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Abstract 
In this paper, we establish discrete flexural lattice chain models of Bragg and 
locally resonant phononic crystals by setting mass defect atoms and local re-
sonant elements on the flexural lattice chain. The bandgap characteristics of 
flexural wave in phononic crystals are studied by establishing the governing 
equations of the model. The results from models show that with the change of 
the mass ratio of defective atoms to normal atoms, the bandgap of the flexural 
wave produced by Bragg scattering shows a certain rule. When the local re-
sonant bandgap and Bragg scattering bandgap are close to each other, the two 
bandgaps will be coupled to form a wider flexural wave bandgap. The effect of 
axial strain on bending wave propagation is only the shift of bandgap posi-
tion. The effect of material damping on the propagation of a bending wave is 
only energy dissipation at high frequency. In addition, we use finite element 
simulation to calculate the bandgap of flexural wave in phononic crystals with 
mass defects, and the results are consistent with lattice chain model. This 
shows that lattice chain model can effectively guide the bandgap design of 
phononic crystals. This comprehensive study may help to elucidate the rule of 
bandgap generation of flexural wave in one-dimensional phononic crystals. 
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1. Introduction 

Phononic crystals (PCs) [1] are periodic composites with elastic wave bandgaps. 
Elastic wave in the bandgap frequency range cannot propagate. Due to this cha-
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racteristic, PCs have received extensive attention in recent years and have also 
generated many applications, such as vibration isolation and noise reduction [2] 
[3], filters and waveguides [4] [5]. 

PCs generate bandgaps mainly through the Bragg scattering mechanism [6] 
and local resonance mechanism [7]. For the former, the Bandgaps are generated 
by the interaction between periodic structures and elastic wave. For the latter, 
the Bandgaps are generated by elastic wave resonating with a scatterer. At present, 
simplified models of PCs have been established based on continuum theory. 
Based on these models, the bandgap characteristics of PCs are studied extensive-
ly. Sigalas [8] studied the effect of density difference between matrix and scatter-
er on elastic wave propagation. Vasseur [9] studied the influence of elastic mod-
ulus difference between matrix and scatterer on elastic wave propagation. Based 
on Euler beam theory, Wang [10] calculated the band structure of the flexural 
wave of a locally resonant beam with an infinite period. Gei [11] studied the in-
fluence of tensile strain on elastic wave transmission characteristics of qua-
si-periodic structures. Hussien [12] [13] studied the dissipation of elastic wave 
energy in the elastic structure with periodic damping and established a theoreti-
cal system of wave scattering research based on his research model. Different 
from the methods based on continuity theory, the PCs discrete lattice dynamics 
model can provide intuitive and concise insights into wave propagation through 
simple mechanical models. For example, the propagation characteristics of 
p-wave can be well proved by the lattice dynamics model [14] and particle mod-
els [15]. However, such models are lacking for flexural wave. Motivated by this, 
we build a flexural lattice chain model of PCs, which can provide more intuitive 
and basic insights for the design of flexural wave bandgaps in PCs, and effective-
ly save computational costs. 

The structure of this paper is as follows: Firstly, the establishment of a one- 
dimensional flexural lattice chain model is introduced. Secondly, a lattice chain 
model containing mass defect atoms and local resonators is established, and the 
effect of model parameters on the flexural wave bandgap is investigated. Then, a 
finite length lattice chain model with mass defect atoms and the locally resonant 
unit is established, and the effects of axial strain and damping on the vibrational 
response of lattice chains are studied. Finally, make a concluding comment. 

2. Theoretical Basis 

Figure 1(a) shows the lattice chain model of a one-dimensional structure. m 
denotes atomic mass, a denotes the lattice constant, ka the rotational stiffness of 
the rod, θ denotes the corner of the rod. Figure 1(b) shows the displacement 
diagram of atoms in the flexural vibration of one-dimensional lattice chains, y 
denotes the displacement of the atom in the y-direction. Figure 1(c) shows the 
force analysis of the rod, Mi (i = n − 1, n, n + 1) denotes the bending moment. 
QL, QR denotes the shear force. Figure 1(d) shows the force analysis of the atom. 

