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Abstract 
The Clifford algebra is a unification and generalization of real number, com-
plex number, quaternion, and vector algebra, which accurately and faithfully 
characterizes the intrinsic properties of space-time, providing a unified, stan-
dard, elegant, and open language and tools for numerous complicated ma-
thematical and physical theories. So it is worth popularizing in the teaching of 
undergraduate physics and mathematics. Clifford algebras can be directly ge-
neralized to 2n -ary associative algebras. In this generalization, the matrix 
representation of the orthonormal basis of space-time plays an important 
role. The matrix representation carries more information than the abstract 
definition, such as determinant and the definition of inverse elements. With-
out this matrix representation, the discussion of hypercomplex numbers will 
be difficult. The zero norm set of hypercomplex numbers is a closed set of 
special geometric meanings, like the light-cone in the realistic space-time, 
which has no substantial effect on the algebraic calculus. The physical equa-
tions expressed in Clifford algebra have a simple formalism, symmetrical 
structure, standard derivation, complete content. Therefore, we can hope that 
this magical algebra can complete a new large synthesis of modern science. 
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1. Introduction 

The development of the number systems had gone through a long and difficult 
historical process, not as simple as it seems today. The improvement of the concept 
of “number” is full of legends. After Pythagoras and Hippasus found that the di-
agonal length and edge length of a square is irreducible, Eudoxus (400BC-347BC) 
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established the irreducible theory. Until the 19th century, after R. Dedekind 
(1831-1916), G. Cantor (1846-1918) and K. Weierstrass (1815-1897) completed 
the rigorous irrational number theory, the theory of real numbers was strictly 
established [1]. 

The introduction of “imaginary number” has also experienced many difficul-
ties, and at the beginning, many mathematicians hold resistance attitude against 
the imaginary number. It was not until the second half of the 18th century that K. 
F. Gauss (1777-1855) found a geometric representation of complex numbers, 
that is, they correspond to the points of a plane, then the imaginary number got 
a specific geometric interpretation and wide application in practical problems, 
that this new number system was widely recognized [1]. From the perspective of 
algebra, rational, real, and complex numbers are all closed for addition, subtrac-
tion, multiplication and division operations and without zero factors, and the 
calculations satisfy the associative, distributive, and commutative laws. 

By the 19th century, people had a clear understanding of number systems and 
algebraic algorithm, and had studied the legitimacy of symbolic operations. This 
paved the way for the later development of abstract algebras, especially of Boo-
lean algebra. How to extend the superiority of complex numbers in the plane to 
3-dimensional space was a difficult problem in front of people, and many fam-
ous mathematicians were looking for the “3-ary numbers” [1]. The Irish ma-
thematician W. R. Hamilton (1805-1865) was also joined in the search for 3-ary 
numbers due to the practical needs in physics. He fought intermittently for the 
3-ary numbers for 15 years, always struggling about how to define its multiplica-
tion. At the dusk of October 16, 1843, Hamilton had a flash of inspiration that 
the commutative law of multiplication must be abandoned and an ordered array 
with 4 real numbers was needed, and then quaternion was born. 

Having real numbers, complex numbers and quaternions, a natural idea is to 
similarly expand the number system by abandoning the algebraic rules as little as 
possible. But in 1878, an important theorem, proved by the German mathemati-
cian F. G. Frobenius (1849-1917), gave a negative conclusion. The theorem 
shows that , ,    are the only finite-dimensional division algebras over   
without zero factors. Subsequently, a generalized Frobenius’ theorem showed 
that if the associative law of multiplication is abandoned, the division algebra 
without zero factors leaves only the octonion or Cayley number [1]. 

Clifford algebra is a kind of algebraic systems rooted in geometry, which was 
introduced by William Kingdon Clifford (1845-1879). The element of Clifford 
algebra represented by the Grassmann basis is the unification and generalization 
of real, complex, quaternion and vector algebra (H. G. Grassmann, 1809-1877). 
Clifford algebra accurately and faithfully describes the intrinsic properties of 
space-time, and can realize the convenient conversion between flat space-time 
and manifold. Clifford algebra only depends on a few simple concepts such as 
number fields, vector space etc., providing a unified, standard, elegant and open 
language and tool for numerous complicated mathematical and physical theories 
[2] [3] [4] [5] [6]. In recent years, Clifford algebra has made brilliant achieve-
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ments in differential geometry, theoretical physics, classical analysis and other 
aspects, and has been widely used engineering, such as robotics and computer 
vision [7] [8] [9] [10]. Clifford algebra also has applications in mathematical 
mechanization such as machine proof of geometric theorem. Currently, geome-
tric automatic proof has become an important application of Clifford algebra. 
The algorithm of Clifford Algebra is arithmetic-like operations, well understood 
by everyone. This feature is very useful for pedagogical purposes, and promoting 
Clifford algebra in high schools and universities will greatly improve the effi-
ciency of students in learning the basic knowledge of mathematics and physics 
[5] [6]. 

