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Abstract 
We present a mathematical model of a day care center in a developed country 
(such as Canada), in order to use it for the estimation of individual-to-individual 
contact rates in young age groups and in an educational group setting. In our 
model, individuals in the population are children (ages 1.5 to 4 years) and 
staff, and their interactions are modelled explicitly: person-to-person and 
person-to-environment, with a very high time resolution. Their movement 
and meaningful contact patterns are simulated and then calibrated with col-
lected data from a child care facility as a case study. We present these calibra-
tion results as a first part in the further development of our model for testing 
and estimating the spread of infectious diseases within child care centers. 
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1. Introduction 

Population health modelling within applied mathematics is a wide area of re-
search dominated by several model types: deterministic compartmental models 
[1]-[7], individual based models [5] [8] [9] with extensive literature review in 
[10] [11], game-theoretic based models (see [12] [13] and references therein) 

How to cite this paper: Flynn-Primrose, 
D., Hoover, N., Mohammadi, Z., Hung, A.,  
Lee, J., Tomovici, M., Thommes, E.W., 
Neame, D. and Cojocaru, M.G. (2022) Mea-
ningful Contact Estimates among Children 
in a Childcare Centre with Applications to 
Contact Matrices in Infectious Disease Mod-
elling. Journal of Applied Mathematics and 
Physics, 10, 1525-1546.  
https://doi.org/10.4236/jamp.2022.105107  
 
Received: January 26, 2022 
Accepted: May 15, 2022 
Published: May 18, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.105107
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.105107
http://creativecommons.org/licenses/by/4.0/


D. Flynn-Primrose et al. 
 

 

DOI: 10.4236/jamp.2022.105107 1526 Journal of Applied Mathematics and Physics 
 

and data analysis models [6] [14]-[21], all of them dedicated in general to large 
populations. The large population assumptions of compartmental models or 
games are needed for averaging behaviour of individuals within compartments, 
respectively population groups. In contrast, individual (or agent) based models 
(ABM) seek to capture emergent behaviour at population level by modelling in-
dividual interactions. 

Agent based models have become an increasingly popular modelling frame-
work amongst various scientific disciplines in recent years, including economics 
and engineering [22] [23] [24] [25] [26], sociology [27] [28] [29] [30], psychol-
ogy [31], and population health (see the review paper [8]) as well as [5] [9] [10] 
[11]. Unlike differential equation models, ABMs are able to readily introduce 
heterogeneity into individual attributes and are tailored to reflect the emerging 
behaviour, at population level, resulting from the agent-to-agent and/or 
agent-to-environment interactions. ABM models on the spread of infectious 
diseases have received a fair magnitude of attention from various researchers 
(see the review paper [8] as well as the more recent [10] [11] and references 
therein). Extensive searches within the PubMed and Google Scholar data bases 
reveal little mathematical modelling literature that specifically models concur-
rent infections in a child care setting with an agent-based model, together with 
its impact on the immediate community. The papers [15] [18] [20] [21] [32] are 
of most relevant interest to us, given their studies in pathogen transmission. 
Specific to influenza A in a day care center, we look at [15] [21] as they measure 
viral load on day care surfaces and the air load distributions of this virus. The 
paper [17] is widely cited in relation to influenza A in a day care setting and its 
impact on secondary infections in children’s households. 

For current policies related to primary prevention guidelines in child care fa-
cilities in Canada we can consult Public Health Departments which set require-
ments for child care licenses (see [33]). The study in [6] may be of use, as it re-
lates the type of health care decisions/costs that may result from an infected 
child visiting a family physician. Risk factors for respiratory viruses in day care 
facilities in Europe are presented in [14]. 

In this paper, we build an ABM model of a child care center modelled after 
the Child Care and Learning Center (CCLC) at the University of Guelph, in 
Guelph, ON, Canada, so that interactions between human entities (children, 
adults, etc.) are able to be described with a high level of detail. The number of 
agents is very small compared to a usual population level ABM model, thus the 
time resolution of our simulations can be extremely high, and small number sta-
tistics effects can be uncovered. Given the combination of these traits, together 
with the already collected contact data from the CCLC, our proposed model is 
uniquely suited to estimating contact rates that could lead to pathogen transmis-
sion. We present below the model and its calibration on contact and movement 
patterns using gathered from agent-to-agent contact data. Empirical data detail-
ing agent-to-agent contacts in an institutional setting is rare due to the numer-
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ous issues regarding ethics and parental consent. This motivates our goal of ge-
nerating synthetic data that reliably resembles empirical results. The child care 
facility we have as a case study encompasses two types of child care rooms, 
toddler age and preschool age, each with a fixed number of children, a fixed 
number of teachers (both preassigned to each room for a school year period), 
and possibly a small number of teaching assistants (preassigned to each room per a 
3 - 4 months period). The simulated environment of an abstract room is a 
2-dimensional lattice of patches with subgroups of patches signifying specific parts 
of the room, such as toy boxes, lunch areas, play/activity areas and washrooms. 

