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Abstract 
In machines learning problems, Support Vector Machine is a method of clas-
sification. For non-linearly separable data, kernel functions are a basic ingre-
dient in the SVM technic. In this paper, we briefly recall some useful results 
on decomposition of RKHS. Based on orthogonal polynomial theory and 
Mercer theorem, we construct the high power Legendre polynomial kernel on 

the cube [ ]1,1 d− . Following presentation of the theoretical background of 

SVM, we evaluate the performance of this kernel on some illustrative exam-
ples in comparison with Rbf, linear and polynomial kernels. 
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1. Introduction 

The approach of reproducing kernel function has many applications in proba-
bility theory, in statistics and recently in machine learning (see [1] [2] [3]). They 
have been applied in many fields and domains of life sciences such as pattern 
recognition, biology, medical diagnosis, chemistry and bio-informatics. 

It is well-known from many years that data sets can be modeled by a family of 
points d⊂   and similarity between them is given by an inner product on 

d . The classification problem consists of separating these points into classes 
with respect to given properties. In the simplest situation, the points are linearly 
separable in the sense that there exists an hyperplane sH  separating the two 
classes. 

Support vector machines (SVMs) have become a very powerful tool in ma-
chine learning in particular in classification problems and regression ([1] [4] [5]). 
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In classification problem, we can consider only two-classes of data, so we speak 
about a binary classification. Also we can rencounter more than two classes of 
data. This is called a multi-task classification problem. In our cases, we focus on 
binary classification and the application of kernel functions in SVM classifica-
tion. 

In simplest situations, the linear SVM technic allows to find the optimal 
hyperplane separating points in two classes. Unfortunately, in concrete examples, 
these points are not linearly separable. Then, one can traduce similarity of points 
in term of positive definite kernel function k on  . This leads to invent a new 
technic named non-linear SVM which combines linear SVM and kernel tools. 

Mathematically, this new approach of non-linear SVM is related to the Kol-
mogorov representation ( ),Φ , where   represents the feature space and 
Φ  is the feature map (see [1]). Since separation expresses a degree of similarity 
between points in the same class, Vapnick used the kernel approach to translate 
the problem from initial space d  to the feature space. The transfer between 
initial space and the feature space is made under the feature map and similarities 
are expressed by the inner product in the feature space which is given by a kernel 
k. The crucial idea of the kernel function methods is that non-linearly separable 
points can be transformed to linearly separable points in the feature space guard-
ing similarities which is expressed by  

( ) ( ) ( ), , .i j i jx x k x xΦ Φ =  

Furthermore, the solution of the classification problem using non-linear SVM is 
given by the decision function which depends only on the kernel and support 
vectors ( ix S∈ ). Precisely, it takes the following form  

 ( ) ( ), .
i

i i
x S

F x sgn b k x xα
∈

 
= + 

 
∑  

Since the choice of the kernel function is not canonic, the first problem of this 
approach is how to choose a suitable kernel function for such given data points. 
The second problem is that the feature space has an infinite dimensional and 
this causes a technical problem in modeling computational algorithm for such a 
solution. This problem is also related to the feature map Φ  which is in general 
unknown. In our case, we use the Mercer decomposition theorem in order to 
obtain a type polynomial kernel having a good separation property. This means 
that infinite dimensional feature space can be approximated by finite dimen-
sional feature space. This reduces the dimensionality of new data in feature 
space. 

The paper is organized as follows: In Section 2, we recall some known results 
on Reproducing Kernel Hilbert Space (RKHS in what follow), in particular, the 
Mercer decomposition theorem 2.2 and the high power kernel theorem 2.3. Sec-
tion 3 is devoted to the main result in which we introduce the one-dimensional 
Legendre polynomial kernel nK  and we give its canonical decomposition in 
term of Legendre orthogonal polynomials (see Theorem 3.1). Next, we deduce 
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the high power Legendre polynomial kernel d
n nK=K  defined on the cube 

[ ]1,1 d−  for which the feature space d
n n

⊗=H  is the tensor product Hilbert 
space of the RKHS associated with nK . In Section 4, we recall the theoretical 
foundation of linear and non-linear SVMs. In Section 4, we give some illustra-
tive examples in order to evaluate the performance of the Legendre polynomial 
kernel in comparison with some predefined kernels in Python. 

