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Abstract 
In this paper, we study the long-time behavior of the solution of the initial 
boundary value problem of the coupled Kirchhoff equations. Based on the 
relevant assumptions, the equivalent norm on kE  is obtained by using the 
Hadamard graph transformation method, and the Lipschitz constant Fl  of F 
is further estimated. Finally, a family of inertial manifolds satisfying the spec-
tral interval condition is obtained.  
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1. Introduction 

This paper mainly studies the initial boundary value problem of the coupled 
Kirchhoff equations: 
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where ( )1nR nΩ ⊆ ≥  is a bounded domain with a smooth boundary ∂Ω , 

( ) ( )1 2, , ,t t t tg u v g u v  are nonlinear terms, ( )( )
2 2p mm m

p
M u v u∇ + ∇ −∆ ,  
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( )( )
2 2p mm m

p
M u v v∇ + ∇ −∆  are the rigid terms which ( )2pm m

p
M u v∇ + ∇   

is real function, ( ) ( )1 2,f x f x  are the external force terms, and ( )2m
tuβ −∆ , 

( ) ( )2 0m
tvβ β−∆ ≥  are strong dissipative terms. This paper mainly studies the 

long-time behavior of the solution of the initial boundary value problem. Based 
on the relevant assumptions, the family of inertial manifolds satisfying the spec-
tral interval condition is obtained by using the Hadamard graph transformation 
method. 

As we all know, an inertial manifold is a Lipschitz manifold that contains a 
global attractor and attracts all solution orbits at an exponential rate, and it is fi-
nite-dimensional and positively invariant. The inertial manifold is of great signi-
ficance to study the long-term behavior of infinite dimensional dynamical sys-
tems. Because it transforms infinite dimensional problems into finite-dimen- 
sional problems, and an inertial manifold is of great significance to the develop-
ment of nonlinear science. 

In 1989, Constantin, Foias, Nicolaenko, et al. [1] tried to refine the spectral 
separation conditions by using the concept of spectral barrier in Hilbert space. 
In 1991, Eugene Fabes, Mitchell Luskin and George R Sell [2] used the elliptic 
regularization method to construct the inertial manifold. Two famous methods 
used to prove the existence of inertial manifold are the Lyapunov Perron method 
and the Hadamard graph transformation method. 

Based on the above references, Guoguang Lin and Lingjuan Hu [3] studied the 
inertial manifold for nonlinear higher-order coupled Kirchhoff equations with 
strong linear damping 
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where ( )1nR nΩ ⊆ ≥  is a bounded domain with a smooth boundary ∂Ω , 
( ) ( )1 2, , ,g u v g u v  are nonlinear source terms, ( ) ( )1 2,f x f x  are the external  

force terms, ( )( )
2 2 mm mM u v u∇ + ∇ −∆ , ( )( )

2 2 mm mM u v v∇ + ∇ −∆  are 

rigid terms which ( )2 2m mM u v∇ + ∇  is real function, ( )m
tuβ −∆ ,  

( ) ( )0m
tvβ β−∆ ≥  are strong dissipative terms. Using the Hadamard graph 

transformation method, they obtain the existence of the inertial manifold while 
such equations satisfy the spectrum interval condition. 

Guoguang Lin and Lujiao Yang in [4] first studied the family of inertial ma-
nifolds and exponential attractors for the Kirchhoff equations.  
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where 1m > , 2p ≥ , ( )1nR nΩ∈ ≥  is the bounded domain with smooth 
boundary ∂Ω , 0β >  is the dissipative coefficient, ( )2m

tuβ −∆  is the strong 
dissipative term, ( )g u  is the nonlinear term among, and ( )f x  is the external  

force term, ( )( )2p mm
p

M u u∇ −∆  is the rigid term which  

( ) [ )( )2 0, ;
pm
p

M u C R+∇ ∈ +∞  is real function. After making appropriate as-
sumptions, the existence of exponential attractor is obtained by proving the dis-
crete squeezing property of the equation. Then according to Hadamard’s graph 
transformation method, the spectral interval condition is proved to be true, there-
fore, the existence of a family of the inertial manifolds for the equation is obtained. 

Because an inertial manifold plays a very important role in describing the 
long-time behavior of solutions, it is of great significance to the development of 
nonlinear science. The relevant research theoretical results are shown in refer-
ences [5]-[19]. 