The agents in our model are further classified into two types: children and 
adults. Children will be modeled as moving agents in the environment, occupy-
ing a patch at any given moment. They will be given a chance to move, they will 
have different activity levels and they will follow directions of teachers/staff for 
lunch, room activities and visiting the washroom. In turn, teachers and/or staff 
move by following groups of two or more children, or directing children to ac-
tivities. A simulation run in the model represents 15 minutes of real time where 
the time resolution will be set to 1 second of physical time per simulated time 
step. The paper is structured as follows: In Section 2, we present the basic struc-
ture of the model and describe its parameters, in Sections 3 and 4 we outline the 
statistical analysis done on the observed and simulated data respectively, while in 
Section 5 we offer a concluding discussion of our results, and a few ideas for fu-
ture work.1 

2. Model Description 

Our overarching goal is to simulate the agent-to-agent contact patterns in a child 
care setting correctly, i.e., in a fashion where simulated meaningful contacts for 
transmission are similar to meaningful contacts observed/collected in the CCLC 
center. We operate under the paradigm that each individual room in the centre 
can be modelled separately with agents moving between rooms only according 
to a fixed schedule. With this approach, multi-room child care centers can be 
simulated by combining multiple single room simulations. In this paper we fo-
cus on modeling a single room and in particular we estimate values for each of 
the model’s free parameters described below. 

2.1. Basic Structure of the Model 

Each room is modeled as a rectangular graph with agents occupying one of the 
graph’s nodes. The model operates by allowing the agents to move between 
nodes according to rules that will be described below (see Definition 1). The res-
olution is one timestep per in-simulation second and a simulation will involve a 
classroom movement during a 15 minutes period. Each agent has a so-called ac-
tivity level which determines an agent’s probability of moving between nodes. 

 

 

1Our model is implemented in R v4.0.0 with Rstudio v1.2.5042 using simulations run on AMD Ry-
zen 54600H at 3.00 Ghz and with 8 Gb of ram. 
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For example, an activity level of 0.65 indicates that the agent will move during 
65% of timesteps out of the total simulated time. 

The model includes two varieties of agents: teachers and children. The dis-
tance between nodes is assumed to be equal to the mean stride length for the age 
range of children to be modeled. In this way, children are restricted to either 
staying on their current node or moving to a neighbouring node during a single 
timestep. Teachers are allowed to move up to two nodes from their starting node 
to account for their greater stride length. 

Each agent type has a variety of activities they can undertake and that can al-
ter their movement patterns. 

1) Children are able to choose between moving (or staying in place) at ran-
dom and/or following other agents. 

2) Teachers have the ability to select a group of children and gather them to-
gether; when that happens the selected children will move toward the teacher 
agent and will remain in their close proximity until dismissed.2 

3) Teachers are able to choose between following a particular child or gather-
ing a group of children around themselves. 

2.2. Agents Movement, Activities and Observed Contact Computation 

Let us denote by active timesteps the specific timesteps during which an agent 
will move. 

Definition 1. If two agents occupy adjacent nodes within one timestep, then 
we say that those two agents have had a neighbouring contact. 

The neighbouring contacts between a pair of agents in a 5 minutes simulation 
are counted, and denoted by pair contact time. 

Definition 2. Two agents are said to have an observed contact if pair contact 
time > duration of observed contact doc, i.e., if they spend enough time as 
neighbouring contacts, in a given 5 minute period, for an observer to notice and 
record the interaction. 

The parameter duration of observed contact, denoted by doc comes from the 
fact that the contact patterns collected through visual observations depended on 
the human observer to “register” an interaction between two agents. This thre-
shold parameter regulates how many neighbouring contacts make one observed 
contact and we know, from data collection, that is between 1 - 2 minutes of 
physical time (see also Section 3). To compute the number of observed contacts 
between two agents over the course of 15 minutes, we add the results from all 
three 5-min periods. We investigate the effect of different observed contact 
thresholds in Section 4. 

