε1 
= 1.5, Cε2 = 1.83, L = 2.25, M = 0.5 and N = 0.57. Further details and the ratio-
nale underlying the assumed constants for this near-wall Reynolds-stress model 
are provided in So et al. (1996) [30]. 

6. Numerical Treatment of the Stress-Gradient Terms 

In the present investigation, four different methods of treating the stress gra-
dient terms in the mean flow equations are examined. These are: Method 1: ex-
plicit source method, Method 2: isotropic viscosity method, Method 3: aniso-
tropic viscosity method and Method 4: semi-coupled method. The numerical 
mathematics for each are briefly summarized below. For the sake of conciseness, 
only the source term of the x-momentum equation is presented. 

Method 1: Explicit Source Method 
With this approach, the stress gradient term in Equation (3) is considered to 

be the source term. Thus, integrating the x-momentum equation around the 
control volume shown in Figure 1 gives 
 

 
Figure 1. Typical control volume and grid system. 
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2 2

2 2 2
N S T BE W

u
u u uv uv uw uwS y z x z x yρ ρ ρ

     − − − = − ∆ ∆ − ∆ ∆ − ∆ ∆            
,  (12) 

where the Reynolds stresses at the control-volume faces are obtained by linear 
interpolation from the neighboring grids, such as ( )2 2 2 2e E Pu u u= +  if the cell 
face is located midway between the grids. It can be seen from this equation that 
the x-momentum equation at grid P is affected by the Reynolds-stresses at the 
neighboring grids but not at grid P. Therefore, similar to the problem which 
arises as a result of pressure-velocity decoupling (Patankar (1980) [2]), an oscil-
latory variation of the Reynolds stresses could result during each iteration of the 
mean momentum equation. This could lead to a physically unrealistic solution 
or the iterative process could diverge. 

Method 2: Isotropic Viscosity Method 
With this method the momentum equation is cast into a form given by, 

( )1
p

j i ji i
t

i j j i j

U u uDU UP
Dt x x x x x

ν ν
ρ

  ∂ ∂∂∂ ∂
= − + + + −   ∂ ∂ ∂ ∂ ∂   

,        (13) 

where 2
p

i j i j t iju u u u Sν= +  is the pseudo stress tensor and νt is evaluated from k 
and ε. In essence, a turbulent diffusion term is added to the mean momentum 
equation. This term is treated implicitly together with the viscous diffusion term. 
However, the same term is subtracted from the source term, which is treated ex-
plicitly. When the iterations converge, the two terms cancel out, and a correct 
solution is obtained. In this respect, the method is a deferred-corrector method. 

Method 3: Anisotropic Viscosity Method 
With this approach, Equation (1) is still invoked. However, unlike Equation 

(1), each component of the stress is assumed to have a different eddy viscosity. 
In this way, six different eddy viscosities are defined using an expression of the 
form, 

22
3

n
i j t ij iju u S kν δ− = − , 1,2, ,6n =  .                (14) 

Substituting this expression into the x-component of Equation (3) and making 
use of the continuity equation, the x-momentum equation can be cast into the 
following form, 

( ) ( )

( )

1 4

6

1
t t

t u

DU P U U
Dt x x x y y

U S
z z

ν ν ν ν
ρ

ν ν

 ∂ ∂ ∂ ∂ ∂ = − + + + +  ∂ ∂ ∂ ∂ ∂   
∂ ∂ + + + ∂ ∂ 

        (15) 

where the source term Su is given by 

( ) ( ) ( )1 4 6 2
3u t t t

U U U kS
x x y x z x x

ν ν ν ν ν ν∂ ∂ ∂ ∂ ∂ ∂ ∂     = + + + + + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂     
,   (16) 

and the anisotropic viscosities n
tν  are calculated from Equation (14). For most 

flows, the strain-rate terms could vanish or assume an arbitrary sign in different 
regions of the flow field. Consequently, n

tν  obtained from Equation (14) could 

https://doi.org/10.4236/jamp.2022.106142


R. M. C. So 
 

 

DOI: 10.4236/jamp.2022.106142 2095 Journal of Applied Mathematics and Physics 
 

become negative or very large during the calculations. A negative diffusion or an 
extremely large n

tν  could become detrimental in the iterative procedure. 
Therefore, in order to prevent the iterative scheme from diverging, this method 
requires the use of limits as upper and lower bounds on the calculated viscosi-
ties. This in turn introduces numerical errors to the results. The upper and lower 
limits are usually applied as multiples of νt, such as n

l t t u tL Lν ν ν≤ ≤ , where Ll 
and Lu are usually chosen to be of the order of 0.1 and 10, respectively. 

