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Abstract 
The canard explosion phenomenon in a predator-prey model with Michae-
lis-Menten functional response is analyzed in this paper by employing the 
geometric singular perturbation theory. First, some turning points, such as, 
fold point, transcritical point, pitchfork point, canard point, are identified; 
then Hopf bifurcation, relaxation oscillation, together with the canard transi-
tion from Hopf bifurcation to relaxation oscillation are discussed. 
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1. Introduction 

To formulate the population dynamics, in 1963, MacArthur and Rosenzweig 
proposed the following predator-prey model with Michaelis-Menten functional 
response [1]  

 
1 ,

,

u m vuu u
K a u

muv v d
a u

γ
µ

   = − −   +   
 = − + 





                    (1.1) 

where the function ( )v t  is the population of the predator at time t, the func-
tion ( )u t  is the population of the prey at time t, m is the maximum growth 
(birth) rate of the predator, d is the death rate of the predator, µ  is the yield 
factor of the predator feeding on the prey and a is the half-saturation constant of 
the predator, which is the prey density at which the functional response of the 
predator is half maximal. The parameters γ  and K are the intrinsic rate of in-
crease and the carrying capacity for the prey population, respectively. The para-
meters , , , ,K m aγ µ  and d are positive constants. Additionally, it is assumed 
that ( ) ( )0, 0u t v t≥ ≥  for biological meanings.  
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Using the following rescaling  

 
1 ,  ,  ,  ,a u vx y

K K K
ε β

γ γµ
= = = =                   (1.2) 

it follows that system (1.1) becomes  

 
1 ,

.

myx x x
x

mxy y d
x

ε
β

β

 
= − − + 
 

= − + 





                      (1.3) 

In this paper, it is assumed that γ  is sufficiently large; then ε  is a small pa-
rameter; therefore Equation (1.3) is a standard singularly perturbed system. From 
biological meanings, this assumption implies the prey population in the model 
(1.3) grows much faster than the predator population.  

By switching to the fast time scale  

 ,tτ
ε

=                             (1.4) 

one obtains the following equivalent system  

 
1 ,

.

myx x x
x

mxy y d
x

β

ε
β

 ′ = − − + 
 ′ = − + 

                     (1.5) 

If m d> , let d
m d
βρ =
−

, then 0ρ >  and system (1.5) are rewritten as the fol-

lows  

 
( )

( )

1 ,

.

mdyx x x
m d dx

mdxy y d
m d dx

ρ

ε
ρ

 
′ = − −  − + 

 
′ = −  − + 

                (1.6) 

Accordingly, the results in [2] [3] [4] are reformulated in the following form: 
1) If m d≤ , then the equilibrium ( )1,0  of system (1.5) is asymptotically 

stable.  
2) If 1ρ ≥ , then the equilibrium ( )1,0  of system (1.6) is asymptotically sta-

ble.  

3) If 1d
m d

ρ≤ <
+

, then the equilibrium ( )1
,

d
ρ ρ

ρ
− 

 
 

 of system (1.6) is 

asymptotically stable.  

4) If 0 d
m d

ρ< <
+

, then the equilibrium ( )1
,

d
ρ ρ

ρ
− 

 
 

 of system (1.6) is 

unstable and system (1.6) possesses a unique large-amplitude periodic solution.  

In this paper, it is always assumed that m d>  and 0 max ,1d
m d

ρ  < <  
− 

.  

Additionally, it is also assumed 0, 0x y≥ ≥  in system (1.6) for biological mean-
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ings.  
By using the geometric singular perturbation theory, it will be proved in this paper 

that the canard explosion phenomenon happens in system (1.6) as the parameter  

ρ  decreases through d
m d

ρ =
+

. This canard explosion phenomenon can  

explain the reason why the sudden transition from a small-amplitude periodic 

solution, which bifurcates from the equilibrium ( )1
,

d
ρ ρ

ρ
− 

 
 

 via the super-

critical Hopf bifurcation at d
m d

ρ =
+

, to a large-amplitude relaxation oscilla-

tion which emerges at d
m d

ρ <
+

.  

There are a great deal of articles [5]-[10], which are related to study the dy-
namics of predator-prey systems, such as bifurcations, stability, and so on.  