2. Clifford Algebras and Hypercomplex Numbers 

For n dimensional Minkowski space-time ( ),p q p q n+ =  over number field 
 , the metric corresponding to the orthonormal basis { }ae  and coframe { }ae  
is given by ( ) ( ) ( )diag ,ab

ab p qI Iη η= = − . The Clifford algebra defined on 
,p q  is an algebra satisfying the following multiplication rules, 

2 , 2 .a b a b ab
a b a b abη η+ = + =e e e e e e e e              (2.1) 

Because of the close relation between Clifford algebra and geometry, it is also 
called geometric algebra, and the product a be e  is called Clifford product or 
geometric product. The geometric product is bilinear, i.e., for any vectors 

a a
a ax x= =x e e  and a a

a ay y= =y e e , we have 

( )( ) ( ) ( ) , , .a b a b a b a a
a b a b a bx y x y x y x y= = = ∀ ∈xy e e e e e e

 
In this paper the Einstein’s summation is adopted. 

By (2.1) we have 

( ) ( )1 1 ,
2 2

a b
a b b a a b b ax y  = + + − = ⋅ + ∧ 

 
xy e e e e e e e e x y x y       (2.2) 

where ∧x y  is the Grassmann product or exterior product of vectors. The 
geometric meaning of the exterior product is the area of a parallelogram con-
structed by the vectors x  and y . The symmetrization of the geometric prod-
uct of the basis ae  yields the unit or zero element, and the antisymmetrization 
one yields the exterior product of basis. Since the exterior product on an n di-
mensional space-time has 2n  basis elements, which form the basis of Grass-
mann algebra (also called exterior algebra), 

12
0 12 ,a ab abc n

a ab abc nC I C C C C= + + + + + �
�� e e e e           (2.3) 

where abC∀ ∈�  , ab c a b c= ∧ ∧ ∧� �e e e e , a b c< < <� . (2.3) is called Clif-
ford-Grassmann numbers, which is equivalent to the Clifford algebra ,p qC�  in 
the sense of linear algebra. 

The representation of the sum (2.3) is not unique due to the antisymmetry of 
Grassmann product. For example, the term ab

abC e  usually adopts the conven-

tion a b< , but sometimes adopts the antisymmetrical form 1
2!

ab
abC e  with 
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ab baC C= − . In 1 + 3 dimensional space-time we also use the 3-d vector form 

( ) ( )01 02 03 23 31 12, , , , , ,E C C C B C C C= =
� �

 
The results of all these representations are equivalent. Since the Clifford algebra 
is isomorphic to matrix algebras, the basis vectors can be represented by a set of 
special square matrices, so that the geometric algebra transforms into the famili-
ar matrix algebra. The following theorem provides a canonical matrix represen-
tation for the orthonormal basis { }ae  of the space-time. 

Denote the Pauli matrices by 

1 0 0 1 0 i 1 0
, , ,

0 1 1 0 i 0 0 1
aσ

 −         ≡         −           
0 0 , , 1, 2,3,k kI kσ σ σ σ= = = − =� �  

and higher order Dirac-γ matrices by 

( )0 ,
0

a
a a

a mϑ
γ

ϑ
 

= ≡ Γ 
 

�
                   (2.4) 

in which 1m ≥ , 

diag , , , , diag , , , .
m m

a a a a a a a aϑ σ σ σ ϑ σ σ σ
   

= =      
   

����������� �����������
� � � �� �

 
aγ  (2.4) forms the complex matrix representation of the basis vectors ae  or 

the generators of Clifford algebra 1,3C� . 
Denote m-order identity matrix by mI . For any square matrix ( )abA A= , 

denote the block matrix by 

( ) [ ] ( ), , , , diag , , , .m ab mA I A I A B C A B C⊗ = =� �  

Clearly we have 2 2 4I I I⊗ = , 2 2 2 8I I I I⊗ ⊗ =  and so on, where ⊗  means the 
Kronecker product of matrices. For { }0,1,2,3a∈ , ( )a mΓ  are all 4 4m m×  
square matrices, they constitute a set of basis of 1,3 . For Clifford algebra 

p qC +� , we have the following theorem of complex matrix representation [11]. 
Theorem 1 1) In the case of neglecting an imaginary factor i, for the genera-

tors of 4mC� , there exists the following unique matrix representation in the 
equivalent sense 