According to geometric conditions, the angle changes of the two rods in Fig-
ure 1(c) can be expressed as: 
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Figure 1. One-dimensional monatomic lattice chain and its force analysis. 
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The bending moment in figure (d) is expressed as: 
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The moment balance equation can be expressed as: 
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According to Newton’s second law, the governing equation of n-atom bending 
vibration is written as: 
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Substituting (1), (2) and (3) into (4), we can get the governing equation for n 
atom: 

 ( )
2

1 1 2 22

d
4 4 6

d
n

a n n n n n
y

m k y y y y y
t + − − += + − − −               (5) 

3. Band Structure of One-Dimensional Phononic Crystals  
Lattice Chain Model 

3.1. Calculation of Band Structure of Lattice Chains with Mass  
Defects 

Figure 2 shows the lattice chain model of mass defect PCs and their unit cell 
structure. The red atom is a mass defect atom with a mass of m1. The blue atom 
has mass m2. 
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Figure 2. Lattice chain unit cell structure. 

 
According to the introduction of the theoretical basis, the governing equation 

of atoms in unit cell can be written as: 
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According to Bloch’s theorem, the lattice wave solution in a lattice chain can be 
written as: 
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where A, B, C and D represent the maximum displacement of atoms 4n − 1, 4n, 
4n + 1 and 4n + 2 in the y-direction respectively. t denotes the time, ω denotes 
the frequency, k denotes wave vector. Substituting (7) into (6) and solving the 
eigenvalue problem, the relation between wave vector k and frequency can be 
obtained. By plugging in the data ka = 1, a = 1, m1 = 1, m2 = 2 (dimensionless), 
the bandgap of a one-dimensional lattice chain can be obtained, as shown in 
Figure 3. 

Figure 3 shows the relationship between frequency and wave vector in a lat-
tice chain with a mass defect atom. The band structure consists of four curves. 
The bottom curve is an acoustic branch. The rest is an optical branch. The shaded 
part is the bandgap of the flexural wave caused by Bragg scattering. 

The main cause for the bandgap is the material density difference between 
matrix and scatter in PCs. To clarify the effect of this difference on the bandgap 
of the flexural wave through the existing lattice chain model, we calculate the 
band structure of the lattice chain under different parameters by changing the 
value of atomic mass ratio m2/m1. Figure 4 shows the starting frequency, cutoff 
frequency and bandgap width of the first bandgap, second bandgap and third 
bandgap of the band structure under different m2/m1. 
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Figure 3. Mass defect lattice chain band structure. 
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Figure 4. Band structure of mass defect lattice chain at different m2/m1. 

 
Figures 4(a)-(c) respectively show the starting frequencies, cutoff frequencies 

and bandgap widths of the first bandgap, second bandgap and third bandgap of 
the lattice chain band structure at different m2/m1. When m2/m1 < 1, with the 
increase of m2/m1, the starting frequency remains unchanged, the cutoff fre-
quency decreases and the frequency range decreases. When m2/m1 > 1, with the 
increase of m2/m1, the starting frequency decreases, the cutoff frequency stays 
constant and the frequency range increases. From the point of view of bandgap 
width, when the atomic mass difference is larger, the bandgap is wider. From the 
point of view of the bandgap position, the initial frequency of the bandgap at 
m2/m1 < 1 is consistent with the cutoff frequency of the bandgap at m2/m1 > 1 
and the magnitude of this frequency is determined by the lattice constant. This 
means that when m2/m1 < 1, the elastic wave bandgap with a higher frequency 
will be obtained, and when m2/m1 > 1, the elastic wave bandgap with a lower 
frequency will be obtained. This is of great significance to the design of the flex-
ural bandgap in PCs. 

In addition, we use finite element simulation to calculate the band structure of 
PCs with quality defects to verify the lattice chain model. Firstly, we established 
the PCs unit cell finite element model as shown in Figure 5. Where, a = 10 mm, 
b = 2 mm, red and yellow represent materials A and B respectively. The two ma-
terials have the same Young’s modulus (E = 71 GPa) and Poisson’s ratio (μ = 
0.33), but different densities (ρA = 2700 kg/m3). By adjusting the density of ma-
terial B, we can get the relationship between ρB/ρA and the starting frequency, 
cutoff frequency and bandgap width of the first bandgap, second bandgap and 
third bandgap in the band structure, as shown in Figure 6. 

By comparing Figure 5 and Figure 6, we found that with the change of quali-
ty defects, the band gap changes in the lattice chain model and the finite element 
simulation results are consistent. This indicates that lattice chain model can ef-
fectively guide the design of PCs flexural bandgap.  
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Figure 5. PCs unit cell finite element model. 

 

 
Figure 6. Banded structures of PCs with mass defects at different ρB/ρA. 
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3.2. Calculation of Band Structure of Lattice Chains with Locally  
Resonant Unit 

Figure 7 shows the lattice chain model of locally resonant PCs and their unit cell 
structure. kb denotes the spring stiffness of the local resonance unit, m' denotes 
atomic mass of locally resonant unit.  