Canard solutions were first analyzed by Benoit, Callot, Diener and Diener [11] 
using non-standard analysis in van der Pol equations. A canard solution is a so-
lution of a singularly perturbed system which follows an attracting slow mani-
fold, passes close to a non-hyperbolic point of the critical manifold, and then 
follows, rather surprisingly, a repelling slow manifold for a considerable amount 
of time before being repelled. The existence of a canard solution can lead to ca-
nard explosion, that is, a transition from a small limit cycle to a relaxation oscil-
lation through a sequence of canard cycles upon variation of a parameter. Af-
terward, Eckhaus [12] studied the existence of canard solutions for van der Pol 
equation by employing the method of matched asymptotic expansion. A break-
through in geometric explanation of canard cycles and canard explosion came 
with the work of Dumortier and Roussarie [13], who analyzed these phenomena 
in van der Pol’s equation by means of blow up technique and foliation of center 
manifolds in detail. From the work of Dumortier and Roussarie, it became ap-
parent that blow up technique was the right tool for analyzing non-hyperbolic 
points of the slow manifold in a singularly perturbed system. Motivated by their 
work, Krupa and Szmolyan extended the standard normally hyperbolic geome-
tric singular perturbation [14] [15] to non-hyperbolic points [16] [17] [18] by 
employing the blow up technique. Recently, canard solutions of a singularly per-
turbed system are extensively studied [19]-[24]. An introduction to basic know-
ledge on the geometric singular perturbation theory can be also founded in [25].  

The paper is organized as follows. Section 2, Section 3 and Section 5 identify 
the fold point, the transcritical point, the Pitchfork Point and the canard point of 
system (1.6) respectively; Section 4 discusses Hopf bifurcations and relaxation 
oscillations of system (1.6); Section 6 analyzes the canard explosion phenome-
non of system (1.6). Finally, some concluding remarks are given in Section 7. 

2. Fold Point 

Let 
( ) ( ) 2

2,
2 4

d m dd m d
u x v y

d md
ρρ + − − −  = − = − , system (1.6) becomes  
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( )
( )

( ) ( )
( )

2

2

2

2 2 ,
2 2

2
.

24

d m d du dmvu u
d du d m d

d m d dmu md m m d
v v d

du d m dmd

ρ
ρ

ρ ρ
ε

ρ

 − −  − −′ = +    + + −  
 + −   + − −  ′ = + −    + + −  

     (2.1) 

Let ,x u y v= − = − , then system (2.1) reduces to  

( )
( )

( ) ( )
( )

2

2

2

2 2 ,
2 2

2
.

24

d m d dmy dxx x
d d m d dx

d m d mdx md m m d
y y d

d m d dxmd

ρ
ρ

ρ ρ
ε

ρ

 − −  −′ = −    + − −  
 + −   − + −  ′ = − +    + − −  

     (2.2) 

where 
( )
2

d m d
x

d
ρ− −

≤  and 
( ) 2

24
d m d

y
md

ρ+ −  ≤ .  

Let  

( ) ( )
( )

( )
( ) ( )

( )

2

2

2

2 2, , ,
2 2

2
, , .

24

d m d dmy dxf x y x
d d m d dx

d m d mdx md m m d
g x y y d

d m d dxmd

ρ
ε

ρ

ρ ρ
ε

ρ

 − −  −
= −    + − −  
 + −   − + −  = − +    + − −  

 

then system (2.2) can be rewritten as  

 
( )
( )
, , ,

, , .

x f x y

y g x y

ε

ε ε

′ =

′ =
                       (2.3) 

Setting 0ε =  in system (2.3) results in the layer problem  

 
( ), ,0 ,

0.
x f x y
y

′ =

′ =
                        (2.4) 

In term of the time rescaling tτ
ε

= , system (2.3) becomes  

 
( )
( )

, , ,

, , .

x f x y

y g x y

ε ε

ε

=

=





                       (2.5) 

Setting 0ε =  in system (2.5) results in the reduced problem  

 
( )
( )

0 , ,0 ,

, ,0 .

f x y

y g x y

=

=
                        (2.6) 

Let  

( ) ( ) ( )2, : 0
2

d m d
S x y x my x

d
ρ − −  = − − =  

   
 

be the slow manifold, which consists of two parts 1S  and 2S , where  

( ) 2
1

1, :S x y S y x
m

 = ∈ = 
 

 

and  
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( ) ( )
2 , : .