( )

2

22 2

4 4 4 4 2

6 6 6 6

6 6

,  , ,
2 2

, , , ,
2 2 2 2

, , , ,
2 2 2 2

,
2 2

a a a

a a a a

a a a a

a a

n nn I

n n n n I

n n n n

n n

     Γ Γ −Γ ⊗         
           Γ −Γ − Γ −Γ ⊗                      
        Γ −Γ −Γ Γ                 

   − Γ −Γ  
  

36 6 2
, , , .

2 2
a an n I

     −Γ Γ ⊗             
�

       (2.5) 

In which 12mn N−= , N is any given positive integer. All matrices are 
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1 12 2m mN N+ +×  type. 
2) For 4 1mC +� , besides (2.5) we have another generator 

[ ] [ ] [ ] [ ]4 1 , , , , , , , ,m E E E E E E E Eγ +     = − − − − − − −    �        (2.6) 

where [ ] ( )2 2, , 0k lE I I kl= − ≠ . If and only if k l= , this representation can be 
uniquely expanded as generators of 4 4mC +� . 

3) The generators of 4 2mC +�  or 4 3mC +�  can be represented by 4 2m +  or 
4 3m +  matrices from the matrix representation of the 4 4mC +�  generators. 

4) For ( ), 2,3jC j =� , besides to select the matrices from the basis of 4C�  
for the representation, we also have the following matrix representation 

( ){ }diag , , 1, 2,3a
k k kγ ϑ ξ∈ − =                  (2.7) 

where 

diag , , , , diag , , ,
m n m

k k k k k k k kϑ σ σ σ ξ σ σ σ
−   

= =      
   

����������� �����������

� �         (2.8) 

and ( ) 0m m n≤ ≤  is independent of k. 
Then we obtain all complex matrix representations for generators of ,p qC�  

explicitly. 
By the isomorphism of Clifford algebra and matrix algebra, we can directly 

use the aγ  matrices defined in (2.5) as basis vectors, and this brings great con-
venience in calculation. According to matrix algebra, the Clifford-Grassmann 
numbers (2.3) also satisfy the associative law of multiplication and the distribu-
tive law for addition, but like quaternons, there is no commutative law of mul-
tiplication. In (2.3), each grade-k term is a rank-k tensor, for examples, 

0
0C I ∈Λ  is a true scalar, 1a

aC γ ∈Λ  is a true vector, 2ab
abC γ ∈Λ  is rank-2 

antisymmetric tensor, also called bivector, 1 2
1 2

k
k

a a a k
a a aC γ ∈Λ�
�  is a k-vector 

and so on. The canonical matrix basis set is given by 
12,  ,  ,  ,  ,  .a ab a b abc a b c nI γ γ γ γ γ γ γ γ γ= ∧ = ∧ ∧ ��          (2.9) 

In particular, for the 1 + 3 dimensional Minkowski space-time, we have the 
lowest order complex matrix representation of the basis of Clifford algebra 

1,3C�  as 
0123 0123 5

4 , , , i , i ,a ab abc abcd
dI γ γ γ ε γ γ γ γ= = −         (2.10) 

in which ( )5
2 2diag ,I Iγ = −  and 0123 1ε = . In the case without confusion, we 

also use 1 to represent the identity matrix I. So we have a Clifford-Grassmann 
number as 

( )0123 0123
4 , , , , .a ab a

a ab a asI A H Q p s p Aγ γ γ γ γ= + + + + ∈�    (2.11) 

Let ( )01 02 03, ,E H H H=
�

 and ( )23 31 12, ,B H H H=
�

, we have the determinant of 
 , 

( ) ( ) ( ) ( )
( ) ( )