We summarize the simulated movements in Table 1. 
Agents choose what activity they will engage in according to their sociability 

level, which dictates their preference for one activity or the other. For example, a 
sociability level of 0.33 would indicate that, given the option, a child will choose  

 

 

2Note that the children are still allowed to move when gathered around a teacher they will simply be 
forced to return to a neighboring node if they move to far away. 
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Table 1. Movement patterns for different agent types. 

 Random Following Gathering 

Children Agent has an equal 
chance of staying in place 
or moving to an adjacent 
node. 

Agent chooses 
another agent at 
random and 
minimizes their 
distance to that agent. 

When given the instruction 
agent will minimize distance 
to the relevant teacher. They 
continue in this pattern until 
dismissed. 

Teachers Agent may move up to 
two nodes in any 
direction. This only 
occurs if the agent is in a 
room with no students. 

Agent chooses a child 
at random and 
minimizes their 
distance to that child. 

Agent selects three children 
at random and instructs 
them to gather. 

 
to follow another agent 33% of the time. Likewise, a sociability level of 0.75 
would indicate that a teacher will choose to follow a single child rather than ga-
thering a group of children 3 out of every 4 times. 

To regulate how long each agent spends performing their chosen activity we 
model their “interest” in that activity as a decaying quantity with a fixed half-life. 
This allows us to use the laws of exponential decay to compute the probability of 
the agent changing activities on any given timestep. 

Definition 3. In particular, on any given active timestep, the probability that 
an agent will stop their current activity is given by 

1 e m

n
n
−

−                             (1) 

where n is the total number of active timesteps the agent has spent performing 
their current activity and mn  is the mean length of time an agent spends on that 
activity. We set 15 minmn =  throughout all simulations. 

2.3. Model Parameters 

The structure of our model includes a number of parameters for which we must 
find appropriate values. Two of these parameters: activity level, Al and socia-
bility level, Sl, are chosen for each agent type from a known distribution, as in 
Table 2. It is our main goal in this paper to determine more specific distribu-
tions for these parameters for each agent type, in such a way that the number of 
simulated observed contacts agrees with the gathered data (see Section 4). 

The remaining parameters are related to the temporal and spatial resolution of 
the model. A summary of the values as they appear in the current version of the 
model are given in Table 2. 

The room dimensions were obtained from the CCLC building blueprints. In-
formation about agent stride length and frequency was found in [35], the model 
timescale was also informed by that paper which suggests toddlers and pre-
schoolers will spend a negligible amount of time at stride rates greater than 60 
per second. The mean interest time was chosen to ensure a meaningful variety of 
agent behaviour over a single 15 minute observation period. 
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Table 2. Additional model parameters. 

Parameter Notation Value Description 

Activity level Al ( )0,1  Informs movement between nodes. 

Sociability 
level 

Sl ( )0,1  Informs choosing of activities. 

doc  Various (see Section 4) Duration of observed contact.  

Mean interest 
time 

 15 minutes The mean amount of time agents will 
engage in a particular activity before 
choosing a new one. 

Child step 
length 

 ≈35 cm for toddlers, 40 
cm for preschoolers [19] 
[34] 

Dictates the distance between nodes 
on the graph. 

Teacher step 
length 

 ≈75 cm Regulates how fast teachers move 
relative to children. 

Room 
dimensions 

 7.62 × 9.75 m This value, along with the child step 
length, will govern how many nodes 
are in the simulated room. 

Timescale t 1 s Fixes the maximum number of steps 
an agent can take per minute. 