On the basis of previous studies, this paper further improves the order of the 
strong dissipative term and the rigid term mentioned by Guoguang Lin and 
Lingjuan Hu [3], where the coefficient of the rigid term is extended from 

( )2 2m mM u v∇ + ∇  to ( )2pm m
p

M u v∇ + ∇ , and ( ) ( )1 2, , ,t t t tg u v g u v  are 
new nonlinear terms. When constructing the equivalent norm in kE  space, 
through reasonable assumptions and combined with the Lipschitz property of 
the nonlinear term, the family of inertial manifolds satisfying the spectral inter-
val condition is obtained. 

2. Preliminaries 

The following symbols and assumptions are introduced for the convenience of 
statement: 
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The inner product of the ( )2L Ω  space is ( ) ( ) ( ), du v u x v x x
Ω

= ∫  and the 

norm is ( )( )2

1
2 2dLu u u x x

Ω
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The norm of ( )pL Ω  space is called ( )pp Lu u
Ω

= . 

Fl  is the Lipschitz constant of ( ),b k kF C E E∈ , l  is the Lipschitz constant 
of ( )( ), 1, 2i t tg u v i = . 

Relevant assumptions: 

(H1) ( )
2

11 0
2

kβ µ−− ≥ ; 
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(H2) ( ) ( )( ) ( )
2

1 1 2
1

1 164 1
2 4N N

lM s
M s

µ µ β β µ
β µ+

 − − − ≥ +   −
. 

Definition 2.1 [5] Assuming ( )( ) 0t
S S t

≥
=  is a solution semigroup on Ba-

nach space 2 2k m k k m k kE V V V V+ += × × × , subset k kEµ ⊂  is said to be a family of 
inertial manifolds, if they satisfy the following three properties: 

1) kµ  are a finite-dimensional Lipschitz manifold; 
2) kµ  is positively invariant, i.e., ( ) , 0k kS t tµ µ⊆ ≥ ;  
3) kµ  attracts exponentially all orbits of solution , that is, for any kx E∈ , 

there are constants 0, 0Cη > >  such that 

( )( ), e , 0t
kdist S t x C tηµ −≤ ≥ . 

Definition 2.2 [5] Assuming the operator :A X X→  have countable posi-
tive real part eigenvalues and ( ),bF C X X∈  satisfies the Lipschitz condition: 

( ) ( ) ,   ,F XX
F u F v l u v u v X− ≤ − ∈ . 

If the point spectrum of the operator A can be divided into the following two 
parts 1σ  and 2σ , where 1σ  is finite 
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{ } ( ), 1, 2i j j iX span w iλ σ= ∈ = , 
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2 1 4 ,FlΛ −Λ >                           (6) 

1 2 ,X X X= ⊕                           (7) 

where 1 1: k kP E E→  and 2 2: k kP E E→  are orthogonal projection. So the op-
erator A is said to satisfy the spectral interval condition. 

Lemma 2.1 [5] Assuming eigenvalue { }
1k k

λ−

≥
 is non-decreasing sequence, 

there is 1N N +∈ , for any 1N N≥ , such that Nµ
−  and 1Nµ

−
+  are continuous 

adjacent values. 

3. The Family of Inertial Manifolds 

From the above preparation knowledge, Equations (1)-(5) are equivalent to 
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2 2k m k k m k kE V V V V+ += × × × . 

In order to determine the eigenvalue of operator A, we must first consider the 
graph norm generated by the inner product in kE  
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therefore, ( ),
kEAU U  is a nonnegative real number. 

To further determine the eigenvalues of A, we consider the following charac-
teristic equation 

( ), , , , kAU U U u w v q Eλ= = ∈                    (10) 
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Substitute the first equation into the second equation, and substitute the third 
equation into the fourth equation in (11), thus 

( ) ( )( )
( ) ( )( )

2 22

2 22

0,

0,

0, 0,1, 2, , 2 1.

m m

m m

i i

i i

u u M s u

u u M s u

u v i m
n n

λ λβ

λ λβ

∂Ω ∂Ω

 − −∆ + −∆ =

 − −∆ + −∆ =

∂ ∂

= = = −∂ ∂


             (12) 

Take ( ) ( ),k ku v−∆ −∆  inner product with the first equation and the second 
equation of the above Equations (12) respectively to obtain 
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The above Equation (13) are sorted out 
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The above Equation (14) is a quadratic equation of one variable about λ , and 
,k ku v  are used to replace ,u v  in the above equation. For any positive integer k, 

the above Equation (10) has paired eigenvalues 
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real numbers, and the corresponding characteristic function have the following 
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Lemma 3.1 ( ), :i t t k k k kg u v V V V V× → × , 1,2i =  is uniformly bounded and 
globally Lipschitz continuous. 