2
d m d

S x y S x
d

ρ− −  = ∈ = 
  

 

Let ( ){ }1 1, : 0aS x y S x= ∈ <  and ( ){ }1 1, : 0rS x y S x= ∈ > .  
Let  

( )
( ) 2

2 2 2, :
4

a d m d
S x y S y

md
ρ − −   = ∈ < 

  
 

and  

( )
( ) 2

2 2 2, : .
4

r d m d
S x y S y

md
ρ − −   = ∈ > 

  
 

Assume that 0 d
m d

ρ< <
+

, then it can verified that  

( ) ( )
( ) ( ) ( )

( ) ( )
( )
( )

( )
( )
( )

2

2

2

0,0,0 0, 0,0,0 0,
4

0,0,0 0, 0,0,0 0,

2
0,0,0 0.

m d d m d m d d
f g

md
m d m df f

x y d m d

d m df
d m dx

ρ ρ

ρ
ρ

ρ
ρ

− + − + −      = = <

− − ∂ ∂  = = − >
∂ ∂ + −

− − ∂  = >
+ −∂

 

Therefore, by the definition of a fold point [16], (0, 0) is a fold point of system 
(2.3).  

Under the assumption that 0 d
m d

ρ< <
+

, it can be verified that the branch  

1
aS  is attracting and the branch 1

rS  is repelling for the layer problem. The ori-
gin (0, 0) is nonhyperbolic, weakly attracting from the left and weakly repelling 
to the right. Moreover, the reduced flow on 1

aS  and 1
rS  is directed towards the 

fold point (0, 0), see Figure 1 for the dynamics of the layer problem and the re-
duced problem.  

 

 

Figure 1. Slow-fast dynamics of system (2.3) for 0ε =  in the case that 0 d
m d

ρ< <
+

. 
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The standard normally hyperbolic geometric singular perturbation [14] im-
plies that outside an arbitrarily small neighborhood of (0, 0), the manifolds 1

aS  
and 1

rS  perturb smoothly to locally invariant manifolds ,
1
aS ε  and ,

1
rS ε , which 

are simply solutions to system (2.3).  
Let  

( ){ }, ,out y y Jδ∆ = ∈  

be a section transverse to the fast fiber, where J ∈  is a suitable interval and 
0δ >  is a suitable constant, see Figure 1.  

By theorem 2.1 in [16], it follows that  
Proposition 2.1. There exists 0 0ε >  such that for ( )00,ε ε∈ , the manifold 
,

1
aS ε  passes through out∆  at a point ( )( ),hδ ε  with ( )0 0h = . 

3. Transcritical Point and Pitchfork Point 

Let ( ) ( ) 2

2,
2 4

d m dd m d
u x v y

d md
ρρ − − − −  = − = − , then system (2.2) becomes  

 

( )
( )

( )
( )

3 2

,

.

mduv du u d m d
u

m d du

m d mduv v d
md m d du

ρ
ρ

ρ
ε

ρ

− − − −  ′ =
− −

 − 
′ = − +   − −  

            (3.1) 

Let ,x u y v= − = , then system (3.1) becomes  

 

( )
( )

( )
( )

3 2

,

.

mdxy dx x d m d
x

m d dx

m d mdxy y d
md m d dx

ρ
ρ

ρ
ε

ρ

− + − −  ′ =
− +

 −  −′ = − +   − +  

           (3.2) 

Let  

( )
( )

( )

( ) ( )
( )

3 2

, , ,

, , .

mdxy dx x d m d
H x y

m d dx

m d mdxI x y y d
md m d dx

ρ
ε

ρ

ρ
ε

ρ

− + − −  =
− +

 −  −
= − +   − +  

 

then it follows that system (3.2) can be rewritten as  

 
( )
( )

, , ,

, , .

x H x y

y I x y

ε

ε ε

′ =

′ =
                       (3.3) 

Under the assumption that 0 d
m d

ρ< <
−

, it can be calculated that  

( ) ( ) ( ) ( )

( ) ( )
( )

( )

( ) ( ) ( )

2

2

2 2

2

0,0,0 0, 0,0,0 0, 0,0,0 0,

2
0,0,0 0, 0,0,0 0,

0,0,0 0, 0,0,0 0.

