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Abstract

In this paper, we study the long-time behavior of the solution of the initial
boundary value problem of the coupled Kirchhoff equations. Based on the
relevant assumptions, the equivalent norm on E, is obtained by using the
Hadamard graph transformation method, and the Lipschitz constant |. of ¥
is further estimated. Finally, a family of inertial manifolds satisfying the spec-
tral interval condition is obtained.
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1. Introduction

This paper mainly studies the initial boundary value problem of the coupled

Kirchhoff equations:
e+ M7 o) (-8) " u A g () = (0. @
v + M (||vmu vy 2)(_A)2m Vi B(-A "+ g, (uv) = (X))
u(%,0) =ty (x),U (x,0) =ty (x) x £ Q, (3)
V(%,0) =V, (x). ¥ (x,0) =V, (x) x €, @)
%=0,%=0,(i=0,1,2,---,2m—1),X68Q. ()

where Qc R"(n>1) is a bounded domain with a smooth boundary oQ,

oy,

p
9, (U, ), 9, (u,,V,) are nonlinear terms, M ("va . +||va
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v™u V™ V™

p
*|
p

M (| 2)(—A)2mv are the rigid terms which M ("Vmu"z +| 2)
is real function, fl(x), fz(x) are the external force terms, and f (—A)Zm U
B (—A)Zm V,(#=0) are strong dissipative terms. This paper mainly studies the
long-time behavior of the solution of the initial boundary value problem. Based
on the relevant assumptions, the family of inertial manifolds satisfying the spec-
tral interval condition is obtained by using the Hadamard graph transformation
method.

As we all know, an inertial manifold is a Lipschitz manifold that contains a
global attractor and attracts all solution orbits at an exponential rate, and it is fi-
nite-dimensional and positively invariant. The inertial manifold is of great signi-
ficance to study the long-term behavior of infinite dimensional dynamical sys-
tems. Because it transforms infinite dimensional problems into finite-dimen-
sional problems, and an inertial manifold is of great significance to the develop-
ment of nonlinear science.

In 1989, Constantin, Foias, Nicolaenko, et al. [1] tried to refine the spectral
separation conditions by using the concept of spectral barrier in Hilbert space.
In 1991, Eugene Fabes, Mitchell Luskin and George R Sell [2] used the elliptic
regularization method to construct the inertial manifold. Two famous methods
used to prove the existence of inertial manifold are the Lyapunov Perron method
and the Hadamard graph transformation method.

Based on the above references, Guoguang Lin and Lingjuan Hu [3] studied the
inertial manifold for nonlinear higher-order coupled Kirchhoff equations with

strong linear damping
U, +M (”Vmu"2 +||va||2)(—A)m u+B(-A)"u +g,(u,v)=f,(x),

v, +M ("V”‘u”2 +||va||2)(—A)m v+ B(=A)"v, +9, (u,v)=f,(x),
u(x,0)=u,(x),u (x,0)=u,(x),xeQ,

v(X,0) =V, (x),v (x,0) =V, (x),x € Q,

du_av

~=0,—=0,(i=0,1,2,---,m-1),x € 6Q.
on' on'

where Qc R"(n>1) is a bounded domain with a smooth boundary 2Q,

9,(u,v),g,(u,v) are nonlinear source terms, f (x),f,(x) are the external

voulf +|va 2)(—A)m u, M (|V”‘u ’ +|va 2)(—A)mv are

2
[+l

force terms, M (|

m

2
rigid terms which M (“Vmu ) is real function, A(-A)" u,,

B(-A)"v (B =0) are strong dissipative terms. Using the Hadamard graph
transformation method, they obtain the existence of the inertial manifold while
such equations satisfy the spectrum interval condition.

Guoguang Lin and Lujiao Yang in [4] first studied the family of inertial ma-

nifolds and exponential attractors for the Kirchhoff equations.

DOI: 10.4236/jamp.2022.106141

2075 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.106141

G. G. Lin, F. M. Chen

u, +M ("Vmu"Z)(—A)2m u+B(-A)"u +g(u)=f(x),
u(x,0)=uy(x),u, (x,0)=u,(x),xeQ,t>0,

U(X,t)zo,%zo,(i21,2,~--,2m—1),XEGQ.

where m>1, p=2, QeR" (n 21) is the bounded domain with smooth
boundary 6Q, £>0 is the dissipative coefficient, 5(-A)™"u, is the strong
dissipative term, g(u) is the nonlinear term among, and f (x) is the external

force term, M (| V™u Z)(—A)zm U is the rigid term which

M (|Vmu

sumptions, the existence of exponential attractor is obtained by proving the dis-

z) eC? ([O, +00); R+) is real function. After making appropriate as-

crete squeezing property of the equation. Then according to Hadamard’s graph
transformation method, the spectral interval condition is proved to be true, there-
fore, the existence of a family of the inertial manifolds for the equation is obtained.