2. Preliminaries 

In this section, we begin by describing the RHKS and its associated kernel. Then 
we give the decomposition of a given positive definite kernel on a measure space 
  (see Theorem 2.2).  

Definition 1. (Positive definite kernel). 
Let | XX  be a nonempty set. A symmetric function :k × →    is called 

positive definite kernel if,  

 ( ) 1 1
1 1

, 0 1, , , , , ,
n n

i j i j n n
i j

a a k x x n a a x x
= =

≥ ∀ ≥ ∈ ∈∑∑           (2.1) 

and for mutually distinct ix , the equality holds only when all the ia  are zero.  
Clearly that every inner product is a positive definite function. Moreover if 
  is any Hilbert space and   a nonempty set and :φ →  , then the 
function ( ) ( ) ( ), : ,h x y x yφ φ=  is a positive definite. 

Now let   be a Hilbert space of functions mapping from some non-empty 
set   to  , i.e.,   is considered as a subset of  . We write the inner 
product on   as  

, , ,f g f g ∈  

and the associated norm will be denoted by  
1
2

2 , , .f f f f= ∈  

We may alternatively write the function f as ( )f ⋅ , to indicate it takes an argu-
ment in  . 

Definition 2. (Reproducing kernel Hilbert space). 
Let ( ), ,⋅ ⋅  be a Hilbert space of  -valued functions defined on a non- 

empty set  . We say that   is a Reproducing Kernel Hilbert Space if there 
exists a kernel function :k × →    such that the following properties are 
satisfied:  

1) x∀ ∈ , ( ): .,xk k x= ∈ ,  
2) x∀ ∈ , f∀ ∈ , ( ) ,xf x k f=  (the reproducing property).  
Remark 1. From the reproducing property, we note that  

 ( ) ( ) ( ) ( ), , ., , ., , , .y x yk x y k x k k k x k y x y= = = ∈     (2.2) 

Thus necessarily, k is positive definite. Note also that reproducing kernel k asso-
ciated with  , it is unique.  

Theorem 2.1. (Moore-Aronszajn [6]) 
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Let :k × →    be a positive definite kernel. There is a unique RKHS 
⊂   with reproducing kernel k. Moreover, if space  

 { }0 x x
span k

∈
 =                         (2.3) 

is endowed with the inner product  

 ( )
0 1 1

, , ,
n m

i j i j
i j

f g k x yα β
= =

= ∑∑
                 (2.4) 

where 1 i

n
i xif kα

=
= ∑  and 1 j

m
j yjg kβ

=
= ∑ , then   is the completion of 0  

w.r.t the inner product (4).  
Now let us consider a compact metric space   and a finite Borel measure 

ν  on it. We consider a positive definite continuous kernel on  . Let kS  be 
the linear map  

( ) ( )2: ; ,kS L ν →    

( )( ) ( ) ( ) ( ), dkS f x k x y f y yν= ∫  

and k k kT I S=  , where ( ):kI   ↪ ( )2 ;L ν . Then we have the following re-
sults:  

Theorem 2.2. (Mercer’s theorem [6])  
1) kT  is a compact self-adjoint positive definite from ( )2 ;L ν  to itself. It is 

called the integral operator corresponding to the kernel k.  
2) There exists an ortho-normal system { }j j J

e
∈

  of eigenvectors of kT  with 

eigenvalues { }j j J
λ

∈
, where J is at most countable set of indices, corresponding 

to the strictly positive eigenvalues of kT  such that  

 ( ) ( )2, , , .k j j j
j J

T f e f e f Lλ ν
∈

= ∈∑                (2.5) 