m d HH I
m x

d m dH H
y m dx

H H md
x y m dy

ρ

ρ
ρ

ρ

− ∂
= = > =

∂
− − ∂ ∂  = = >

∂ −∂

∂ ∂
= = >

∂ ∂ −∂
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It follows that  

( ) ( )

( ) ( )

( )
( ) ( )

( )

( )

2 2

2

2 2

2

2 2

22

2
0,0,0 0,0,0

0,0,0 0,0,0 0

0.

d m dH H md
x yx m d m d

H H md
x y y m d

m d
m d

ρ
ρ ρ

ρ

ρ

− − ∂ ∂  
∂ ∂∂ − −

=
∂ ∂
∂ ∂ ∂ −

= − <
−

 

By the definition of a transcritical point in [17], it can be seen that the point (0, 
0) is a transcritical point of system (3.3), which implies that the point  

( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 is a transcritical point of system (2.2).  

Remark 3.1. If d
m d

ρ =
−

, then ( )
2

2 0,0,0 0H
x

∂
=

∂
. Furthermore, it is can be 

calculated that ( )
( )

3 2

3 22

60,0,0 0H d
x m dρ

∂
= − <

∂ −
. By the definition of a pitchfork  

point in [17], it can be seen that the point (0, 0) is a pitchfork point of system  

(3.3), which implies that the point ( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 is a pitch-

fork point of system (2.2).  

If d
m d

ρ >
−

, then it can be seen that the point  

( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 is also a transcritical point of system (2.2).  

However, in the cases that d
m d

ρ =
−

 and d
m d

ρ >
−

, canard explosion 

phenomena do not happen in (2.2).  

Under the assumption that 0 d
m d

ρ< <
−

, it can be verified that the branch  

2
aS  is attracting and the branch 2

rS  is repelling for the layer problem. The point 
(1, 1) of system (2.2) is nonhyperbolic, weakly repelling from the left and weakly 
attracting to the right, see Figure 1.  

The standard normally hyperbolic geometric singular perturbation [14] im-
plies that outside an arbitrarily small neighborhood of (1, 1) of system (2.2), the 
manifolds 2

aS  and 2
rS  perturb smoothly to locally invariant manifolds ,

2
aS ε  

and ,
2
rS ε . In the following, it will be analyzed that how does ,

2
aS ε  pass through  

a neighbourhood of the transcritical point ( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 of 

system (2.2).  

Let 
( )

,
2

mdu x y v y
d m dρ

= + =
− −  

, then system (3.2) becomes  
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( )
( ) ( ) ( )

( )
( )

( )

( ) ( )

2 2
2 2

1

2

4

, , ,
2

, , ,

d m d m du u v
m d m d d m d

d m d
h u v

d m d

m d
v h u v

m

ρ
ρ ρ ρ

ρ
ε ε

ρ

ρ
ε ε

− −
′ = −

− − − −  
−

+ +
− −  
− 

′ = + 
 

       (3.4) 

where ( ) ( )3 2 2 3 2
1 , , , , , , , ,h u v O u u v uv v u vε ε ε ε= , 

( ) ( )2 , , , ,h u v O u vε ε= . 

Letting  

 ( )
( ) ( )

, , ,
2 2

d m d md dx u y v
m d m d
ρ

ε ε
ρ ρ
− −

= = =
− −

             (3.5) 

and substituting (3.5) into Equation (3.4), then by directly calculating and drop-
ping the tildes, Equation (3.4) becomes  

 
( )

( )

2 2
1

2

, , ,

1 , ,

x x y h x y

y h x y

σε ε

ε ε

′ = − + +

′ = +  
                (3.6) 

with 1σ = , ( ) ( )3 2 2 3 2
1 , , , , , , , ,h x y O x x y xy y x yε ε ε ε=  and  

( ) ( )2 , , , ,h x y O x yε ε= .  
Therefore, by using a result in [17], it follows that  
Proposition 3.2. There exists 0 0ε >  and a function ( )cσ ε  with ( )0 1cσ =  

such that for ( )cσ σ ε= , the slow manifold ,
2
aS ε  extend to ,

2
rS ε  for suffi-

ciently small 0ε > . 

4. Relaxation Oscillation and Hopf Bifurcation 

Based on the local dynamics nearby the fold point (0, 0) and the transcritical  

point ( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 of system (2.2), the following result 

can be obtained. 