Method 4: Semi-Coupled Method 
The approach of Obi et al. (1991) [26] is based on the reasoning that the tur-

bulent Reynolds stresses are coupled to the associated strain rates by an expres-
sion similar to Equation (1), and that a strong link between the Reynolds stresses 
and these strain rates needs to be formed in order to avoid a diverging iterative 
solution. Considering the x-component of Equation (3) and treating the stress 
gradient term as the source, Su, the integration of this equation around the con-
trol volume shown in Figure 2 gives rise to the following source term, 

( ) ( ) ( )2 2
u e w n s t bS u u y z uv uv x z uw uw x yρ ρ ρ= − − ∆ ∆ − − ∆ ∆ − − ∆ ∆ .   (17) 

If the cell face Reynolds stresses in Equation (17) are obtained using a linear 
interpolation of the values at the neighboring grid points, then Equation (17) 
reduces to Equation (12) and the explicit-source method is recovered. Instead, 
the present method calculates the associated strain rates from the discretized 
Reynolds-stress equations which can be written in the following form, 

2
2 11nb nb e w
p U

p PP

A u S U U
u

A x

 Σ + −  = − Γ   ∆  
,             (18a) 

12nb nb n s
p U

p PP

A uv S U U
uv

A y
 Σ + − 

= − Γ     ∆  
,            (18b) 

13nb nb t b
p U

p PP

A uw S U U
uw

A z
 Σ + − = − Γ     ∆  

,            (18c) 

 

 

Figure 2. Staggered control volume for U in the x-y plane. 
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where the A’s are coefficients, Γ’s are diffusivities and S  is the linearized 
source term. The symbols and nomenclature adopted in this section are identical 
to those used by Patankar (1980) [2]. Similar expressions can now be written for 
the discretized Reynolds stresses at the cell faces, 

2
2 11nb nb E P
e U e

p ee

A u S U Uu
A xδ

Σ + −
= − Γ ,            (19a) 

12nb nb N P
n U n

p nn

A uv S U U
uv

A yδ
Σ + −

= − Γ ,           (19b) 

13nb nb T P
t U t

p tt

A uw S U Uuw
A zδ

Σ + −
= − Γ ,           (19c) 

where  denotes linear interpolation. When the Reynolds stresses are eva-
luated from the expressions given by Equation (19), they are directly coupled 
with the mean velocity at the neighboring grids in the same way if a staggered 
grid system were used. If the cell faces lie midway between the grid points, the 

 terms are reduced to  

2 2 21
2

nb nb nb nb nb nb

p p pe E P

A u S A u S A u S
A A A

    Σ + Σ + Σ +    = +
        

,     (20a) 

11 11 111
2U U Ue E P
 Γ = Γ + Γ  ,                 (20b) 

etc. Substituting the expressions given by Equation (19) into the right hand 
side of Equation (17), 

( ) ( )

( ) ( )

( ) ( )

11 11
11

12 12
12

13 13
13

U Ue w
U E P E P U

e w

U Un w
N P P S U

n s

U Ut s
T P P B U

t b

y z y z
S U U U U S

x x

x z x z
U U U U S

y y

x y y z
U U U U S

z z

δ δ

δ δ

δ δ

Γ ∆ ∆ Γ ∆ ∆
= − − − +

Γ ∆ ∆ Γ ∆ ∆
+ − − − +

Γ ∆ ∆ Γ ∆ ∆
+ − − − +

    (21) 

where 

2 2
11 nb nb nb nb
U

p pw e

A u S A u S
S y z

A A

 Σ + Σ + = − ∆ ∆
  

,         (22a) 

12 nb nb nb nb
U

p ps n

A uv S A uv S
S x z

A A

 Σ + Σ +
 = − ∆ ∆
  

,        (22b) 

13 nb nb nb nb
U

p pb t

A uw S A uw S
S x y

A A

 Σ + Σ +
 = − ∆ ∆
  

,        (22c) 