Proof. for arbitrary ( ) ( ), , ,t t t t k ku v u v V V∈ × , , , ,t t t tw u w u q v q v= = = = , 
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where ( )1 0,1θ ∈ , l  is the Lipschitz constant. 
Lemma 3.1 is proved. 

Theorem 3.1 When *
2

4
k mµ

β
≥ , there is a large enough *

1N N∈  so that 

1N N∀ ≥  has  

( ) ( )( ) ( )
2
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1 164 1
2 4N N

lM s
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 − − − ≥ +   −
,      (16) 

where l  is the Lipschitz constant of ( )( ), 1, 2i t tg u v i = , then operator A satis-
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fies the spectral interval condition of Definition 2.2. 

Proof. When *
2

4
k mµ

β
≥ , all eigenvalues of A are positive real numbers, and 

the sequences { }
1k k

λ−

≥
 and { }

1k k
λ+

≥
 are monotonic. 

The following is divided into four steps to prove this theorem. 
Step 1 Since { }

1k k
λ−

≥
 is a non-decreasing sequence, according to Lemma 2.1, 

there is 1N N +∈ , for any 1N N≥ , such that Nµ
−  and 1Nµ

−
+  are continuous 

adjacent values. 
Step 2 The existence of N makes Nµ

−  and 1Nµ
−
+  continuous adjacent values, 

so the eigenvalues of A can be decomposed into 

{ }1 1k k Nσ λ−= ≤ ≤ , 

{ }2 , 1j k k N jσ λ λ± += ≤ ≤ ≤ . 

The corresponding kE  can be decomposed into 

{ }1 1k k kE Span U λ σ− −= ∈ ,                     (17) 

{ }2 2, ,k j k j kE Span U U λ λ σ± + ± += ∈ .                 (18) 

In order to prove the spectral interval condition, we will find out the ortho-
gonality of subspaces 1kE  and 2kE . 

Further decompose subspace 2k C RE E E= ⊕ , where 

{ }2C k kE Span U λ σ+ += ∈ , 

{ }2R j jE Span U λ σ± ±= ∈ . 

Note that 1kE  and CE  are finite-dimensional subspaces, 1N kU E− ∈ , 

1N RU E−
+ ∈ . Because 1kE  and RE  are orthogonal and 1kE  and CE  are not 

orthogonal, 1kE  and 2kE  are not orthogonal. 
Next, the equivalent norm of eigenvalues on kE  is specified so that 1kE  and 

2kE  are orthogonal. 
Under the new graph norm, let 1N k cE E E= ⊕ . 
Let the functions : NE RΦ →  and : RE RΨ → , 
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where ( ) ( ), , , , , , , NU u w v q V a b c d E= = ∈  or RE . 
For ( ), , , NU u w v q E= ∈ , then 
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for any k, having ( )
2

2
2 k M sβ µ ≥ , then ( ), 0U UΦ ≥ , ( ), , , NU u w v q E∀ = ∈ , 

that is, Φ  is positive definite. 
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2 22 2 2 22 2
1

2 2 2 2 2

1

, , 2 , 2 ,

8 , ,
2

2 , 2 , 8 ,
2

2 2

,
2

m k m k m k k k m k

k k m k m k

m k k k m k k k

m k m k k k

k k k k

U U u u u w w u

w w v v

v q q v q q

u v w q

u v w q

β β β

β µ
β

β µ
β β

β β µ

β µ

+ + + +

+ +

+ +

+ +

Ψ = ∇ ∇ + ∇ ∇ + ∇ ∇

 
+ + ∇ ∇ + ∇ ∇ 
 

 
+ ∇ ∇ + ∇ ∇ + + ∇ ∇ 

 