Theorem 4.1. Assume that 0 d
m d

ρ< <
+

, then for sufficiently small 0ε > , 

system (2.2) has a stable large-amplitude limit cycle εΓ .  

Proof. Let in∆  be a section of the flow defined as a small horizontal interval  

intersecting 1
aS  at a point between ( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ + − + −   −
 
 

 and (0,  

0), see Figure 1. Consider tracking a trajectory starting in in∆  for 0 1ε<  . 
Initially this trajectory will be attracted to ,

1
aS ε  and then pass beyond the fold 

point (0, 0) until it reach the section out∆ . As this trajectory arrives in the vicin-
ity of 2

aS , it will be attracted to ,
2
aS ε  and then pass beyond the transcritical 

point (1, 1). Rather surprising, this trajectory will follow ,
2
rS ε  for a considerable 

amount of time until it is repelled by ,
2
rS ε . Therefore this trajectory will come 
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close to 1
aS  and it will follow ,

1
aS ε  until it reaches in∆ . Let : in inπ ∆ → ∆  be 

the return map. By the geometric singular perturbation theory, it follow that for 
0 1ε<  , π  is a contraction map. By the implicit function theorem, there ex-
ists a unique and attracting fixed point of π  in in∆ . This fixed point gives rise 
to a stable large-amplitude limit cycle εΓ .  

Theorem 4.2. There exist 0
d

m d
ρ =

+
 such that system (2.2) has a unique 

and stable small-amplitude limit cycle bifurcating from the equilibrium (0, 0) via 

the supercritical Hopf bifurcation for 0
d

m d
ρ ρ< =

+
.  

Proof. System (2.2) has an equilibrium ( ) ( ) 2

2,
2 4

d m dd m d
E

d md
ρρ − − − −   =

 
 

. 

The linearization of system (2.2) at E has the following form  

( )

( )( )1
0

d m d
d

m
m d

m

ρ

ρ ε

− +
−

− −
 

which has eigenvalues  

( ) ( ) ( ) ( )( ) ( ) 2
4 1

.
2 2

i md m d d m dd m d
i

m m

ρ ε ρρ
α ρ β ρ

− − − − + − +  ± = ±  

If 0
d

m d
ρ ρ= =

+
, then ( )0 0α ρ = , ( ) ( )

0 0
d m d

m d
ε

β ρ
−

= >
+

,  

( )0 0
2

m d
m

α ρ +′ = − ≠ .  

Lengthy calculations show that the first Liapunov coefficient  

( ) ( )
( )

2

1 0 0.
4
d m d

l
m m d ε

+
= − <

−
 

Therefore, the results in theorem 4.2 are justified. 

5. Canard Point 

In this section, it is assumed that 0
d

m d
ρ ρ= =

+
.  

Let  

( ) ( )
( )

( )
( ) ( )

( )

2

2

2

2 2, , , ,
2 2

2
, , , ,

24

d m d dmy dxf x y x
d d m d dx

d m d mdx md m m d
g x y y d

d m d dxmd

ρ
ρ ε

ρ

ρ ρ
ρ ε

ρ

 − −  −
= −    + − −  
 + −   − + −  = − +    + − −  

 

then system (2.2) can be rewritten as the following form.  

 
( )
( )
, , , ,

, , , .

x f x y

y g x y

ρ ε

ε ρ ε

′ =

′ =
                       (5.1) 
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It can verified that  

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0

2

0 0 02

0,0, ,0 0, 0,0, ,0 0, 0,0, ,0 0, 0,0, ,0 0,

20,0, ,0 0, 0,0, ,0 0, 0,0, ,0 0.
2

f ff g d
x y

g m d g m d f d
x m d d mx

ρ ρ ρ ρ

ρ ρ ρ
ρ

∂ ∂
= = = = − <

∂ ∂

∂ − ∂ − ∂
= > = > = >

∂ + ∂ ∂

 

By the definition of a canard point in [16], it can be seen that the point  
( ) ( ), 0,0x y =  is a canard point of system (5.1).  

The reduced dynamics on 1S  is governed by the equation  

 
( ) ( )

( )

2

2
2 .