2 2 22 2 2 2 2 2

2 22 2 2 2 2 2

det 4

4 4 ,

a
as p A Q s p

p s E B E B sp

= + − − + − +

+ − + − + ⋅ − − + ∆
� � � �

 A Q

A Q
   (2.12) 
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where 2 2 2 2 2 2
0 0, a a

a aA A A A Q Q Q Q= = − = = −
� �

A Q  and 

( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
0 0

2 2 2 2

0 0

0 0

0 0

2 4 )

4

8

8

8 ,

E B E B A Q

A E A B Q E Q B

A A Q Q B E

s Q A E Q A A Q B

p Q A B Q A A Q E

∆ = − + + + + +

 − ⋅ + ⋅ + ⋅ + ⋅  
 + + ⋅ × 
 + × ⋅ + − ⋅ 
 + × ⋅ − − ⋅ 

� � � �

� � � �� � � �

� � � �

� � � �� �

� � � �� �

A Q

        (2.13) 

in which ( )1 2 3, ,A A A A=
�

, ( )1 2 3, ,Q Q Q Q=
�

. From (2.12) we learn that, 
( )det ∈  is independent of the imaginary unit “±i” in the basis matrix, that 

is, the matrix representation of the basis elements (2.10) is actually independent 
of the number field  . 

In the domain ( ){ }det 0≠ , we define the reciprocal of   as the matrix 
1− . Since ( )1 s−  can be expressed as Taylor series of 1s−  at s = ∞ , 1−  is 

also a Clifford-Grassmann number with basis matrices (2.10). This means that 
the basis (2.10) is closed for all algebraic calculation of matrix. Thus, we can 
generally define analytic functions and equations of Clifford-Grassmann num-
bers, such as 

( )sinr n me e ω −= +        

where ( ), , ,�    are all Clifford numbers with coefficients in field  . 
Therefore, the Clifford algebra is actually a supercomplex system with basis 
(2.10) or (2.9). 

In the case =  , which is the most used case, defining the norm 
( )4 det=  ,   is an invariant scalar under the transformation of rotation, 

reflection, and translation of the coordinate system [12]. For example, under rota-
tional transformation ,Spin p q∈ , we have transformation 1−′ =   and 

1= , and then a set of orthogonal basis ab cγ �  transform into another set of 
orthogonal basis 1ab c ab cγ γ −=� �  . By the multiplication rule of the matrix 
determinants, we have ′ =   and the modular law = ⋅   . The 
zero norm set { }0=  is a closed set. For the number systems ,   and 
 , this definition of norm is the same as the usual length. If relaxing the re-
quirement of zero factor condition 0 0= ⇔ =  , we will obtain infinite 
noncommutative associative division algebras. Since the zero norm set 

( ){ }det 0=  is some analytic hypersurfaces similar to light cones, relaxing this 
requirement has little influence on the algebraic operations and leads to much 
less problems than abandoning the associativity. Instead, these zero hypersur-
faces, like light cones, may have special geometric and physical significance and 
deserve careful investigation. 

If we adopt the metric convention ( )diag 1,1,1,1abη = − , we check the similar-
ities and differences between the determinant of the Clifford-Grassmann num-
bers in 3,1C�  and 1,3C� . Making transformation ia aγ γ=� , we transform 

1,3C�  into 3,1C� . In this case we have ab abγ γ= −�  and 0123 0123γ γ=� . Then for 
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Clifford-Grassmann number in 3,1C�  

( ) ( ) ( )

0123 0123
4

0123 0123
4 i i ,

a ab a
a ab a

a ab a
a ab a

sI A H Q p

sI A H Q p

γ γ γ γ γ

γ γ γ γ γ

= + + + +

= + + − + +

� � � � � �
      (2.14) 

comparing (2.14) with (2.12), we obtain the determinant of �  as 

( ) ( ) ( ) ( )
( ) ( )

2 2 22 2 2 2 2 2

2 22 2 2 2 2 2

det 4

4 4 ,

a
as p A Q s p

p s E B E B sp

= + − − + − +

′+ − + − + ⋅ − − + ∆

�

� � � �
 A Q

A Q
   (2.15) 

where 2 2 2 2 2 2
0 0, a a

a aA A A A Q Q Q Q= = − = = −
� �

A Q  and 

( )( ) ( )( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
0 0

2 2 2 2

0 0

0 0

0 0

2 4

4

8

8

8 .