3. Empirical Data 
3.1. Data Collection 

The data was collected in three intervals of 2 weeks in March-May of 2019 at the 
CCLC Guelph. The observations were conducted according to the University’s 
Research Ethics Board protocols. These protocols limited the quantity of data 
that could be collected as only students with parental consent could be included 
in the observations. The observer has recorded meaningful contacts between a 
subset of children and a subset of teachers in a given room. We collected data 
from 2 toddlers (18 months to 3 years old) and 2 preschooler rooms (3 years old 
to 4.5 years) and recorded it in independent 15-minute tables. For every table, 
the occurrence of meaningful agent-agent and agent-surface interactions were 
recorded every 5 minutes based on the number of children and teachers ob-
served. The observations were taken during three different periods of the day: 
8:30 am-10:30 am, 10:30 am-12:30 pm, 2:30 pm-4:30 pm. The age groups obser-
vations cannot amalgamated, as toddler age groups have differing numbers of 
students and teachers in each of their rooms, and activities/daily schedules in 
each room differ. Moreover, the student/teacher ratios are different, that is to say 
that by government mandate, each teacher can only supervise a maximum of 5 
toddlers per room and a maximum of 8 preschoolers. Last but not least, the 
rooms we collected the data from were structures as: 10 toddlers and 2 teachers 
(2 rooms), 16 preschoolers and 2 teachers (2 rooms). Due to the teaching and 
training of ECE at Guelph, each room hosts typically, for parts of the day, a 
teaching assistant as a 3rd staff in a room. 
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3.2. Data Analysis 

For each age group we studied two aspects of the observed data and then further 
re-organize it for use to inform our simulated environment. In what follows, we 
call a data configuration the number of children and teachers being observed in 
a 15-minute table. We note that although the observer has tracked 4 or 5 child-
ren at a time in a toddler room, the maximum number of children in a toddler 
room is 10, and the maximum number of teachers is 3 (2 teachers and occasio-
nally a teaching assistant). The same 2 rooms have been observed for toddlers, 
and the same 2 rooms for preschoolers. The preschool rooms had a maximum of 
16 children and 2/3 teachers (occasionally a teaching assistant). 

Our first consideration was whether the times of the day during which the 
15-minute observations were collected had any statistical relevance, or if we 
could coalesce the data. To test their statistical relevance, we looked at the fol-
lowing configurations of toddlers and teachers: 4 children and 1 teacher (4C1T), 
4 children and 2 teachers (4C2T), 4 children and 3 teachers (4C3T) and 5 child-
ren and 2 teachers (5C2T). For preschoolers groups we considered the following 
configurations: 4 children and 2 teachers (4C2T), 5 children and 2 teachers 
(5C2T), 5 children and 3 teachers (5C3T), 6 children and 3 teachers (6C3T) (for 
details of this analysis, please see the Appendix). 

Our conclusions drawn from the statistical analysis tests employed were that 
times of the day were irrelevant and we could coalesce the data for the following 
age groups and configurations. 

Following the analyses described above, we have further concentrated on us-
ing the data from age groups and configurations in Table 3. We have further 
assumed that in each configuration, each child of the 4C or 5C observed consti-
tutes one child agent interacting with the other children and teacher agents. The 
sizes of the data sets that we obtained therefore are as in Table 4.  

 
Table 3. Scenarios run in the classroom model.  

Toddlers Max (C,T) Preschoolers Max (C, T) 

4 children, 2 teachers (10, 2) 4 children, 2 teachers (16, 2) 

5 children, 2 teachers (10, 2) 5 children, 2 teachers (16,2) 

4 children, 3 teachers (10, 3) 5 children, 3 teachers (16, 3) 

 
Table 4. Number of observations used from the collected data for each simulated scena-
rio in Table 3. 

Toddlers 
Observations  

C, T 
Preschoolers 

Observations  
C, T 

4 children, 2 teachers 92, 46 4 children, 2 teachers 40, 20 

5 children, 2 teachers 50, 20 5 children, 2 teachers 80, 40 

4 children, 3 teachers 48, 36 5 children, 3 teachers 50, 20 
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3.3. Further Insights into the Curated Observed Data 

To gain further insight into our observed data, we tried to find known statistical 
patterns within the observed data. Our analysis began by using the Wilcoxon test 
to determine the similarity between results for toddlers and preschoolers. Fol-
lowing that we performed a battery of statistical tests to establish if the observed 
data corresponded to any known distribution. 

We began by visually comparing the frequency distributions of agent-agent 
contacts between toddlers versus preschoolers. For example, Figure 1 shows the 

 

 
Figure 1. Distribution of observed contacts in 4C2T age groups. (a) Toddler; (b) Preschool. 
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frequency of meaningful contacts in both age groups in the 4C2T case. The not-
able result from the histogram is that each age group has a distinctly different 
distribution. 