24
d m d d m d

x x
d m d dxd

ρ
ρ

 + −  −  = −
  + − −
 

             (5.2) 

It follows that the right-hand side of system (5.2) is a smooth function at the ori-
gin. Let ( )0x t  denote a maximal solution of system (5.2) with the property 

( )0 0 0x = . It follows that ( )0x t  exists and passes through the origin, see Fig-
ure 2 for the dynamics of the layer problem and the reduced problem.  

By theorem 3.1 in an article [16], it follows that  
Proposition 5.1. There exists 0 0ε >  and a smooth function ( )0 cρ ρ ε+  

defined on [ ]00,ε  such that for ( ]00,ε ε∈ , a solution starting in ,
1
aS ε  con-

nects to ,
1
rS ε  if and only if ( )0 cρ ρ ρ ε= +  with ( )0 0cρ = . 

6. Canard Explosion 

Let  

( ) ( )
22 2, , .
2

dmy dxx y
d m d dx

ϕ ε
ρ

−
=

+ − −
 

Theorem 6.1. For any 
( ) 2

0 220,
4

ad m d
y S

md
ρ − −   ∈ ⊂


 

, there exists a unique 

0τ >  such that  
 

 

Figure 2. Slow-fast dynamics of system (2.2) for 0ε =  in the case that 0
d

m d
ρ ρ= =

+
. 
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( )
0

, ,0 d 0,
2

d m d
y s s

d
τ ρ
ϕ

− − 
⋅ = 

 
∫  

where y s⋅  denotes the solution of system (2.5) on 2S  at 0ε = .  
Proof. For the limiting slow dynamics on 2S , system (2.5) is reduced to  

( ) 2

.
4

d m d
y dy

md
ρ+ −  = − +  

Therefore, for any 0 2
ay S∈ , it can be calculated that  

( )
( ) ( )2 2

0 2 2e .
4 4

dsd m d d m d
y s y

md md
ρ ρ

−
 + − + −       = − +
 
 

 

It follows that  

( ) ( )
( )

( )
( )

( )
( )

22
0

0 0

22 2
0

22
0

4
, ,0 d 1 e d

2 4

4 4
e 1 0,

4 4

ds

d

md y d m dd m d
y s s s

d d m d

md y d m d d m d
m d md y d m d

τ τ

τ

ρρ
ϕ

ρ

ρ ρ
τ

ρ ρ

−

−

 − + − − −    ⋅ = +   −   
 − + −  −   = − − − =
 − − + −   

∫ ∫
 

which is equivalent to  

( )
( )

2

22
0

4
e 1 0.

4
d d m d

md y d m d
τ ρ

τ
ρ

− −
− − =

− + −  
 

Let  

( ) ( )
( )

2

22
0

4
e 1 .

4
d d m d

F
md y d m d

τ ρ
τ τ

ρ
− −

= − −
− + −  

 

Then for any 
( ) 2

0 220,
4

ad m d
y S

md
ρ − −   ∈ ⊂


 

, it follows that  

( ) ( ) ( )
( )

2

22
0

4
0 0, e .

4
d d m d

F F d
md y d m d

τ ρ
τ

ρ
− −

′= = − −
− + −  

 

Therefore, there exists a unique ( )
( )

0 22
0

41 ln 0
4

d m d
d md y d m d

ρ
τ

ρ

 − = − − >
 − + −   

 

such that  

( ) ( )0 0For , 0; , 0.F Fτ τ τ τ τ τ′ ′> > < <  

It follows that there exists a unique 0τ >  such that ( ) 0F τ = . Thus theorem 
6.1 is proved.  

Define a map 2 2: a rP S S→  by ( )0 1P y y y τ= = ⋅ . where y τ⋅  denotes the 
solution on 2S  at 0ε =  and τ  is determined by theorem 6.1.  