E B E B A Q

A E A B Q E Q B

A A Q Q B E

s Q A E Q A A Q B

p Q A B Q A A Q E

′∆ = − + + − + +

 + ⋅ + ⋅ + ⋅ + ⋅  
 − + ⋅ × 
 − × ⋅ + − ⋅ 
 − × ⋅ − − ⋅ 

� � � �

� � � �� � � �

� � � �

� � � �� �

� � � �� �

A Q

        (2.16) 

Comparing ( )det �  with ( )det   we find that, vectors A  and Q  in the 
determinant appear in quadratic forms. Except for the cross terms ( ), ′∆ ∆ , the 
difference is that the signs of quadratic terms of A  and Q  are reversed, 
which can be also regarded as a result of different conventions of metric. How-
ever, the cross terms ( ), ′∆ ∆  lead to different objective effects that cannot be 
eliminated by a linear transformation of parameters in  . In physics, the sign 
convention of metric ( ), , ,+ − − −  or ( ), , ,− + + +  is just an artificial choice and 
should not result in objective effects. But ( )det   is not equivalent to ( )det �  
in logic. This situation will produce a serious problem in philosophy. Either the 
metric sign ( ), , ,+ − − −  is essentially not equivalent to ( ), , ,− + + +  and the rea-
listic space-time corresponds to only one case, so our arbitrary choice of the me-
tric sign is wrong. Or the terms of different signs in two determinants do not ex-
ist in physics. 

If the odd grade terms and even grade terms do not appear in the same Clif-
ford-Grassmann number, then this objectivity problem will be avoidable. For 
example, let 

0123 0123
4, ,a a ab

a a abA Q sI H pγ γ γ γ γ= + = + +   
by (2.12) or (2.15) we have 

( ) ( ) ( )2 22 2det 4 ,a
aA Q= − + A Q                (2.17) 

( ) ( ) ( )2 22 2 2 2det 4 .p s E B E B sp= − + − + ⋅ −
� � � �

           (2.18) 

In this case, the norms have concise and symmetric forms, and are positive 
semi-definite. The zero norm condition of   is that the two vectors are or-
thogonal to each other and of equal length. 

Over the real field  , { }3,0 ; 0C∈ ≠�   constitutes a class of associative 
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“octonion” or “biquaternion”. For the case of 0,3C� , i aσ  cannot form a suita-
ble basis, because imaginary unit i appears in the determinant, so we need a 
higher-order representation matrix (2.10). In this case we have the Clif-
ford-Grassmann number as 

( )123 123
4 , , , , .a a

a a a asI E B p s p E Bγ γ γ γ= + + + ∈        (2.19) 

Its determinant is given by 

( ) ( ) ( )2 22 2 2 2det 4 .p s E B E B sp= + + + − ⋅ +
� � � �

          (2.20) 

(2.20) is different from (2.18), so they are different hypercomplex numbers in 
logic. Over real field  , we have ( )det 0≥ . For case 

{ } { },    or   , ,p s E B p s E B= = = − = −
� � � �

             (2.21) 

we have ( )det 0= . This is another kind of “octonion”. 
Similarly, we can analyze other hypercomplex numbers in real ,p qC� . For 

0,2C�  we have 

( ) ( )212 2 2 2
4 , det ,a

asI E p s p Eγ γ= + + = + +
�

Q Q
 

where , , , 1, 2as p E a∈ =� . This is a quaternion. For 0,1C�  we have 

( ) 2 2
2 i , det ,asI p s pσ= + = +Q Q  

where { }1,2,3a∈ . This is a complex number. For 1,0C� , we have 

( ) 2 2
2 , det .asI p s pσ= + = −Q Q                (2.22) 

This is a “hyperbolic number”. 
The relations between several simple Clifford algebras and hypercomplex 

numbers are discussed, and the matrix representation (11) and the determinant 
(12) play a key role. Obviously, the similar discussion is also suitable for the 
general case of ,p qC� , and infinite new hypercomplex numbers of interesting 
can be constructed. The matrix representations of the Clifford algebras carry 
more important information than the abstract definitions, such as the defini-
tions of inverse element and norm. 

3. Cyclic and Commutative Number System 

If the zero-factor condition of 0 0a a= ⇔ =  is relaxed, many new division 
algebras with associativity can be defined by matrix algebra. For example, we can 
construct an interesting series of commutative “n-ary cyclic numbers” as follows. 
Denote n square matrices by 

0

0
, , 1 1.