During the computation of the mean momentum equations, the diffusion-like 
terms in Equation (21) are treated implicitly and they directly contribute to the 
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coefficients EA , WA , NA , SA , TA , BA , and PA . On the other hand, 11
US , 

12
US , and 13

US  are calculated explicitly as source terms. 
The apparent-viscosities extracted from the discretized Reynolds-stress equa-

tions depend on the second-order closure adopted. If the present near-wall 
Reynolds-stress model is invoked at grid P, the coefficients for the x-momentum 
equation can be determined and they are given by the following expressions: 

( ) ( )

( ) ( )
( )

2

11 * 2 *
1 1 1 1 1

2
2

* 2 *
1

2 *
3 1 1

1
1

22 1 2
3

1 11 1
3 2

U w P w P

P

w P P P w
uP P

f u f k

u x y zf C u C k f C
k A

α α β ρ γ γ ρ

ρ ρ ρ


  Γ = − − + + −   



 ∆ ∆ ∆

+ − + Π − − 



 (23a) 

( ) ( )

( )
( )

12 2 * 2 *
1 1 1 1 1

2

* *
3 1

1 2
1

1

1 1
2

U P w P w P

P P w uv
P P

u f v f k

uv x y zC k f C
k A

β ρ α α ρ γ γ ρ

ρ ρ


Γ = − + − + + −




∆ ∆ ∆+ Π − − 



       (23b) 

( ) ( )

( )
( )

13 2 * 2 *
1 1 1 1 1

2

* *2
3 1

1
1

1

1 1
2 2

U P w P w P

P P w uw
P P

u f w f k

uw x y zC k f C
k A

β ρ α α ρ γ γ ρ

ρ ρ


Γ = − + − + + −




∆ ∆ ∆+ Π − − 



       (23c) 

For numerical stability, it is important that extracted viscosities given by Equ-
ation (23) are positive. It can be seen from these equations that both near the 
wall ( 1 1wf = ) and away from the wall ( 1 0wf = ), they assume positive values. If a 
convergent solution field cannot be achieved with the set of coefficients given 
above, the terms which act to decrease the value of the apparent diffusion coeffi-
cients may be removed from these expressions. However, in the present study, it 
was possible to obtain physically realistic, convergent solutions with the set of 
coefficients given above for all cases examined. The converged results are found 
to be independent of the expressions chosen for the apparent viscosities. 

When Obi et al. (1991) [26] introduced this new method, they applied it to the 
numerical solution of the turbulent flow over a backward-facing step using the 
high-Reynolds-number second-order model of Gibson and Launder (1978) [31]. 
However, their computational results indicated the presence of unrealistic veloc-
ity fields in the neighborhood of the reattachment point close to the wall. This 
point will be discussed further below. 

For ease of reference later, the different methods discussed above are desig-
nated as in Table 1. In this table, the SIMPLEC method of van Doormal and 
Raithby (1984) [3] is an improved version of SIMPLE. It is used to improve the 
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convergence rate of the SIMPLE algorithm when three-dimensional computa-
tions are carried out. 

7. Numerical Soultion 

All computations of square duct flow by Aksoy et al. (1995) [6] and backstep 
flow by Aksoy and So (1995) [7] were carried out using the SIMPLE/SIMPLEC 
algorithm, and the convective/diffusive terms are discretized with the power-law 
scheme described in Patankar (1980) [2]. A three-dimensional elliptic code has 
been used to calculate the fully-developed turbulent flow inside the square duct 
while a two-dimanional code was used in the case of backstep flow. Periodic flow 
conditions are applied in the axial direction. Calculations are carried out using 4 
× 91 × 91 grids in the axial (x), the normal (y) and the transverse (z) directions, 
respectively. With this grid resolution, the results were found to be grid inde-
pendent for both Reynolds numbers attempted. The grids were placed such that 
at least 5 grids are located within y+ < 5 with the first grid point at y+ ≃ 1, and 25 
grids are located in the region 5 < y+ < 65. The developing flow at Re = 250,000 is 
solved using an iterative, forward marching solution procedure based on the pa-
rabolized equations as described by Patankar and Spalding (1972) [4]. The same 
grid spacing (91 × 91) is adopted in the cross sectional plane. The forward step 
size is varied progressively from 0.4 percent of the hydraulic diameter near the 
inlet to 4 percent until the flow becomes fully developed. The iterations are car-
ried out until the normalized residual sources reduce to 10−5.  