Remark 6.2. At 
( ) 2

0 24
d m d

y
md

ρ− −  = , define ( )
( ) 2

0 24
d m d

P y
md

ρ− −  = .  
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Define singular canard cycles  

( ) ( ){ }21, : , , : , ,s x x x ms ms x s x ms ms
m

      Γ = ∈ − ∪ ∈ −        
 

for 
( ) 2

20,
4

d m d
s

md
ρ − −   ∈

 
 

,  

( )
( ) ( )

( ) ( ) ( )

( )

2 2

2
2 2

2 2

2 2

1, : ,
2 2

, : ,
22 2

, :
2

d m d d m d
s x x x m P s m s

m md md

d m d d m d d m d
x s x m s

dmd md

d m d
y y

d

ρ ρ

ρ ρ ρ

ρ

     − − − −             Γ = ∈ − ⋅ − −               
     − − − −    − −        ∪ − ∈ −            

− − 
∪ ∈ 

 

( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

2 2

,
2 2

, : , ,
22 2

d m d d m d
s P s

md md

d m d d m d d m d
x P s x m P s

dmd md

ρ ρ

ρ ρ ρ

   − − − −         − −       
      − − − −    − −         ∪ − ∈ − ⋅ −               

 

for 
( ) ( )2 2

2 2,
4 2

d m d d m d
s

md md
ρ ρ − − − −       ∈

 
 

. See Figure 3 for an illustration.  

Remark 6.3. As 0ε → , the large-amplitude limit cycle εΓ  in theorem 4.1 

converges to ( )sΓ  at 
( ) 2

22
d m d

s
md

ρ− −  =  in the Hausdorff distance.  

 

 

Figure 3. Singular canard cycles ( )sΓ . Left: ( )sΓ  for 
( ) 2

20,
4

d m d
s

md
ρ  − −   ∈

  
. Right: 

( )sΓ  for 
( ) ( )2 2

2 2,
4 2

d m d d m d
s

md md
ρ ρ  − −   − −     ∈

  
. 
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Figure 4. Blow-up singular cycles for 0
d

m d
ρ ρ= =

+
. 

 

By blowing up the transcritical point ( ) ( ) 2

2,
2 4

d m dd m d
d md

ρρ − − − −   
 
 

 of  

system (2.2) and the canard point (0, 0) of system (2.2), see Figure 4. The fol-
lowing results can be obtained by theorem 3.3 in [18].  

Theorem 6.4. Fix 0ε  sufficiently small. Then for ( )00,ε ε∈ , system (2.2) 
possesses a family of periodic orbits  

 ( ) ( )( ) ( ) 2

0 2, , , , 0, ,
2

d m d
s s s s

md
ρ

ρ ρ ε ε
 − −   → + Γ ∈
 
 

 

which is smooth in ( ),s ε , and such that:  
1) As 0ε → , the family ( ),s εΓ  converges uniformly in Hausdorff dis-

tance to ( )sΓ .  
2) Any periodic orbit passing sufficiently close to the slow manifold is a 

member of the family ( ),s εΓ  or a relaxation oscillation.  
3) All canard cycles are stable and the function ( ),sρ ε  is monotonic in s. 

7. Conclusions 

As shown in this paper, canard explosion phenomenon in the predator-prey 
model with Michaelis-Menten functional response happens due to the interac-
tions between the local dynamics nearby turning points, such as, fold point, tran-
scritical point, canard point, and the global return mechanism induced by the 
slow manifold in system (1.6). Additionally, canard explosion phenomenon in 
two-dimensional singularly perturbed autonomous dynamical system is a codi-
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mension one bifurcating phenomenon, in which the parameter ρ  is chosen as  

a bifurcating parameter, as the parameter ρ  decreases through d
m d

ρ =
+

, 

the sudden transition from a small-amplitude periodic solution, which bifurcates 

from the equilibrium ( )1
,

d
ρ ρ

ρ
− 

 
 

 via the supercritical Hopf bifurcation at 

d
m d

ρ =
+

, to a large-amplitude relaxation oscillation which emerges at  

d
m d

ρ <
+

, takes place by canard explosions. 

However, the global return mechanism in the predator-prey model is slightly 
different from that in van der Pol’ equations analyzed by Krupa and Szmolyan 
[18]; the latter is S shape; the former is not S shape.  

Additionally, canard explosion phenomenon in two dimensional singularly 
perturbed autonomous dynamical system is a codimension one bifurcating 
phenomenon. In this paper, the parameter ρ  is selected as a bifurcating para-
meter, and canard explosion phenomenon in system (1.6) is demonstrated. Ac-
tually, the parameter β  in system (1.5) can be also chosen as a bifurcating pa-
rameter, and it can be shown that canard explosion phenomenon happens in  

system (1.5) as the parameter β  decreases through m d
m d

β −
=

+
. 
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