≥ ∇ + ∇ + ∇ + ∇

≥ ∇ + ∇ + ∇ + ∇

 

then ( ) ( ), 0, , , , RU U U u w v q EΨ ≥ ∀ = ∈ , that is, Ψ  is positive definite. 
Then redefine the equivalent norm on kE  

( ) ( ), , ,
k

N N R RE
U V P U P V P U P V= Φ +Ψ ,             (19) 

where NP  and RP  are projections of k NE E→  and k RE E→  respectively. 
For convenience, Equation (19) is abbreviated as  

( ) ( ), , ,
kE

U V U V U V= Φ +Ψ . 

Based on the redefinition of the equivalent norm in kE , to prove that 
1kE  
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and 
2kE  are orthogonal, we only need to prove that 

1kE  and cE  are ortho-
gonal. 

Through Equation (19), the following equation holds 

( ) ( )1, , 0, ,
k

j j j j j k j cE
U U U U U E U E− + − + − += Φ = ∈ ∈ . 

The main calculation process is as follows 

( ) ( )( ) ( )
( ) ( )
( ) ( )( )
( )( ) ( )

( ) ( )

2 2

2 2 2 2

2 2 2 2 2

2 2

2 2 2 2

, 2 , 2 ,

, ,

2 , 2 ,

2 , 2 ,

, ,

k k m k m k
j j j j j j

m m k m k m
j j j j j j

m k m k m k m k
j j j j j j

k k m k m k
j j j j

m m k m k m
j j j j j j

U U M s u u u u

u u u u

u u u u

M s v v v v

v v v v

β

β λ β λ

λ λ β β

β

β λ β λ

− + + +

+ − − − − −

− − − + − − + +

+ +

+ − − − − −

Φ = − ∇ ∇ + ∇ ∇

+ ∇ − ∇ + − ∇ ∇

+ − ∇ − ∇ + − ∇ ∇

− ∇ ∇ + ∇ ∇

+ ∇ − ∇ + − ∇ ∇

 

( ) ( )( )
( )( ) ( )

( )( )
( )( )

( ) ( ) ( )

2 2 2 2 2

2 2 2 22 2 2

2 2

2 22 2

2

2 , 2 ,

2

2

12 2 ,

m k m k m k m k
j j j j j j

k k m k m k
j j j j

k k
j j j j

m k m k
j j j j

k j j j j
k

v v v v

M s u v u v

u v

u v

M s

λ λ β β

β

β λ λ

λ λ

β µ β λ λ λ λ
µ

− − − + − − + +

+ +

+ − − −

+ − − − − −

+ − + −

+ − ∇ − ∇ + − ∇ ∇

= − ∇ + ∇ + ∇ + ∇

− + ∇ + ∇

+ ⋅ ∇ + ∇

= − + − + + ⋅

 (20) 

where 1,j k j cU E U E− +∈ ∈ . 
Through Equation (14), we can get 

( ),j j k j j kM sλ λ βµ λ λ µ+ − + −+ = ⋅ = . 

So 

( ) ( ) ( ) ( )2 1, 2 2 0j j k j j j j
k

U U M s β µ β λ λ λ λ
µ

− + + − + −Φ = − + − + + ⋅ = . 

That is, 
1kE  and cE  are orthogonal, further 

1kE  and 
2kE  are orthogonal. 

Step 3 After the Step 2, 1 2k k kE E E= ⊕  has been established. Now we esti-
mate the Lipschitz constant Fl  of F. By lemma 3.1,  

( ) ( ), : , 1, 2i t t k k k kg u v V V V V i× → × =  is uniformly bounded and globally Lip-
schitz continuous, and ( ) ( ) ( ) ( ) ( )( )T

1 1 2 20, , ,0, ,t t t tF U f x g u v f x g u v= − − . 
Let 1 1: k kP E E→  and 2 2: k kP E E→  be orthogonal projections, if 

( ) ( ) ( )1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , ,kU u w v q E U u w v q PU U u w v q PU= ∈ = ∈ = ∈ , 

then 

1 1 1 1 1 1 1 1, , ,Pu u Pw w Pv v Pq q= = = = . 