0
n m

n m
m

I
I m n

I
− 

= = ≤ ≤ − 
 

e e             (3.1) 

ke  constitutes a set of bases of the n-dimensional real vector space n . Ac-
cording to the matrix algebra we have multiplication rules of basis vectors as 
follows 
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, mod ,j k k j m m j k n= = = +e e e e e                (3.2) 

1 1, , 0 .m n
m nI m n= = ≤ <e e e                  (3.3) 

Thus, { }| 0,1, , 1m m n= −�e  is a matrix representation of n-element cyclic 
group. 

For n-ary number 

( )
1

0 1 1
0

, , , , ,
n

n
n k k n

k
A a a a a

−

−
=

= ∈∑ � �e               (3.4) 

the reciprocal is defined as the inverse matrix 1
nA−  of the matrix nA . In this 

way, it is easy to verify that n-ary numbers form a commutative number system 
in the domain ( ){ }det 0nA ≠  according to matrix algebra. If 2n = , the set 
{ }2 0 1A a b= +e e  is the hyperbolic numbers (2.22). In the case 3n = , we have 

( ) ( ) ( ) ( ) ( )2 2 2
3 0 1 2 0 1 1 2 2 1

1det ,
2

A a a a a a a a a a = + + − + − + −      (3.5) 

( ){ } { } { }3 0 1 2 0 1 2det 0 0 .A a a a a a a= = + + = ∪ = =          (3.6) 

In the case 4n = , we have 

( ) ( ) ( ) ( ) ( )2 2 2 2
4 0 2 1 3 0 2 1 3det ,A a a a a a a a a   = − + − + − +         (3.7) 

( ){ } { } { } { }4 0 1 2 3 0 2 1 3 0 2 1 3det 0 0 , .A a a a a a a a a a a a a= = + + + = ∪ = = ∪ + = + (3.8) 

In general case, we have the following theorem.  

Theorem 2. Let 2exp iw
n
π =  

 
, we have 1nw =  and 1w w−= . For n-ary 

number (3.4), denoting  

( )12
0 1 2 1 ,  0,1, 2, , ,

2
n kk k

k n
nR a a w a w a w k−

−
 = + + + + =   

� �      (3.9) 

then the determinant has the following factorization,  

( ) ( )( ) ( )( )2 1 1 1 2 2 0 1 2det ,m m m mA R R R R R R a a a+ = + + +� �      (3.10) 

( ) ( )( ) ( ) ( ) ( )2 2
2 2 1 1 2 2 0 2 1 3det .m m mA R R R R R R a a a a+

 = + + − + + � � �  (3.11) 

Proof. Let ( )( )12diag 1, , , , n kk k
kW w w w −= � , we have ( )det 1kW = , so 

( ) ( )det detn k nA W A= . Adding up the five columns of the matrix n kA W , we 

find that the determinant ( )det nA  has a factor kR . Since ( )det nA  is a real 

number, so kR  is also a factor of ( )det nA  if kR  is a complex. Since all kR  

are different numbers for arbitrary { }ja , thus we proved the theorem. 

By the theorem we find 

( ){ } { } { }0 1 1 0 1 1det 0 0 .n n nA a a a a a a− −= ⊃ + + + = ∪ = = =� �     (3.12) 

The zero norm set ( ){ }det 0nA =  are some lower dimensional surfaces in n . 
In contrast to the usual number system   and  , the determinants are not 
positive definite. In the case 2n N= , by (3.3) we find the even grade numbers 

{ }0 2 2 2 2n n nA a I a a − −= + + +� �e e  form a subalgebra. 
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4. Some Applications in Physics 
4.1. Geometric Meaning of Hypercomplex Numbers 

In the above section we discussed the Clifford algebra and the relation to the 
hypercomplex numbers from an algebraic perspective. In fact, we can also dis-
cuss Clifford algebras from a geometric perspective [6] [11]. By introducing the 
inner, exterior and geometric products of the vectors, Clifford algebra accurately 
and faithfully describes the intrinsic properties of a space-time. The concepts 
and methods describing the flat space-time and curved one are completely the 
same, thus Clifford algebra becomes a unified language and standard tool for 
dealing with geometric and physical problems. We show how the Clifford alge-
bra implements these virtues by examples. 