Because an inertial manifold plays a very important role in describing the
long-time behavior of solutions, it is of great significance to the development of
nonlinear science. The relevant research theoretical results are shown in refer-
ences [5]-[19].

On the basis of previous studies, this paper further improves the order of the
strong dissipative term and the rigid term mentioned by Guoguang Lin and
Lingjuan Hu [3], where the coefficient of the rigid term is extended from
M ﬁ|vmu ’ +||V”‘v 2) to M ("V"‘u Z+|va 2) , and g, (u,v),9,(u,v,) are

new nonlinear terms. When constructing the equivalent norm in E, space,

through reasonable assumptions and combined with the Lipschitz property of
the nonlinear term, the family of inertial manifolds satisfying the spectral inter-

val condition is obtained.

2. Preliminaries

The following symbols and assumptions are introduced for the convenience of
statement:
Vo = L2(Q),V,, = H" (Q) N H (Q) Vyp = H™(Q)nHG (Q),

V, = H* (@)n Hé(Q)' Eo = Vo xVo XV, XV,
Ev =V XVie xVo XV, (k =0,1,2,-++,2m)

m+k

The inner product of the L° (Q) space is (u,v):fQu(x)v(x)dx and the

1
norm s uf = Jul,. =(J Ju(x)f" o).
The norm of L°(Q) space is called ||u||p = ||u||Lp(Q).
I is the Lipschitz constant of F eC, (E,,E,), | is the Lipschitz constant

of g;(u,v)(i=12).
Relevant assumptions:

(Hy) %2(1—#;k )=0;
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(H2) %[(/’lNﬂ —Hy )(ﬁ‘\/Wﬂ >L+l

B —4M(s)

is a solution semigroup on Ba-

Definition 2.1 [5] Assuming S =(S(t))
nach space E, =V,

t>0
mak XV XV, XV, , subset g, < E, is said to be a family of

inertial manifolds, if they satisfy the following three properties:

1) u, area finite-dimensional Lipschitz manifold;

2) p is positively invariant, e, S(t)u, < 1 ,t=0;

3) 4, attracts exponentially all orbits of solution , that is, for any xeE,,
there are constants 7 >0,C >0 such that

dist(S(t)x, 44 )<Ce™,t>0.

Definition 2.2 [5] Assuming the operator A: X — X have countable posi-

tive real part eigenvaluesand F e C, (X, X) satisfies the Lipschitz condition:
[F(u)-F), <lelu-v],, uveX.
If the point spectrum of the operator A can be divided into the following two
parts o, and o,, where o, is finite
A, =sup{Rei|ieo,},A, =inf{Rel|ieao,},
X, = span{wj|/1j € ai},(i =12),

and satisfy

A, —A >4l (6)

X=X®X,, (7)

where P :E, — E, and P,:E, » E,, are orthogonal projection. So the op-
erator A is said to satisfy the spectral interval condition.

Lemma 2.1 [5] Assuming eigenvalue {2{ }kzl is non-decreasing sequence,
there is N, e N*, for any N >N,, such that x4 and g, are continuous

adjacent values.

3. The Family of Inertial Manifolds

From the above preparation knowledge, Equations (1)-(5) are equivalent to

U +AU=F(), UeE, (8)
where U =(u,w,v,q), W=U,, =V,
0 -1 0 0
| MO a0 0
0 0 0 -1
0 0 M(s)(-a)" B(-a)"
0
F(U)= fl(X)—gl(Ut,V[) ,

f, (%)= 9, (u,v,)
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m+k

D(A)= {(u,v) eV, ., xV,
xV, xV,,

(u,v)eV, ><V0,<V2m+ku,V2m+kV) eV, xVO}

B =Vama XVi xVon i XV -
In order to determine the eigenvalue of operator A, we must first consider the
graph norm generated by the inner productin E,
_ 2m+k 2m+k 5 k Ky
(U.V), = (M (s)-V¥™*u,v a)+(V w,V b)

9
+(M (S)_V2m+kv,V2m+k6)+<vquvka), )

where U =(u,w,v,q) , V=(ab,c,d) , s=|V’“u
represent the conjugation of a,b,c,d respectively.