3) For all ,x y∈   

 ( ) ( ) ( ), ,j j j
j J

k x y e x e yλ
∈

= ∑                  (2.6) 

where ( )1
j j k je S eλ−= ∈    and where the convergence is uniform on ×  , 

and absolute for each pair ( ),x y ∈ ×  .  
4) The Hilbert space  

( )2: j
j j

j J j

a
f a e J

λ∈

    = = ∈     
∑   

endowed with the inner product  

 , j j
j j j j

j J j J j J j

a b
a e b e

λ∈ ∈ ∈

=∑ ∑ ∑


                (2.7) 

is the RKHS associated with k.  
Theorem 2.3. (Power of kernel [4] [7]) 
Let k be a kernel on  . Then  
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( ) ( ) ( ) ( )1 1
1

, : , , , , , , ,
d

d
d i i d d

i
K x y k x y x x x y y y

=

= = = ∈∏     

is a kernel on d . In addition, there is an isometric isomorphism between K  
and the Hilbert space tensor product d

k
⊗ .  

Example 1. Here we give some most known kernels used in SVM.  
1) The linear kernel: ( ), ,link x y x y c= + , 0c ≥ .  
2) The polynomial kernel: ( ) ( ), ,

m
polyk x y a x y b= + , 0a > , 0b ≥ , 1m ≥ .  

3) The exponential kernel: ( ) ,, e x y
expk x y σ= , 0σ > .  

4) The radial basis function (Rbf): ( )
2

, e x y
rbfk x y γ− −= , 0γ > . It is also 

called the Guassian kernel.  
5) The sigmoid kernel: ( ) ( ), tanh ,sigmk x y x y c= + , 0c ≥ .  

3. Legendre Polynomial Kernel and High Power Legendre  
Polynomial Kernel 

Let us consider the family of Legendre polynomials { } 0n n
L

≥
 defined by the fol-

lowing recurrence relation (see [8])  

 
( ) ( )
( ) ( ) ( )

0 1

1 1

1, ,

, 1,n n n n

L x L x x

L x xL x w L x n+ −

= =


= − ≥
              (3.1) 

where  

 
( )( )

2

, 1.
2 1 2 1n

nw n
n n

= ≥
− +

                  (3.2) 

It well-known [8] that they are orthogonal w.r.t the inner product  

 ( ) ( )1

1
, : d .f g f x g x x

−
= ∫  

Moreover we have  

 2
1 .n nL w w=                        (3.3) 

In order to apply the Mercer theorem in SVM, we consider the Legendre poly-
nomial kernel defined on [ ]21,1−  by  

 ( ) ( ) ( )
0

, .
n

n k k
k

K x y L x L y
=

= ∑                  (3.4) 

Theorem 3.1. Let  

 
0

,
n

n k k k
k

f Lα α
=

 = = ∈ 
 

∑                  (3.5) 

be the linear space generated by this family { }0k k n
L

≤ ≤
. Then  

1) n  is a Hilbert space endowed with the inner product  

 
0 0 0

,
n n n

i i j j j j
i j j

L Lα β α β
= = =

=∑ ∑ ∑                (3.6) 

2) The sequence { }0k k n
L

≤ ≤
 is an orthonormal basis of n .  

3) n  is a RKHS with reproducing kernel nK .  
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4) The feature map associated with nK  is  

[ ] ( ) ( )
0

: 1,1 , .
n

n n j j
j

t t L t Lφ φ
=

− → = ∑  

Proof. First: Clearly that (3.6) defines a inner product on n , for which n  
becomes an Hilbert space since it has a finite dimension. 

Second: Form the definition of the inner product (3.6), clearly that { }0k k n
L

≤ ≤
 

is an orthonormal system of n  whose cardinality coincides with the dimen-
sion of n . Thus it is an orthonormal basis of n . 