In geometry and physics, we often use curvilinear coordinate systems or study 
problems in curved space-time. In this case, the line element vector in the 
neighborhood of a given point x  is described by 

d d d ,a a
a ax x X Xµ µ

µ µγ γ γ δ γ δ= = = =x              (4.1) 

in which aγ  is used as the local orthonomal basis in tangent space, and aγ  is 
the coframe. The distance d ds = x  and oriented volume d kV  are respec-
tively defined as 

( )2 1d d d d d ,
2

a b
abx x g x x X Xµ ν µ ν

µ ν ν µ µνγ γ γ γ η δ δ= + = =x       (4.2) 

( )1 2 1 2d d d d d d d ,  1 4 ,k k kV x x x kµ ν ω
µν ωγ= ∧ ∧ ∧ = ≤ ≤�� �x x x      (4.3) 

where ( )diag 1, 1, 1, 1ab a bη γ γ= ⋅ = − − −  is the Minkowski metric and  
gµν µ νγ γ= ⋅  is the Riemann metric. 

( )1,3k
µν ω µ ν ωγ γ γ γ= ∧ ∧ ∧ ∈Λ� � 

 
is the Grassmann basis, which represents the unit and direction of k dimensional 
volume d kV . In the Cartesian coordinate system, the norm 1ab cγ =� . In the 
curved space-time, the Clifford-Grassmann number has the following form 

( )( )12
0 12 ,  n

nC I C C C Cµ µν
µ µνγ γ γ= + + + + ∀ ∈�

�� � k x      (4.4) 

The geometric meanings of elements d ,dx y  and d d∧x y  are given in Figure 
1. 

In what follows, we mainly discuss 1 + 3 dimensional space-time. For clear-
ness, it is necessary to clarify the conventions and notations frequently used in 
the following. We take 1c =  as unit of speed. For indices, we use the Greek 
characters for curvilinear coordinates, Latin characters for local Minkowski 
coordinates and { }, , ,i j k l  for spatial indices. The Pauli and Dirac matrices in 
curvilinear coordinate system are given by 

  
  , , , ,a a a a
a a a af f f fµ µ µ µ

µ µ µ µσ σ σ σ γ γ γ γ= = = =� �        (4.5) 

5 50 00
, , .

0 00

a
a

a

I iI
I iI

σ
γ γ ϑ

σ
−     

= = =     −    

�
        (4.6) 
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Figure 1. The geometric meanings of vectors d ,dx y  and d d∧x y . 

 
where { }, 0,1, 2,3a µ ∈ ,  

 , a
af fµ

µ  are the frame coefficients satisfying 
  

  , .a b ab
ab a bf f g f f gµ ν µν

µ ν µνη η= =                (4.7) 

For frame coefficients, the first index is always for curvilinear coordinate, and 
the second index for Minkowski index of the tangent space-time. 

In equivalent sense, aγ  forms the unique representation for generators of 

1,3C� . Since the Clifford algebra is isomorphic to matrix algebra, we need not 
distinguish matrix aγ  with tetrad aγ . Thus we have Clifford relations 

2 ,  2 ,
2 , 2 .

a b b a ab
a b b a ab

g
g

µ ν ν µ µν
µ ν ν µ µν

γ γ γ γ η γ γ γ γ
γ γ γ γ η γ γ γ γ

+ = + =
 + = + =

           (4.8) 

In physics and geometry, the multiplication of variables is usually Clifford 
products, but only by projecting the variables onto Grassmann basis, their phys-
ical and geometric meanings become clear. Therefore, in Clifford algebra the re-
lations between Clifford product such as a bγ γ  and Grassmann product a bγ γ∧  
become important. For Grassmann basis, it is easy to check the following rela-
tions between Clifford products and Grassmann products [6] 

( )1 2 2 1 3 1 11 2 11 ,k k k k kkg g gθ θ θ θ θ θ θ θ µθ θ θµθ µθµγ γ γ γ γ −+⋅ = − + + −� � � ��  

( ) ( )1 2 2 1 3 1 11 211 1 .k k k k kk kg g gθ θ θ θ θ θ θ θ µθ θ θµθ µθµγ γ γ γ γ −+⋅ = − + − + +� � � ��  
1 2 1 2 1 ,k k kθ θ θ θ θ θ µθ θµ µγ γ γ γ γ= ⋅ +� � �                (4.9) 