Further investigation into the toddler group conclusively revealed that the 
agent-agent contacts between child-child and child-teacher contacts have dis-
tinctly different distributions as well. Figure 2 shows a difference between the 
distribution of child-child contacts and child-teacher contacts in the 4C2T toddler 

 

 
Figure 2. Distribution of observed contact in the 4C2T toddler group. (a) Child-Child Contact; (b) Child-Teacher Contact. 
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group. Different agent-agent distributions were also obtained when focusing on 
Preschool groups. The Wilcoxon test confirmed this result for both age groups. 

Having established that there are differences (as expected) between types of 
contacts in each age group and configuration, we asked whether the type of con-
tacts we encountered, such as child-child or child-teacher etc., may have distri-
butions of a well-known type. Visually, we can reject some of the most common 
distributions by looking at the histogram charts of both agent groups (Figure 1, 
Figure 2). The Shapiro-Wilk normality test confirmed the non-normality of the 
data by returning a very small p-value (<0.05). 

To figure out whether a continuous distribution fits our data, we used the 
descdist and fitDist functions in fitdistrplus and GAMLSS packages in R, respec-
tively [36] [37].3 These functions did not find a specific distribution that conclu-
sively matched all the groups in the observed data. As a consequence, in order to 
validate our simulated model we use next non-parametric statistical tests. A 
non-parametric test allows us to make comparisons without any assumptions 
such as: Independence of observations, normality of data, or homogeneity of va-
riance about the data distribution. 

There are numerous “goodness of fit” tests to analyze discrete data sets, such 
as the χ2 test, the discrete Kolmogorov-Smirnov test, the multidimensional test, 
and the likelihood ratio test. In our case, the Mann-Whitney-Wilcoxon (MWW) 
test had several significant properties among other goodness of fit, such as being 
sufficiently distribution-free, being suitable for use with small sample sizes, and 
having the ability to accommodate “ties” in the data. For large sample sizes the 
theoretical distribution of the MWW test statistic is known to be well approx-
imated by a normal distribution with mean and standard deviation determined 
by the sample sizes [38]. This allows us to draw conclusions about the degree to 
which our simulated data matches the observed data in an easy and straightfor-
ward way. 

4. Model Calibration 

The model described in Section 2 has a number of free parameters. We would 
like to determine value ranges these parameters could take so as to produce con-
tact patterns that replicate the observed ones. In order to compare the simulated 
data with the observed data it is necessary to have multiple simulated outputs for 
each set of input parameters. We outline the process here: 
• We first selected the agents’ activity (At) and sociability (St) levels from a 

uniform distribution over [0, 1] and then generated the same number of si-
mulated neighbouring contact matrices as observed data points in the given 
case (see the 1 2n n=  columns in Table 5 and Table 6). 

 

 

3The descdist function provides a kurtosis and squared skewness plot by computing descriptive pa-
rameters of an empirical distribution for non-censored data. In the case of this function for instance, 
the fit of three common distributions could be considered, Weibull, gamma and Poisson (as a dis-
crete probability) distributions. On the other hand, the fitDist function is using all relevant parametric 
gamlss.family to fit distributions to our observed data sets. See our implementations in Appendix. 
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• Repeating the above procedure allowed us to produce databases of simulated 
outputs for the case of 10 toddlers and 2 teacher (n = 10,587) and for 16 pre-
schoolers and 2 teachers (n = 7747), where each “output” consists of multiple 
simulated neighbouring contact matrices where the agents behavioral para-
meters remain constant within a single “output”. 

• We then randomly selected three subsets of 4 children and three subsets of 5 
children out of the children simulated (10 if toddlers, 16 if preschoolers). 

• For each agent, in each of the six subsets, it was then possible to count the 
total number of neighbouring contacts with other agents in the same subset, 
as well as with the two teachers. 

• We then converted the neighbouring contacts into observed contacts using 
the duration of observed contacts ranging from 5 seconds to 295 seconds. 
Figure 3 shows histograms of the resulting test statistics for the case of ob-
serving 5 preschoolers. We have similar ones for all other cases. 

Note that the scores for child-child contacts increase as doc increases, whereas 
the scores for contacts involving a teacher display the opposite trend. As illu-
strated in Figure 4, for 270 socd ≥  has negligible effect on the score of 
child-child contacts. Likewise, 30 socd ≤  did not improve the scores for con-
tacts involving a teacher. For this reason we decided to set the 270 socd =  if 
both agents are children and 30 socd =  if one of the agents is a teacher. 