So 

( ) ( )

( ) ( )

2
1 1 2 2

2 2 2

1 1 1

, ,

2
2

kE

k k

U PU PU PU PU

M s Pu Pvβ µ

= Φ +Ψ

 
≥ − ∇ + ∇ 
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( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2

1 2 2 2 2

2 2 2

1

2 2 2

1

2 2 2

1

2

2
2

2
2

2 .
2

k k k k

k k

k k

k k

P u P v P w P q

M s u v

M s w q

M s w q

β µ

β µ

β µ

β µ

+ ∇ + ∇ + ∇ + ∇

 
≥ − ∇ + ∇ 
 
 

+ − ∇ + ∇ 
 
 

≥ − ∇ + ∇ 
 

 

Given ( ) ( ), , , , , , , kU u w v q W u w v q E= = ∈ , from lemma 3.1  

( ) ( )

( ) ( ) ( ) ( )
( )

( )

1 1 2 2

2

1

, , , ,

2

2 ,

2
2

k

k k k k

k k

k

E

t t t t t t t t
V V V V

V V

E

F U F W

g u v g u v g u v g u v

l w w q q

l U W
M sβ µ

× ×

−

= − + −

≤ − + −

≤ −

−

       (21) 

so  

( ) ( )2 2
1

1

2 4

42
2

F
l ll

M sM sβ β µµ

≤ =
−

−

.             (22) 

Step 4 Prove Equation (6) holds in Definition 2.2. 
According to the eigenvalue of A decomposition, letting 1 2 1,N Nλ λ− −

+Λ = Λ = , 
then  

( ) ( ) ( )( )2 1 1 1
1 1

2 2N N N N R N R Nβλ λ µ µ− − − −
+ +Λ −Λ = − = − + − + ,    (23) 

where ( ) ( )2 2 4N NR N M sβ µ µ= − . 
There is 1N N +∈ , for any 1N N≥ , having 

( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( )( )

2
1 1

2
1 12 2

1 1

2
1 1 1

1 4

1
4

4 4

4 1 ,

N N

N N

R N R N M s

R N R N
M s

M s M s

M s R N R N

β µ µ µ

β µ µ µ
β µ β µ

β µ

− −
+

+

− + + − −

    +    = − − − −
    − −    

= − − +

 (24) 

letting ( ) ( )
( )1 2

1 4 N

R N
R N

M s
µ

β µ
= −

−
. 

Because ( ) ( )
( )1 2

1

lim lim 0
4 NN N

R N
R N

M s
µ

β µ→+∞ →+∞
= − =

−
, 

( ) ( ) ( ) ( )( )2
1 1lim 1 4 0N NN

R N R N M sβ µ µ µ− −
+→+∞

− + + − − = .     (25) 

According to the assumptions (16) of Theorem 3.1 and (22)-(25), we can get 
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( ) ( )( ) ( )
2

2 1 1 1 2
1

1 164 1 4 ,
2 4N N F

lM s l
M s

µ µ β β µ
β µ+

 Λ −Λ ≥ − − − − ≥ ≥   −
 (26) 

so operator A satisfies the spectral interval condition. 
Theorem 3.1 is proved. 
The equivalent norm on kE  is obtained by using the Hadamard graph 

transformation method. On this basis, it is proved that 1 2k k kE E E= ⊕ , where 

1 1: k kP E E→  and 2 2: k kP E E→  are orthogonal projections. Since  
( ) ( ), : , 1, 2i t t k k k kg u v V V V V i× → × =  is uniformly bounded and globally Lip-

schitz continuous, the Lipschitz constant Fl  of F can be further estimated. Fi-
nally, Formula (26) holds and then operator A satisfies the spectral interval con-
dition. Next, we will further obtain that the initial boundary value problems 
(1)-(5) have a family of inertial manifolds. 

Theorem 3.2 If ( ),b k kF C E E∈  satisfies Lipschitz condition and operator A 
satisfies spectral interval condition , then the initial boundary value problem 
(1)-(5) has a family of inertial manifolds k kEµ ∈ , 

( ) ( ){ }1
: :k k kgraph E Eµ ς ς ς= Γ ∈ = + Γ ∈ , 

where 
1kE  and 

2kE  are defined in (17)-(18), and 
1 2

: k kE EΓ →  is Lipschitz 
continuous function. 
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