According to Newton’s second law, the equilibrium equation for atom 1' is:  

 ( )
2

1
1 02

d
d b

ym k y y
t

′
′′ = − −                       (8) 

The vibrational solution of 1' atom is as follows: 

 ( )1 1 cosy A tω ϕ′ = +                         (9) 

A1 denotes the maximum amplitude of 1' atom, ω denotes the frequency of vi-
bration, φ denotes the phase. According to the introduction of the theoretical 
basis, the governing equation for 4n atom can be obtained:  
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Substituting (8) and (9) into (10), and the governing equation for 4n-atom be-
comes:  
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The governing equation of atoms in unit cell can be written as:   
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The Lattice solution can also be expressed as Equation (7). 
Substituting (7) into (12) and solving the eigenvalue problem, the relation 

between wave vector k and frequency can be obtained. By plugging in the data ka 
= 1, kb = 1, a = 1, m = 1, m' = 1 the bandgap of a one-dimensional lattice chain 
can be obtained, as shown in Figure 6. 

 

 
Figure 7. Lattice chain unit cell structure. 
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Figure 8 shows the relationship between frequency and wave vectors in a lat-
tice chain with locally resonant units. The shaded part is the bandgap of the 
flexural wave caused by the local resonance of Bragg scattering. Since the local 
resonance unit increases the equivalent mass of the atom to which it is attached. 
The periodic existence of mass defect atoms in the lattice chain leads to the ap-
pearance of Bragg scattering bandgaps in the band structure. The local resonant 
bandgap is generated because the flexural wave resonates in the local resonant 
element, and its bandgap position is related to the resonant frequency. 

The position and width of the bandgap in locally resonant PCs are closely re-
lated to the resonant frequency of the locally resonant unit. We calculate the 
band structure of lattice chains with different local resonant frequencies ω by 
changing the value of kb in the local resonant unit. Figure 9 shows the band 
structure of flexural wave at different ω. 

Figure 9 shows the band structure of lattice chains at different resonant fre-
quencies ω. The shaded areas represent the flexural wave bandgap. We can see 
that with the change of the local resonant frequency, the position of the local re-
sonant bandgap of the flexural wave also changes. As the local resonant fre-
quency increases, the Bragg scattering bandgap also increases. This is due to the 
increase in the equivalent mass of the 4n atom as the resonance frequency in-
creases (ka or m' increases). By comparing Figure 9(g), Figure 9(h) and Figure 
3. We find that when the local resonant frequency is large, the local resonant 
bandgap disappears and the band structures of the mass defect type and the local 
resonance type lattice chains are consistent under specific parameters. This 
shows that when the stiffness of the local resonant unit spring is too large, local 
resonant PCs will be transformed into Bragg scattering PCs. By comparing the 
band structure in Figure 9, we also find that when the Bragg bandgap and the 
local resonant bandgap are close to each other, a wider flexural wave bandgap is 
formed through coupling. 

 

 
Figure 8. Lattice chain band structure.  
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Figure 9. Lattice chain band structure at different ω . 

4. Amplitude-Frequency Response of Lattice Chain Model of  
One-Dimensional Phononic Crystals 

The band structure is calculated based on infinite period, but there is no infinite 
period structure in reality. So, it is very important to calculate the ampli-
tude-frequency response of the finite period structure. In this chapter, we calculate 
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the amplitude-frequency response of the flexural vibration of a one-dimensional 
finite lattice chain model and investigate the effects of axial tension and material 
damping on the bandgap of flexural vibration. 

4.1. Amplitude-Frequency Response Calculation 

In this section, we introduce the amplitude-frequency response calculation of 
the PCs lattice chain model with 10-unit cells. 

Figure 10 shows a lattice chain model with 10 mass-defect atoms (red atoms). 
The mass defect atoms are spaced 4a. A harmonic displacement excitation in the 
y-direction is applied to the left end of the lattice chain, and the other end is kept 
free. We can establish the governing equation of atom by Newton’s second law 
and bending moment balance: 
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             (13) 

when 3 41n≤ ≤  the governing equation for the blue atom can be expressed as: 
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when 3 41n≤ ≤  the governing equation for the red atom can be expressed as: 
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t a − + − += + − − −           (15) 

A denotes the amplitude of harmonic excitation; other parameters are consistent 
with chapter 2. 

y43 is obtained by solving the governing equations of all atoms in the lattice 
chain simultaneously. We define the amplitude-frequency response as: 

 1020 log out

in

p
T

p
 

= ×  
 

                      (16) 

Pout and Pin represent the maximum displacement response of y1 and y43, re-
spectively. By plugging in the data ka = 1, a = 1, m1 = 1, m2 = 2 the amplitude- 
frequency response of the one-dimensional lattice chain can be obtained, as 
shown in Figure 11. 