Third: Let us consider the operator nS  defined on [ ]( )2: 1,1L L= −  by  

 ( ) ( ) [ ]( )1

1
: , d 1,1 .n nS f K x y f y y

−
∈ −∫   

Setting n n nT I S=  , where nI  is the canonic injection of [ ]( )1,1−  into L .  
1) nK  is positive definite. In fact  

 

( ) ( ) ( )

( ) ( )

( )

1 , 1 , 0

0 1 ,

2

0 1

,

0.

n

i j n i j i j k i k j
i j m i j m k

n

i j k i k j
k i j m

n m

i k i
k i

a a K x x a a L x L x

a a L x L x

a L x

≤ ≤ ≤ ≤ =

= ≤ ≤

= =

=

=

 = ≥ 
 

∑ ∑ ∑

∑ ∑

∑ ∑

 

2) nT  is symmetric since nK  is symmetric, so by Mercer theorem 2.2, nT  
is self-adjoint compact and positive definite. 

3) For all 0,1, ,j n=  , we have  

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

1

1

1

1
0

1

1
0

1

1
0

2
,

0
2

, d

d

d

d

.

n j n j

n

k k j
k

n

k k j
k

n

k k j
k

n

k j k j
k

j j

T L x K x y L y y

L x L y L y y

L x L y L y y

L x L y L y y

L x L

L L x

δ

−

−
=

−
=

−
=

=

=

 =  
 

=

=

=

=

∫

∑∫

∑ ∫

∑ ∫

∑

 

So the eigenvectors of nT  are exactly the polynomials jL  and the corres-
ponding eigenvalues are 

2
j jLλ = . Thus { }, 0jL j n≤ ≤  is an orthonormal 

basis of n  formed by eigenvectors of nT . 
From Mercer theorem 2.2, The RKHS associated with nK  is given by  

 2

0
,

n

n
j

K j j
j j

f L l
α

α
λ=

  = = ∈ 
  

∑  

Since 2j

j

l
α

λ
∈  for all sequence jα , the space 

nK  coincides with n  given 
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by (3.5). Thus n  is the RKHS associated with the reproducing kernel nK .  

The reproducing property is immediate from Mercer theorem but also it can 
be checked by hand using (3.6)  

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

, , , .
n n n

n k k j j k k
k j k

K x f L x L L L x f xα α
= = =

⋅ ⋅ = ⋅ ⋅ = =∑ ∑ ∑  

Forth: The feature map is given by 
Let nφ  given by  

[ ] ( ) ( ) ( )
0

: 1,1 , .
n

n n n j j
i

t t L t Lφ φ
=

− → = ⋅∑  

So from (3.6), we get  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

, , , .
n n n

n n i i j j j j n
i j j

s t L s L L t L L s L t K s tφ φ
= = =

= = =∑ ∑ ∑   □ 

Now let us consider the set [ ]1,1 d= − . Define the high power Legendre po-
lynomial kernel function :n × →  K  as follows:  

 ( ) ( ) ( ) ( ) ( ) ( )1 1
01 1

, , , , , , , , .
d d n

n n i i k i k i d d
ki i

x y K x y L x L y x x x y y y
== =

= = = =∑∏ ∏  K  (3.7) 

Let us introduce 
-times

d
n n n n

d

⊗= = ⊗ ⊗



  H  called the d--times tensor product 
of n . 

It’s known that nH  is a real Hilbert space endowed with the inner product  

 1 1
1

, , , , , .
n

d

i i d d n i i n
i

f g f g f f f g g g f g
=

= = ⊗ ⊗ = ⊗ ⊗ ∈ ∈∏   H H (3.8) 

For ( ),x y ∈ ×  , we have  

 ( ) ( ) ( ) ( ) ( ) ( )
1 11 1

, , , | .
n

d d d d

n n i i n i n i n i n i
i ii i

x y K x y x y x yφ φ φ φ
= == =

= = =∏ ∏ ⊗ ⊗
H

K (3.9) 

Define now the function :n nΦ → H  given by  

 ( ) ( ) ( )1
1

, , , .
d

n n i d
i

x x x x xφ
=

Φ = =⊗                (3.10) 

by substituting (3.10) in (3.9), we get  

 ( ) ( ) ( ), .
n

n n nx y x y= Φ Φ
H

K                (3.11) 

Hence nK  is a kernel, with the feature map nΦ  and feature space nH .  
Now, applying Theorem 2.3 to the kernel nK , we deduce the following result.  
Corollary 3.1.1. The space nH  is a RKHS with corresponding kernel nK .  