4.1. Toddlers 

When investigating the effect of Al and Sl on toddler classes contacts we used the 
database of simulated toddlers described above, as well as a second database that 
was generated in the same way save that it includes three teachers instead of two 
(n = 5705). 

Counts of simulated observed contacts were produced using the doc found above and 
the result was compared to the observed data using the Mann-Whitney-Wilcoxon test 
(in Table 5 we give an overview of the results in each case). Based on this table, 
as well as Table 6, we decided to classify samples as good if their score fell to the 
right of the expected mean by at least 0.03 of the expected standard deviation 
(i.e. if at least 51.2% of the area under the expected normal distribution fell to 
the left of the samples score). 

Figure 5 shows histograms of Al and Sl values that produced good samples for 
all CC, CT, and TC contacts in the case of 4C3T. Figure 6 shows the same but in 
the case 5C2T. Notably, in the case 4C2T, there were no samples that were good 
for all three types of contacts. 

4.2. Preschoolers 

In the case of preschoolers we used the database of preschoolers described above 
as well as a second database of preschoolers (n = 6001) that included three 
teachers (as opposed to two). Table 6 gives an overview of the resulting test sta-
tistics and Figures 7-9 display histograms of Al and Sl that produced good samples  
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Figure 3. Histograms of the test statistic for preschoolers in the case of five children and two teachers being observed with doc 
ranging from 30 s to 270 s. Notice that child-child contacts score best when doc is small whereas the other contact types do best 
with long doc. (a) Child-Child Contact; (b) Child-Teacher Contact; (c) Teacher-Child Contact. 
 

(with respect to all three contact types) in the case of 4C2T, 5C2T and 5C3T re-
spectively. 

4.3. Discussion 

Several notable observations can be made regarding the data presented above. 
When investigating the possible values of duration of observed contacts, doc, 
there is a clear difference between contact involving only children and contact  
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Figure 4. Histograms of the test statistic for preschoolers in the case of five children and two teachers being observed with doc 
ranging from 5 s to 30 s for child-child contacts and from 270 s to 295 s for contacts involving a teacher. Notice that decreasing doc 
below 30 s does not increase the scores for child-child contacts. Similarly, increasing doc above 270 s resulted in lower scores for 
contact types involving teachers. (a) Child-Child Contact; (b) Child-Teacher Contact; (c) Teacher-Child Contact. 
 

involving a teacher. Simulated contacts between children were compared most 
favourably with the observed data when the duration of observed contacts was 270 
seconds. Simulated contacts between children and teachers, on the other hand, 
matched the observed data best when the duration of observed contact was 30 
seconds. This pattern persisted regardless of the number or type of agent being 
observed. We suspect (from the observational study design) that the much shorter  
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Table 5. Overview of the test statistic results for toddlers. 

Number of agents Contact type n1 = n2 Expected Mean Expected SD min score max score area range (from the left) CV0.512 

4C, 2T CC 92 92.5 130,486.7 1805.5 3301 0.5052 - 0.5098 3354.67 

4C, 2T CT 92 92.5 130,486.7 2070.5 6348 0.506 - 0.5191 3354.67 

4C, 2T TC 46 46.5 16,399 506 1058 0.5112 - 0.5246 456.48 

4C, 3T CC 48 48.5 18,624 800 960 0.5161 - 0.5195 607.22 

4C, 3T CT 48 48.5 18,624 668 1394 0.5133 - 0.5288 607.22 

4C, 3T TC 36 36.5 7884 252 643 0.5109 - 0.5307 273.02 

5C, 2T CC 50 50.5 21,041.7 491 1120 0.5083 - 0.5203 576.54 

5C, 2T CT 50 50.5 21,041.7 491 1074 0.5083 - 0.5194 576.54 

5C, 2T TC 20 20.5 1366.7 86 200 0.5191 - 0.5522 54.67 

 

 
Figure 5. Good parameters in the case of 4 toddlers and 3 teachers. 
 

 
Figure 6. Good parameters in the case of 5 toddlers and 2 teachers. 
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Table 6. Overview of the test statistic results for preschoolers. 