Indeed, for U € D(A),
AU,U - _ M s V2m+kW,V2m+kU + M S V2m+kU,V2m+kV_\l
Ex

p 2 I
+||V"‘v|| , a,b,c.d
p

+ﬁ(V2m+kW,V2m+k\Tv)
= —(M (S)V2m+kq,V2m+kv)+(M (S)V2m+kle2m+kq—)
+ ﬂ(VZH‘Hkq, V2m+kq)
= ﬂ("vzrmkW"Z + ||V2m+kq||2 ) >0,
therefore, (AU,U )Ek is a nonnegative real number.

To further determine the eigenvalues of A, we consider the following charac-

teristic equation

AU =AU,U =(u,w,v,q) € E, (10)
then

-w=Au,

M (s)(-A)" u+B(-A)" w=Aw, .

_q :ﬂV, ( )

2

M (s)(=A)" v+ B(-A)" q = Aq.

Substitute the first equation into the second equation, and substitute the third

equation into the fourth equation in (11), thus
22u=2B(-A)"u+M (s)(-A)"u =0,
22u=2B(-A)"u+M (s)(-A)"u =0,
aul _aov
on'|,, on'

(12)
=0,i=012,---,2m-1.

oQ

Take (—A)k u,(—A)k v inner product with the first equation and the second
equation of the above Equations (12) respectively to obtain

R T L L
13
[ sl

|2 +M (s)||V2””kv|2 =0.
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The above Equation (13) are sorted out
7 (9o +vlf ) - (el + o)
(14)
M (s)( [ ulf + o) <o

The above Equation (14) is a quadratic equation of one variable about A4, and
U,,V, areused to replace u,v in the above equation. For any positive integer &;

the above Equation (10) has paired eigenvalues

. BucE - (s) 1,
A= > .

—A)Zm O

0 (—A)ZmJ in V,, xV,. , taking

where , is the eigenvalue of [

2m
Hy =2k "

If g > % M (s), thatis z4 > %m*, then all eigenvalues of operator A are

real numbers, and the corresponding characteristic function have the following

forms
Uy :(uk’_ikiukivk'_ﬂkivk) .
For the convenience of the following description, for any positive integer %,

[P+l =2 vt <o =
oot oy - "
Hy
Lemma 3.1 g, (u,,V,):V,xV, >V, xV,, i=12 is uniformly bounded and
globally Lipschitz continuous.
Proof. for arbitrary (ut,vt),(ﬁ,\Tt) eVixV,, w=u,W=u,q=V,,g=V,,
“gi (U_nz)— (oF (Ut Wi )“vkka

giut (u_t+01(q_ut)’\7t+91(q_vt))(a_ut)

+ Gy, (E*’@(E_ut)’I+‘91(I_Vt))(q_vt)

Vi xVie
<1(jf—w, +[a—d, ).

where 6, €(0,1), | is the Lipschitz constant.

Lemma 3.1 is proved.

4 . .
Theorem 3.1 When g >—-m, there is a large enough N, e N so that
B

VN >N, has
1 . 16l
E[(ﬂnu—ﬂm)(ﬂ—\/ﬂ t# —4M (S)HZWJFL (16)

where | is the Lipschitz constant of g;(u,,Vv,)(i=1,2), then operator A satis-

DOI: 10.4236/jamp.2022.106141 2079 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.106141

G. G. Lin, F. M. Chen

fies the spectral interval condition of Definition 2.2.

4 .
Proof. When g, >2—-m, all eigenvalues of A are positive real numbers, and
k ﬂz

the sequences {lk’ } and {/1[}'(21 are monotonic.

k>1

The following is divided into four steps to prove this theorem.

Step 1 Since {/”tk' }kzl is a non-decreasing sequence, according to Lemma 2.1,
there is N, e N*, for any N >N,, such that x4, and g, are continuous
adjacent values.

Step 2 The existence of Nmakes 4 and g, ,, continuous adjacent values,

so the eigenvalues of A can be decomposed into

o, ={A[1<k <N},

o = {4 A tsk<N <}
The corresponding E, can be decomposed into
EKI:Span{Uk‘M‘ ecrl}, (17)

E,, = Span{Uji,Uk+

A5 60'2}. (18)

In order to prove the spectral interval condition, we will find out the ortho-
gonality of subspaces E,; and E,,.