4. Application of Kernels in Classification Problem  

The binary classifications means that given a date points ( )1
d

i i L
x

≤ ≤
= ⊂   

which are belonging to two classes. One is denoted Class(1), the other is de-
noted Class(−1). To each point ix  we associate 1iy = ±  indicating to which 
class ix  belongs. The points ( )1i i L

x
≤ ≤

 are called training points. The idea of 
SVM is to find an hyperplane S  separating the two classes and construct a 
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decision function f from which a new point can be classified (x belongs to Class(1) 
or x belongs to Class(−1)).  

4.1. Support Vector Machine: Linearly Separable Classification 

When the training samples ( )1
d

i i L
x

≤ ≤
= ⊂   are linearly separable, we speak 

about a linear classification (i.e., there exists an hyperplane separating the two 
classes), the idea of SVM is the following: 

Let us consider the set of training points, ( ){ }1
,i i i L

x y
≤ ≤

, where  
( ) ( )( )1 , , d d

i i ix x x= ∈   and the corresponding labels { }1,1iy ∈ − . The first step 
is to find an hyperplane S  in the space d  separating the two classes. The 
second step is to construct the decision function f. 

Support Vectors are the examples closest to the separating hyperplane S  
and the aim of SVM is to orientate this hyperplane in such a way as to be as far 
as possible from the closest members of both classes. For example in 2-dimen- 
sional space this means that we can draw a line on a graph of ix  v.s jx  sepa-
rating the two classes. In high dimensional space ( 2d > ), the line will be re-
placed by an affine hyperplane S , i.e., dim 1S d= −  (see Figure 1).  

Step.1. 
Recall that any affine hyperplane is described by the equation  

0,w x b⋅ + =  

where “ ⋅ ” is the dot product in d  and w is normal to the hyperplane. So we 
have to determinate the appropriate values of w and b for the hyperplane S . If 
we now just consider the points that lie closest to the separating hyperplane, i.e., 
the Support Vectors (shown in circles in the diagram), then the two planes 1  
and 1−  that these points lie on can be described by:  
 

 
Figure 1. Separating hyperplane and marginal distance. 
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11 forix w b⋅ + =                      (4.1) 

 11 forix w b −⋅ + = −                     (4.2) 

Referring to Figure 1, we define 1δ  as being the distance from 1  to the 
hyperplane S  and 2δ  from 1−  to it. The hyperplane’s equidistance from 

1  and 1−  means that 1 2δ δ δ= = . The quantity δ  is known as the SVM’s 
margin. In order to orientate the hyperplane to be as far from the Support Vec-
tors as possible, we need to maximize this margin. It is known from [1] that this 
margin is equal to  

1 .
w

δ =  

Now the problem is to find w and b such that the marginal distance δ  is 
maximal and for all 1, ,i L= 

,  

 1 11 for and 1 for .i iw x b x w x b x −⋅ + ≥ ∈ ⋅ + ≤ − ∈        (4.3) 

This is equivalent to the optimization problem under constraint  

 ( )21min S.T 1 0 1, , ,
2 i iw y w x b i L  ⋅ + − ≥ ∀ = 

 
      (4.4) 

which is in fact a quadratic programming optimization (Q.P-optimization). Us-
ing the Lagrange multipliers ( )1, , Lλ λ λ=  , where 0iλ ≥  1, ,i L∀ = 

, the 
problem (4.4) will be equivalent to  

 T

1

1max S.T 0, 0,
2

L

i i i i
i

H y
λ

λ λ λ λ λ
=

 − ≥ =  
∑ ∑            (4.5) 

where  

( ) ( ), 1 , 1 ,
.i j i j i ji j L i j L

H H y y x x
≤ ≤ ≤ ≤

= = ⋅  

This is a convex quadratic optimization problem, and we run a QP--solver 
which will return λ . Thus we can deduce w and b which are given by [1]  

 
1

1; ,
L

i i i s k k k s
i s S k SS

w y x b y y x x
N

λ λ
= ∈ ∈

 = = − ⋅ 
 

∑ ∑ ∑           (4.6) 

where S the set of the support vectors sx  (i.e., the vectors of indices i corres-
ponding to 0iλ > ) and SN  is the number of support vectors. 