Number of agents Contact type n1 = n2 Expected Mean Expected SD min score max score area range (from the left) CV0.512 

4C, 2T CC 40 40.5 10,800 304 528 0.5097 - 0.518 310.5 

4C, 2T CT 40 40.5 10,800 96 432 0.5021 - 0.5145 310.5 

4C, 2T TC 20 20.5 1366.7 44 200 0.5069 - 0.5522 54.67 

5C, 2T CC 80 80.5 85,866.7 2519 3106 0.5113 - 0.5141 2227.17 

5C, 2T CT 80 80.5 85,866.7 1044.5 2710.5 0.5045 - 0.5122 2227.17 

5C, 2T TC 40 40.5 10,800 127 512 0.5032 - 0.5174 310.5 

5C, 3T CC 50 50.5 21,041.67 1231 1546 0.5224 - 0.5283 681.75 

5C, 3T CT 50 50.5 21,041.67 307.5 1416 0.5049 - 0.5259 681.75 

5C, 3T TC 20 20.5 1366.67 135 882 0.5334 - 0.7358 61.50 

 

 
Figure 7. Good parameters in the case of 4C2T. 
 

 
Figure 8. Good parameters in the case of 5C2T. 
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Figure 9. Good parameters in the case of 5C3T. 
 

duration required for contacts involving children and teachers to be observed and 
recorded by the data collector can be explained by the fact that teachers, being 
adults, are more deliberate in their actions than children. When a teacher ap-
proaches a child they likely have some specific intent which the observer can 
easily classify as either involving a meaningful contact or not. Conversely, con-
tacts between children are more likely to be an accidental consequence of two 
children playing near each other making it much harder for the observer to keep 
track and notice them, unless they are longer in duration. 

There are also some interesting trends in the histogram of behavioral parame-
ters Al and Sl that produced the largest test statistics. 

In the case of 4 toddlers and 2 teachers, there is a clear tendency, among both 
agent types, toward small values for the activity level. When a toddler’s 0.2lA ≤  
their Sl did not have an apparent effect in contact numbers. In contrast, when a 
teacher has an activity level less than 0.02lA ≤ , smaller Sl values seem to pro-
duce better results. Interestingly, if a teacher’s activity level is above 0.2lA ≥  
then the better contact numbers matches are obtained for 0.6lS ≥ . If a child 
has an 0.2lA ≥  then the trend reverses, and the best samples appear when the 
child has a sociability level 0.2lS ≤ . The case of 5 toddlers and 2 teachers is less 
clear with both agent types performing best when the activity and sociability le-
vels fall near the midpoint of their range. 

Simulations involving preschoolers also showed a clear, albeit different, pat-
tern. In both 4C2T and 5C2T, the preschoolers show a trend toward activity and 
sociability levels above , 0.4l lA S ≥ . The teachers in these cases also tend to 
have high sociability levels although they do best when their activity level is in 
the range of 0.4 0.6lA≤ ≤ . The case of 5C3T is less clear, but suggests that the 
best values for the parameters are in the range of 0.4 , 0.6l lS A≤ ≤ . A summary 
of these results can be found in Table 7 and Table 8. 
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Table 7. Summary of optimal parameter ranges for toddlers. 

Toddlers 
optimal child  

Sl 
Optimal child  

Al 
Optimal teacher  

Al 
Optimal teacher  

Sl 

4 children, 2 teachers [0, 1] [0, 0.2] [0, 0.4] [0, 0.2] 

5 children, 2 teachers [0.2, 0.8] [0.2, 0.8] [0.2, 0.8] [0.2, 0.8] 

 
Table 8. Summary of optimal parameter ranges for preschoolers. 

Preschoolers 
optimal child  

Sl 
Optimal child  

Al 
Optimal teacher  

Al 
Optimal teacher  

Sl 

4 children, 2 teachers [0.4, 1] [0.4, 1] [0.6, 1] [0.4, 0.6] 

5 children, 2 teachers [0.4, 1] [0.4, 1] [0.6, 1] [0.4, 0.6] 

5 children, 3 teachers [0.4, 0.6] [0.4, 0.6] [0.4, 0.6] [0.4, 0.6] 

5. Conclusions and Future Work 

Given our work presented here, we conclude that toddlers and preschoolers must 
be modeled using different distributions of the behavioral parameters. Preschoo-
lers are modeled best as having high activity and sociability levels whereas toddlers 
are best modeled as having low activity levels and only a weak dependence on so-
ciability levels. Teachers appear to behave differently depending on the age of their 
pupils but tend more toward the mid range of the behavioral parameters. 