A two-dimensional (2-D) elliptic code is used to calculate the backstep flow. 
The governing equations are discretized without the unsteady terms, put into a 
tridiagonal form and solved by using the SIMPLE/SIMPLEC algorithm until the 
normalized residual sources for the momentum equations and mass reduce to 
10−5. Special attention is given to the placement of the grids near the wall. Again, 
a minimum of 5 grids are placed within y+ < 5 with the first grid point at y+ ≃ 1, 
and about 30 grids are located in the region 5 < y+ < 75. Different grid sizes of 51 
× 41, 91 × 81, 131 × 151 in the x and y directions are tested for grid indepen-
dence and a 91 × 81 grid is found to be sufficient. This 2-D elliptic algorithm was 
found to be quite effective in its calculation of backstep flow. Therefore, it is 
chosen as the algorithm of choice for the calculation of a developing plane 
channel flow in the present study. 

8. Results and Discussion 

Methods 1 - 4 had also been used by Aksoy et al. (1995) [6] to study a square 
duct flow and by Aksoy and So (1995) [7] to simulate a backstep flow. Therefore, 
their findings will be drawn on in the following discussion to bring out the indi-
viual effects of these four numerical methods on the calculation of complex 
flows. These calculations and the present developing plane channel flow calcula-
tion are all carried out using the Reynolds-stress model discussed above. It is an-
ticipated that through this analysis, the merits or lack thereof of each method 
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can be demonstrated. 
The results of the developing plane channel flow calculations are discussed 

below together with the performance of the four numerical methods. Calcula-
tions are carried out at Re = 7900 and 30,800, based on the maximum velocity in 
the fully developed region and the channel half width. These Re’s are the same as 
the experimental measurements of Laufer (1951) [14] and the DNS data of Kim 
et al. (1987) [15]. Figure 3 shows the development of the skin-friction coefficient 
Cf along the channel wall. Here, Cf is defined with respect to the bulk velocity. 
The DNS data and the measurements are also shown for comparison. Predic-
tions from Methods 1, 2 and 3 give almost identical results and agree well with 
both sets of data. However, Method 4 underpredicts Cf at both Re by about 20% 
in the fully-developed state. This is a significant under prediction; thus indicat-
ing that in comparison with Methods 1, 2 and 3, Method 4 is not suitable for the 
calculation of a simple developing channel flow. 

In Figure 4, predicted Reynolds normal stresses are compared with DNS data. 
Again, results from Method 4 differ from those deduced by using the other three 
methods. However, all four methods yield the same result for the shear stress as 
shown in Figure 5. The discrepancies noted in Figure 3 and Figure 4 for Me-
thod 4 are believed to be the result of numerical errors introduced by the inter-
polations that need to be implemented as part of this method. In other words, 
the interpolations have an undue influence on the calculated results. The calcu-
lations with Method 1 can be considered more accurate since no limitations, in-
terpolations, or deferred-corrector type terms are introduced. The results with 
Method 3 are obtained by forcing all components of the calculated anisotropic 
viscosities to remain within a lower bound of 0.1νt and a higher bound of 10νt. 
This means that use of lower and upper bounds in Method 3 is required in order 
to prevent the iterations from diverging due to the existence of negative or ex-
cessively large anisotropic viscosities during the computations. 
 

 

Figure 3. Comparison of the calculated Cf for plane channel flow. 
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Figure 4. Comparison of the calculated normal stresses for plane channel flow. 
 

 

Figure 5. Comparison of the calculated shear stress for plane channel flow. 
 

In general, the four methods give essentially the same results for all variables 
examined except for Cf. Therefore, in one way or another, all four numerical 
methods used to treat the stress gradient terms have some defects in the calcula-
tion of a 2-D developing channel flow. Overall, it could be concluded that the 
best performing numerical method is given by Method 4, in spite of its under-
prediction of Cf. 