Step.2. 
The second step is to create the decision function f which determines to which 

class a new point belongs. From [1], the decision function is given by  

 ( ) ( )( ) { }1 1 .i if x sgn y w x b= ⋅ + − ∈ ±               (4.7) 

Thus for a new data x, ( ) 1f x =  means x belongs to the first class and ( ) 1f x = −  
means that x belongs to the second class. 

In practise, in order to use an SVM to solve a linearly separable, binary classi-
fication problem we need to:  

1) Create the matrix ( ) ( ),i j LH H M= ∈  , where ,i j i j i jH y y x x= ⋅ .  
2) Find λ  so that  
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 T

1

1
2

L

i
i

Hλ λ λ
=

−∑  

is maximized, subject to the constraints ( 0iλ ≥  and i∀ , 1 0L
i ii yλ

=
=∑ ). 

This is can be done using a QP solver.  
3) Calculate 1

L
i i iiw y xλ

=
= ∑ .  

4) Determine the set of Support Vectors S by finding the indices such that 
0iλ > .  

5) Calculate ( )1
s k k k ss S k S

S

b y y x x
N

λ
∈ ∈

= − ⋅∑ ∑ .  

6) Each new point x′  is classified by evaluating ( ) ( )f x sgn w x b′ ′= ⋅ + .  

4.2. SVM for Data That Is Not Fully Linearly Separable 

In order to extend the SVM methodology to handle data that is not fully linearly 
separable, we relax the constraints (4.3) slightly to allow for misclassified points. 
This is done by introducing a positive slack variable 0iξ ≥ , 1, ,i L= 

  
 1 for 1,i i iw x b yξ⋅ + ≥ − = +  

1 for 1.i i iw x b yξ⋅ + ≤ − + = −  

which can be combined into:  

( ) 1 0 1, , .i i iy w x b i Lξ⋅ + − + ≥ ∀ =                (4.8) 

In this soft margin SVM, data points on the incorrect side of the margin boun-
dary have a penalty that increases with the distance from it. As we are trying to 
reduce the number of misclassifications, a sensible way to adapt our objective 
function (4.8) from previously, is to find  

 ( )2

1

1min S.T 1 0 1, ,
2

L

i i i i
i

w C y w x b i Lξ ξ
=

 + ⋅ + − + ≥ ∀ = 
 

∑   (4.9) 

where the parameter C controls the trade-off between the slack variable penalty 
and the size of the margin. 

Similarly to what have been done in the previous case, the Lagrange method 
leads to the following convex quadratic optimization problem  

 T

1

1max S.T 0 , 0.
2

L

i i i i
i

H C y
λ

λ λ λ λ λ
=

 − ≤ ≤ =  
∑ ∑       (4.10) 

We run a QP-solver which will return λ . The values of w and b are calculated 
in the same way as (4.6), though in this instance the set of Support Vectors used 
to calculate b is determined by finding the indices i for which 0 i Cλ< < . 

In practise, we need to:  
1) Create the matrix H, where ,i j i j i jH y y x x= ⋅ .  
2) Select a suitable value for the parameter C which determines how signifi-

cantly misclassifications should be treated.  
3) Find λ  satisfying  

T

1 1

1 is maximized S.T 0 and 0.
2

L L

i i i i
i i

H C i yλ λ λ λ λ
= =

− ≤ ≤ ∀ =∑ ∑  
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This is done using a QP-solver.  
4) Calculate 1

L
i i iiw y xλ

=
= ∑ .  

5) Determine the set of Support Vectors S by finding the indices such that 
0 i Cλ< < .  