Further decompose subspace E,, = E. @ E;, where
E. =Span{Uk+ A 602},

ljieaz}.

E, = Span{Uji

Note that E, and E. are finite-dimensional subspaces, Uy € E,, ,
Uy, € Es. Because E, and E; are orthogonal and E, and E. are not
orthogonal, E,, and E,, arenot orthogonal.

Next, the equivalent norm of eigenvalues on E, is specified so that E,; and
E,, areorthogonal.

Under the new graph norm, let E, =E , ®E,.

Let the functions ®:E; >R and ¥:E; - R,

®(U,V)=-2M (s)(V*u,v*a)+28(V*"* T, v*"*a)+ B(V*"u, V" D)
+ B(VTW, VM a)+ 2(V T w, VD)
+(B* =2B8) (V" u, VP F) - 2M (s)(VV, V*T)
+2B(VAT, VA C) + B(VAMY, VIR )+ B(V PG, VETe)
+2(Vn kg, VI )+ (A7 - 28)(VI" Y, VPTHT),

‘I”(U ,V) — ﬂz (v2m+kulvzm+ka)+ 2ﬁ(V2m+ku,Vk5)+ Zﬂ(VkV_\I,Vzmka)

+(8+ﬂZTMj(VkW| VkE) +ﬂ2 (v2m+kvl V2m+k6)

2
+2p(VEmhv,vid ) + 2ﬁ(vkq,va*kc)+[8+ﬂT“lJ(vkq,ka),
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where U =(u,w,v,q),V =(a,b,c,d)eE, or Eg.
For U =(u,w,v,q) € E, then
®(U,U)
=—2M (5)(V*u,V*T)+28(V*"* T, V" u )+ B(V*"u, VW)
+ﬂ(V —2m- kW VZm )+ (V —2m- kW e —2m-k = ) (ﬂz Zﬂ)(V2m+ku V2m+kU)
—2M (s)(V*V, V¥T)+ 28( V™7, V2™ ) 4 B(VPTY, VTG
+ﬁ(V —2m- kq—,VZm >+2(V —2m- quv —2m—k = ) ( 2 zﬂ)(V2m+kV,V2m+kv)

>-2M (s)("Vku"2 +||Vkv||2)+ﬂ2 (|V2m*k +|V2m*kv 2)
SUME R
_Zﬂ( |V2m+k ||V —2m- kW||+/.Ll |V2m+k ||V —2m- kq”]

2 2
V2m+ku|| +|V2m+kv|| )

>-2m (s)( |Vl + v )+ (2 [ﬁz S B“

=2 (9|7l o)+ o vy

(2w ) o | )

2

for any 4 having %yk >2M(s), then ®(U,U)=0, YU =(u,w,v,q)eE,

v2m ku" +|

thatis, ® is positive definite.
Similarly, U =(u,w,v,q) e E;
T(U,U)zﬂz (VZm +k V2m+k )+2,B(V2m+ku \V4 W)+2ﬂ(V W V2m+k )

+ (8+ﬂ7‘ﬁ](vkw, Vim)+ B (VI VAT
+2B(V*" Vi) + Zﬁ(qu_,Vzm*kv)+(8+ﬂz—’%](vkq,vkq_)
2

VoL foff +[of

2 ([l o +J5 ol ),

Z%Z(HVZWHI(U 2

+ ||V2m+kv

then W(U,U)>0,vU =(u,w,v,q) e Eg, thatis, ¥ is positive definite.

Then redefine the equivalent norm on E,

((u,v))Ek =®(PU,RV)+¥(PU,RV), (19)

where P, and P; are projections of E, > E, and E, — E; respectively.

For convenience, Equation (19) is abbreviated as

(UV)), =oUV)+PUY).

Based on the redefinition of the equivalent norm in E,, to prove that E,_
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and E, are orthogonal, we only need to prove that E, and E; are ortho-
gonal.