Finally, the relative effectiveness of these four numerical methods on the cal-
culations of complex flows such as a square duct flow (Aksoy et al. (1995) [6]) 
and a backstep flow (Aksoy and So (1995) [7]) are examined here for compari-
son. Since the secondary flows in a square duct are generated primarily by the 
gradients of the Reynolds stresses (Aksoy et al. (1995) [6]), they are very sensi-
tive to the type of numerical methods and turbulence models adopted. The fol-
lowing discussion is based on the fact that the same turbulence models and nu-
merical methods are invoked in this study and the other two on complex flows. 
Methods 1 and 4 are found to give identical and physically correct results. The 
interpolations incorporated as part of Method 4 does not seem to introduce any 
significant errors to the calculations. Although it is known to be unstable for 

https://doi.org/10.4236/jamp.2022.106142


R. M. C. So 
 

 

DOI: 10.4236/jamp.2022.106142 2101 Journal of Applied Mathematics and Physics 
 

most flows, Method 1 can still be used to study the three-dimensional turbulent 
flow inside a square duct. Since Method 4 introduces implicit diffusion terms to 
the momentum equations by extracting them from the discretized Reynolds-stress 
equations and resolves the velocity-Reynolds-stress decoupling through a special 
interpolation technique, it can be used to solve different types of complex flows. 
The limitations applied to the anisotropic viscosities with Method 3 may actually 
result in the introduction of an isotropic viscosity into the momentum equations 
for most of the flow domain, thus leading to incorrect predictions. Furthermore, 
this method gives rise to zero secondary flow in the case of a square duct. Me-
thod 2 also predicts a zero secondary flow field. Therefore, Methods 2 and 3 are 
not suitable in spite of the fact that the mean velocities and Reynolds stresses are 
calculated correctly. The results presented for the square duct flow show that, 
even if the Reynolds stress aniostropy is captured by the turbulence model, un-
less the stress gradient terms in Equation (3) are treated correctly, there is no 
guaratee that a secondary flow will form in the calculation. On the other hand, 
the improved calculations of a backstep flow using Method 3 compared to using 
Method 4 could be explained as follows. For a backstep flow, the secondary flow 
is driven by the pressure gradient term in Equation (3). Therefore, even if the 
stress-gradient term in Equation (3) is not treated properly by Method 3, the net 
effect on the calculation of the recirculation region is insignificant. 

In the case of a backstep flow (Aksoy and So (1995) [7]), the following conclu-
sions can be drawn. Converged solutions could be obtained only with Methods 3 
and 4. Even then, the Cf distribution downstream of the step is found to be very 
sensitive to the numerical method adopted. This last point is particularly true for 
Method 3 because anisotropic viscosities bounds need to be enforced as part of 
Method 3. The behavior of the calculated velocities using Methods 3 and 4 are 
compared near the reattachment point downstream of the backstep. It was found 
that only the velocity obtained with Method 4 shows a forward flow near the 
wall in the recirculation region; thus, indicating the presence of kinked stream-
lines. This is contrary to the findings of Lasher and Taulbee (1992) [32], who at-
tributed the unrealistic behavior to the numerical method adopted and not to 
the pressure-strain model. In conclusion, Aksoy and So (1995) [7] found that 
only Method 3 can give rise to physically correct results that agree better with 
DNS data than those obtained using Method 4. 

9. Conclusion 

When second-order models are used to calculate turbulent flows, the type of 
numerical methods used to treat the stress-gradient terms in the mean momen-
tum equations becomes important from both the stability and accuracy point of 
view. Methods 1 - 4 have been tested using the near-wall Reynolds-stress models 
of So et al. (1996) [30] in the calculation of the turbulent characteristics in a de-
veloping plane channel flow. For this simple flow, all four methods are stable. 
With the exception of Method 4, they all give approximately identical results ex-

https://doi.org/10.4236/jamp.2022.106142


R. M. C. So 
 

 

DOI: 10.4236/jamp.2022.106142 2102 Journal of Applied Mathematics and Physics 
 

cept for the development of Cf. with Method 4, the calculated Cf along the chan-
nel wall is in error by ~20%. This error could be a consequence of the interpola-
tions implemented in this method. Therefore, this investigation and those car-
ried out by Aksoy et al. (1995) [6] and Aksoy and So (1995) [7] for complex 
flows show that Method 4 might work well for complex flows. However, it is not 
appropriate for a simple developing plane channel flow calculation because the 
error in Cf is too large to ignore (Figure 3). In other words, any method that 
works for complex flows is not necessarily suitable for simple flows.  
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