6) Calculate ( )1
s k k k ss S k S

S

b y y x x
N

λ
∈ ∈

= − ⋅∑ ∑ .  

7) Each new point x′  is classified by evaluating  

 ( ) ( )
1

.
L

i i i
i

f x sgn w x b sgn y x x bλ
=

  ′ ′ ′= ⋅ + = ⋅ +  
  
∑  

4.3. Non-Linear SVM 

In the case when the data points are not linearly separable, i.e., there is no hyper-
plane separating data in two classes, we have to insert some modification on the 
data in order to obtain a linearly separable points. This is based on the kernel 
functions. It is worth noting that in the case of linearly separable data, the deci-
sion function requires only the dot product of the data points ix  and the input 
vector x with each ix . In fact, when applying the SVM technic to linearly se-
parable data we have started by creating a matrix H and the scalar b from the dot 
product of our input variables  

 ,
1; .i j i j i j s k k k s

s S k SS

H y y x x b y y x x
N

λ
∈ ∈

 = ⋅ = − ⋅ 
 

∑ ∑  

This is an important constatation for the Kernel Trick. In fact the dot product 
will be replaced by such a kernel which also a positive definite function. The idea 
is based on the choice of such kernel function k and the trick is to maps the data 
into a high-dimensional feature space   via a transformation φ  related to k, 
in such way that the transformed data are linearly separable. φ  is called feature 
map :φ →  . When this hyperplane is back into the original space it de-
scribes a surface. 

Similarly to the previous section, we adopt the same procedure of separation 
at the level of the feature space  . This leads to the following steps.  

1) Choose a kernel function k.  
2) Create the matrix H, where ( ), ,i j i j i jH y y k x x= .  
3) Choose how significantly misclassifications should be treated, by selecting a 

suitable value for the parameter C.  
4) Determine λ  so that  

 T

1

1
2

L

i
i

Hλ λ λ
=

−∑  

is maximal under the constraint 0 i Cλ≤ ≤  i∀  and 1 0L
i ii yλ

=
=∑ . 

This is can be done by using a QP-solver.  
5) Determine the set of Support Vectors S by finding the indices such that 

0 i Cλ< < .  

6) Calculate ( )( )1 ,s i i i ss S i S
S

b y y k x x
N

λ
∈ ∈

= −∑ ∑ .  
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7) Each new point x′  is classified by evaluating  

 ( ) ( ) ( )
1

, .
L

i i i
i

f x sgn w x b sgn y k x x bλ
=

  ′ ′ ′= ⋅ + = +  
  
∑  

Note that in general, the feature map φ  is unknown so w is also unknown. 
But we don’t need it! We need only the values of the kernel at the training points 
(i.e., ( ),i jk x x  for all ,i j ) to know b, and ( ),ik x x′  to determine the values of 
the decision function f at the input vector x′ . 

5. Numerical Simulations  

Dataset of female patients with minimum twenty one year age of Pima Indian 
population has been taken from UCI machine learning repository. This dataset 
is originally owned by the National institute of diabetes and digestive and kidney 
diseases. In this dataset, there are total 768 instances classified into two classes: 
diabetic and non diabetic with eight different risk factors: Pregnancies, Glucose, 
Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function and 
Age. To diagnose diabetes for Pima Indian population, performance of all ker-
nels is evaluated upon parameters like Accuracy, precision, recall score, F1 score 
and execution time. 

Before giving experiment results, we would like to recall some characteristics 
of the confusion matrix (Table 1) and related metric evaluation.  

5.1. Terminology and Derivations from a Confusion Matrix 

Table 1. Confusion Matrix. 