Through Equation (19), the following equation holds
<<UJ_'U}—>>Ek - (D(UJ_’U:) = 0’(U]_ € Ekl’U}— € Ec)

The main calculation process is as follows
®(U},U7)==2M (s)(V*u;, v¥up)+28(V2" U, Vo) )
+ ,B(Vzmuj ,—A;V’Z""kﬂ) + ,B(—/lj’V’z’“’kE, v, )
+2(=A; V" U, ATV )+ (B2 = 28) (VAU V)
—2M (s)(V*v;, Viv) )+ 28(V2m v, vy )
+ B(VP™V,, =]V Y B2V VY )
# 2= VIR AV ) (B2 2) (VMY V)

M) v ) (e <)

(2425 )l w [ v i) (20)
v2(2 %;)("V’Z""kuj [ +[v 2y, ||2)

=—2M (s)+ B’ i —,B(ij+ +/1;)+2(/11+ "%‘)/ui’

where U; e E,,,U; €E_.
Through Equation (14), we can get
AL+ A7 = Bu A2 =M (s) g .
So

(U} U} )=-2M () + B~ B(4] + 77 )+2(2] -4 )= =o0.

Hy

Thatis, E, and E; areorthogonal, further E, and E, are orthogonal.

Step 3 After the Step 2, E, =E,, ®E,, has been established. Now we esti-
mate the Lipschitz constant |. of 7 By lemma 3.1,
g; (U, Vv ) 1V xV, >V, xV,,(i=12) is uniformly bounded and globally Lip-
schitz continuous, and F (U ) = (0, f, (X) -0, (ut A ) ,0, T, (X) -0, (ut WV ))T .

Let R:E, > E, and P,:E, - E,, beorthogonal projections, if

U=(uwv,q)eE, U, =(u,w,v,0q)ePU,U, =(u,,w,,v,,q,)e PU,
then
Pu=u,PRw=w,Rv=v,Rq=gq,.
So
Jull;, =@(RU.RU)+¥(PU,PU)

S (s)](”VkPlu"z e
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sl [l +lotea | e
S0 (IR
L2 )[ivof oo
SO [ !

Given U =(u,w,v,q),W =(T,W,V,7) € E, from lemma 3.1

[FU)-FW,
:“gl(ut'vt)_ 9 (E’\Z)kavk +“92 (U V) =9, (q'q)

L/k XV

< al(jw-al, +Ja-dl, )
2l
-],
ot 2M (s)

SO

| < 2l 41
\/ﬂzﬂl o ( J/m 4M (s)

(22)

Step 4 Prove Equation (6) holds in Definition 2.2.
According to the eigenvalue of A decomposition, letting A, =1 ,A, = 4,

N+1°
then

1
Ay =Ay = A= =§(m—ua J+5 (VRN —JR(N+D)),  23)

where \JR(N) = B°uf —4M ()

Thereis N, e N*,forany N >N,, having
JRIN) = R(N +2) +/821, —4M (5) (pt — 1)

= ﬂZM_A'M (S){£ #L\l-l\)/l(s)_ﬂ’\‘}_[ %_#NHJJ (24)

=B m—4M (s)(R(N)-R (N +1)),

R(N)
lettlng Rl( ) M—4NI() —Hy -
Because NILer R ( ) = NIL% #A’j\i() —uy =0,

Jim (JRON)—R(N+1) + B2 =M () (tiys — 452 )) =0 29)

According to the assumptions (16) of Theorem 3.1 and (22)-(25), we can get
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A, — A, z%[(ﬂNﬂ_yN )(ﬂ_ /ﬂZM—4M (s))}—lzﬁil\ﬂ(s)zmp, (26)

so operator A satisfies the spectral interval condition.

Theorem 3.1 is proved.

The equivalent norm on E, is obtained by using the Hadamard graph
transformation method. On this basis, it is proved that E = E, ® E,,, where
P:E,—>E, and P,:E, »> E,, areorthogonal projections. Since
g; (U, v ) 1V xV, >V, xV,,(i=12) is uniformly bounded and globally Lip-
schitz continuous, the Lipschitz constant |. of F can be further estimated. Fi-
nally, Formula (26) holds and then operator A satisfies the spectral interval con-
dition. Next, we will further obtain that the initial boundary value problems
(1)-(5) have a family of inertial manifolds.

Theorem 3.2 If F eC,(E, E,) satisfies Lipschitz condition and operator 4
satisfies spectral interval condition , then the initial boundary value problem

(1)-(5) has a family of inertial manifolds g, € E,,
= graph(T) e E, = {g+F(g) ce Ekl} ,

where E, and E, are defined in (17)-(18), and TI':E, — E,, is Lipschitz

continuous function.
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