 

 
Figure 10. Lattice chain model. 
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Figure 11. Amplitude-frequency response. 

 
Figure 11 shows the amplitude-frequency response of the lattice chain model. 

The shaded part represents the attenuation frequency range of bending vibra-
tion.  

4.2. Effect of Strain on Lattice Chain Bending Vibration 

Axial stress is the most common form of stress in one-dimensional structures. It 
is of great significance to study the effect of axial strain on the bandgap of 
one-dimensional PCs. In this section, we add axial tensile forces to the finite lat-
tice chain model to calculate the amplitude-frequency response of the lattice 
chain. 

Figure 12 shows the lattice chain model under tension. F donates the axial 
tensile forces; kc donates the lattice chain tensile stiffness. We can establish the 
governing equation of atom by Newton’s second law and bending moment bal-
ance:  
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when 3 41n≤ ≤  the governing equation for the blue atom can be expressed as: 
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when 3 41n≤ ≤  the governing equation for the red atom can be expressed as: 
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Figure 12. Lattice chain model under tension. 
 
where F denote the axial force, b = F/kc denote the atomic spacing. The ampli-
tude-frequency response can be obtained by solving the governing equations and 
equation (16) for all atoms in the lattice chain. By plugging in the data ka = 1, a = 
1, m1 = 1, m2 = 2 the amplitude-frequency response of the one-dimensional lat-
tice chain can be obtained. By adjusting the axial tension F, we calculated the 
amplitude-frequency response when strain ε = 0.003 and strain ε = 0.006 respec-
tively, as shown in Figure 13. 

Figure 13 shows the amplitude-frequency response of finite periodic lattice 
chains under different strains.  

The strain causes the translation of the vibration bandgap generated by Bragg 
scattering. 

4.3. Effect of Damping on Lattice Chain Bending Vibration 

Damping is an inherent property of materials, which is related to energy dissipa-
tion during vibration, so it is very important to study the effect of damping on 
PCs vibration characteristics. In this section, damping is added to the lattice 
chain and the effect of damping on the bandgap of lattice chain bending vibra-
tion is studied. 

Figure 14 shows the damped lattice chain model, c donates the material 
damping. We can establish the governing equation of atom by Newton’s second 
law and bending moment balance:  
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when 3 41n≤ ≤  the governing equation for the blue atom can be expressed as: 
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when 3 41n≤ ≤  the governing equation for the red atom can be expressed as: 
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The amplitude-frequency response can be obtained by solving the governing 
equations and Equation (16) for all atoms in the lattice chain. By plugging in the  
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Figure 13. Amplitude-frequency response of lattice chains under tension. 

 

 
Figure 14. Lattice chain model with damping. 
 

 
Figure 15. Amplitude-frequency response of lattice chain model with damping. 

 
data ka = 1, a = 1, m1 = 1, m2 = 2 the amplitude-frequency response of the one- 
dimensional lattice chain can be obtained. By adjusting damping c, we calculated 
the amplitude-frequency response of damping c = 0.03, c = 0.06 and c = 0.09 re-
spectively, as shown in Figure 15. 

Figure 15 shows the amplitude-frequency response of finite periodic lattice 
chains with different damping. When the damping is constant, the attenuation 
of vibration response caused by damping increases with the increase of dis-
placement excitation frequency. When the displacement excitation frequency is 
constant, the response attenuation caused by damping increases with the in-
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crease of damping.  

5. Conclusion 

In this paper, the crystal lattice dynamics model of one-dimensional PCs is es-
tablished and the principles of the Bragg scattering bandgap and local resonant 
bandgap are revealed from the lattice dynamics perspective. The influence me-
chanism of mass ratio of mass defect atom to ordinary atom and local resonance 
frequency on bandgap was investigated. Based on the practical application, the 
lattice chain model of finite periodic PCs is established. The effects of strain and 
damping on bending vibration attenuation of finite period PCs are summarized. 
The comprehensive study may provide fundamental insight on how to modulate 
bandgaps in one-dimensional continuum PCs. At the same time, the flexural lat-
tice chain model of two-dimensional PCs has important guiding significance for 
the design of flexural wave bandgaps. These studies will be published in our fol-
low-up research. 
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