Total population (Tp) PP PN 

RP TP FN 

RN FP TN 

 
where: 
− (TP) is the number of True Positive cases (real positive cases and detected 

positive), 
− (TN) is the number of True Negative cases (real negative cases and detected 

negative), 
− (FP) is the number of False Positive cases (real negative cases and detected 

positive), 
− (FN) is the number of False Negative cases (real positive cases and detected 

negative), 
− (PP) is the number of Predicted Positive cases PP TP FP= + , 
− (PN) is the number of Predicted Negative cases PN FN TN= + , 
− (RP) is the number of Real Positive cases RP TP FN= + , 
− (RN) is the number of Real Negative RN FP TN= + ,  
− The Total Population is given by  

PP PN RP RN.= + = +Tp  
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These are some metrics used in order to compare performance of Legendre po-
lynomial kernel with linear, rbf and polynomial kernels. 
− Precision (or positive predictive value PPV) has been used to determine clas-

sifier’s ability that provides correct positive predictions of diabetes.  
TPPPV .

TP FP
=

+
 

− Recall score (or true positive rate or sensitivity) is used in our work to find 
the proportion of actual positive cases of diabetes correctly identified by the 
classifier used.  

TP TPTPR .
RP TP FN

= =
+

 

− Precision and recall score provide F1 score, so this score takes into account of 
both. It is the harmonic mean of precision and sensitivity:  

1
2PPV TPRF .
PPV TPR

×
=

+
 

− Accuracy (ACC) is the ratio of true positives and true negatives to all positive 
and negative observations. In other words, accuracy tells us how often we can 
expect our machine learning model will correctly predict an outcome out of 
the total number of times it made predictions. 

TP TN TP TNACC .
RP RN TP TN FP FN

+ +
= =

+ + + +
  

5.2. Numerical Results 

Since Legendre polynomial kernel is defined on [ ]1,1 d− , a scaling procedure is 
needed in order to make data in [ ]1,1− . For this, we suggest the following trans-  

formation ( )
( ) ( )2

, 1, , , 1, ,
j

i j jj
i

j j

x M m
z j d i L

M m

− +
= = =

−
  , where  

( ) ( )
1 1max ; min .j j

j i L i j i L iM x m x≤ ≤ ≤ ≤= =  

The confusion matrices corresponding to each kernels mentioned above are giv-
en in Figures 2-5, where the test size is 0.05 and the penalty coefficient C = 0.01. 

 

 
Figure 2. Polynomial Legendre kernel. 
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Figure 3. Liner kernel. 

 

 
Figure 4. Rbf kernel.  

 

 
Figure 5. Polynomial kernel. 

 
In order to show the powerful separation properties of the kernel defined by 

(3.1), our numerical simulations were carried out on the diabetes detection 
model mentioned above. In this example we apply SVM with different kernels in 
Pima Indian diabetes dataset in order to compare the performance of the Le-
gendre polynomial kernel with linear, rbf, polynomial kernels with respect to 
their Accuracy, Precision, Recall score, F1 score and Execution time (see Table 2).  
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Table 2. Numerical results. 

Kernel Execution time Accuracy Precision Recall F1 score Parameters 

Linear 12.86 0.8831 0.9107 0.9273 0.9189 - 

Rbf 5.92 0.9221 0.9636 0.9298 0.9464 0.01γ =  

Polynomial 4.68 0.9221 0.9259 0.9615 0.9434 20N =  

Legendre 
polynomial 

241.05 0.9740 0.9818 0.9818 0.9818 20N =  

 
The programs were implemented in Python.3.7 a Windows 7 computer with 3G 
memory. The test size is equal to 0.2 and the penalty is taken to be C = 0.001. 

5.3. Conclusion 

Form the comparative table above, it is clear that the polynomial Legendre ker-
nel have a good separation property with a good precision and accuracy w.r.t the 
classical predefined kernel in Python. Essentially, we have shown that it is not 
necessary to have an RKHS with an infinite dimension in order to separate by an 
hyperplane all dataset in the feature space. In fact we can obtain a good classifi-
cation with non big degree 20N = . The more N increases, the more we obtain 
a better separation. The only disadvantage is the time required to fit the model 
with the polynomial Legendre kernel. The idea used here can be generalized with 
arbitrary sequence of orthogonal polynomials in order to get new kernel func-
tions. The performance of separation property depends on the polynomials se-
quence and it should be tested on some examples of dataset. 
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