In the next stages of this project we aim to introduce pathogens into the si-
mulation as well as explore linking multiple classrooms to simulate a single child 
care facility. We also hope to gain access to the records at the CCLC so we can 
compare the simulated infections with historical data regarding child and teach-
er absence due to sickness. This would allow us to further validate the model de-
scribed in this paper. 
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Appendix: Curating Collected Data 

Counts for the number of child-child, child-teacher and teacher-teacher contacts 
were taken for each observation, and separated based on the time slots during 
which they were observed. Thus, for each configuration, we had three sets of 
count data. For every data set, we began testing for homogeneity of variance by 
applying Levene’s test. The two most notable causes of unequal variances be-
tween groups were due to a difference in the frequency of observed 0’s and out-
liers. This was a primary consideration when choosing a test statistic for the 
permutation tests. One difficulty to address here is that there are relatively few 
observations per group for many of the configurations, for this reason they 
served as more of a guideline than a hard rule for determining if homogeneity of 
variance was a reasonable assumption. We found two resources helpful in de-
termining how accurate Levene’s test was. Firstly, [39], which provides a priori 
power estimate based on the expected effect size, and performs a calculation for 
the observed effect size. Secondly, [40], which provides a figure for the priori 
power Levene’s test has vs the total sample size. If the p-value resulting from the 
test was significant for α = 0.05, we concluded that homogeneity of variance was 
not a reasonable assumption. If the p-value was insignificant for α = 0.05 we 
proceeded to compare boxplots, density plots and ECDF plots before determin-
ing if homogeneity of variance was a reasonable assumption. 

When the assumption of homogeneity of variance appeared to be met, a per-
mutation test based on the standard F-statistic from a one-way ANOVA model 
proved to be one of the best approaches to testing whether or not distributions 
of the populations from which we observe each group are the same. According 
to [41], the power of a permutation test based on the F-statistic is higher than a 
one-way ANOVA model for sample sizes of 10 or greater. If the p-value of this 
test was significant for α = 0.05, we concluded that the distributions were statis-
tically different and that we cannot coalesce the data from all of these groups. 
The group(s) that was(were) causing issues was(were) then excluded and we 
proceeded with more 2-group analyses if possible. If the p-value was insignifi-
cant for α = 0.05 and the results of Levene’s test seemed reasonable, we con-
ducted a Kruskal-Wallis test and a permutation test based on the H-statistic for 
more supporting evidence before making a conclusion. We also ran a permuta-
tion test based on Satterthwaite’s corrected F-statistic—this was particularly im-
portant in the cases where Levene’s test lacked power or accuracy (Figure A1). 

We decided to use Satterthwaite’s observed F-statistic alongside the standard 
F-statistic as a metric in a permutation test to test for a difference in the means 
of the populations from which we observe each group. We can’t be certain 
whether or not the variability in the observed values is due to differences in the 
means of the groups or their variances with the standard F-statistic given the 
power Levene’s test has for our sample sizes. If the p-value was significant for α 
= 0.05, we concluded that the distributions were statistically different and that 
we cannot coalesce the data from all of these groups. We excluded the group(s)  
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Figure A1. In the above test results, performed on child to child contact data from four children and three 
teachers, the p-value is significant at a significance level of α = 0.05. For that reason we reject the null hypothe-
sis of homogeneity of variance and refrain from coalescing this data into a single set. 

 

 
Figure A2 Above are the results from a permutation test using the H-statistic from a Kruskal-Wallis test as a 
metric. The test was performed on child to teacher contact data from 4C2T set. The p-value is insignificant at a 
significance level of α = 0.05, therefore it would appear to be reasonable to coalesce the data. 

 
that was(were) causing issues and proceeded with more 2-group analyses if 
possible. If the p-value was insignificant for α = 0.05, we made no conclusions 
based on this test (Figure A2). 

A Kruskal-Wallis test proved useful when analyzing most of the data sets, 
even with many ties in between the groups. Given that an assumption of the 
K-W test involves similarly shaped distributions between groups, we also con-
ducted a permutation test using the observed H-statistic from a K-W test as the 
metric. The conclusions from both tests were the same for every data set. For 
agent configurations where certain groups either had no observations or had 
been excluded as a result of prior analysis/tests, we conducted a permutation test 
using the observed t-statistic from a pooled sample variance t-test and Welch’s 
t-test as metrics. 
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