1 2 1 2 1 .k k kθ θ θ θ θ θ θ θ µµ µγ γ γ γ γ= ⋅ +� � �               (4.10) 

1 2 1 1 2 12 ,n
n n

a
a a a a a a nγ ε γ γ

−
=� � �  

1
1 2 2 1 2 12

1 ,
2!

n n
n n

a a
a a a a a a nγ ε γ γ −

−
=� � �

 

1
1 2 1 2 12

1 .
!

n k n
n k n

a a
a a a a a a nk
γ ε γ γ − +

−
= �

� � �
 

Similarly, we can define multi-inner product k
  of Clifford algebra as fol-

lows, 

,g g g gµν αβ µβ να µα νβ να µβ νβ µαγ γ γ γ γ γ= − + −  
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( )2 , 0, 2 .kg g g g kµν αβ µβ να µα νβ µν αβγ γ γ γ= − = > �   
2 .µν αβ µν αβ µν αβ µναβγ γ γ γ γ γ γ= + +             (4.11) 

More geometric meanings of hypercomplex numbers can be found in [6] [11]. 

4.2. Dynamics of Vector and Maxwell Equations 

The dynamical equations in physics are usually in form of Clifford-Grassmann 
numbers, we can directly establish some dynamical equation by Clifford algebra. 
Now we take vector field ( )Aµ

µγ=A x  as example to show how Clifford alge-
bra works in physics. Denote covariant differential operator by α

αγ= ∇D , then 
we have Clifford calculus [6] [11] 

( )
( )1 1 .

2 2

A g A

A A A H F

α β αβ αβ
α β α β

µ µν µν
µ µ ν ν µ µν

γ γ γ

γ γ

= ∇ = + ∇

= ∇ + ∂ − ∂ ≡ +

DA
       (4.12) 

Clearly, 0 2
1,3C∈Λ ∪Λ ⊂ �DA . By relations between products 

, ,g g g gα µν αµ ν αν µ αµν µν α αν µ αµ ν αµνγ γ γ γ γ γ γ γ γ γ= − + = − +    (4.13) 

we have 

( ) ( )

2

5

1
2

1
2

i
.

2

H F

H g F F

H F F
g

α α µν
α α µν

α αµ ν αµν
α α µν α µν

α αµ αµνωω
α µ α µν

γ γ γ

γ γ γ

γ γ
γ ε

= ∂ + ∇

= ∂ + ∇ + ∇

= ∂ −∇ + ∇

D A

        (4.14) 

Therefore 2 1 3∈Λ ∪ΛD A  and 3 0 2 4∈Λ ∪Λ ∪ΛD A . Since the term αµνγ  
automatically vanishes in 2D A , namely 0F Aαµνω αµνω

α µν α µ νε ε∇ = ∇ ∇ ≡ , and 
the dynamical equations in physics should be closed in 2D , so we have 

( )2 2 2 .b e b A eqα α
αγ= − + = − +D A A q              (4.15) 

The above equations are the dynamics for a 4 dimensional vector in the form of 
Clifford-Grassmann numbers. 

Comparing (4.15) with (4.14), we obtain the first-order dynamics of the vector 
A  

2

,
.

A A F A H
H F b A eq

α
µ ν ν µ µν α
µ νµ µ µ

ν

∂ − ∂ = ∇ =

∂ +∇ + =

              (4.16) 

All of the variables have covariant forms and clear physical significance. If the 
Lorenz gauge condition 0H =  holds, for the long distance interaction 0b = , 
(4.16) gives the complete Maxwell equations with current conservation laws 

; 0qµ
µ = . The above derivation shows the hypercomlex structure of physical va-

riables and the convenience of Clifford algebras. 

4.3. Eigen Equation in the Form of Clifford Algebra 

We now examine the relation of the Clifford algebra to the spinor field equa-
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tions. In the curvilinear coordinate system, Dirac equation with electromagnetic 
potential and nonlinear potential is given by [6] [13] [14] 

( )5 51ˆ i ,
2

p F mc Fµ
µ µ ϑ γγ γ φ γ φ φ + Ω + = − 

 
�           (4.17) 

in which the parameters and operators are defined as 

( ) ( )  
 

1ˆ i , ,
2

a a
ap eA f f fν

µ µ µ µ µ µ ν ν µ= ∂ + ϒ − ϒ = ∂ − ∂�
 

( ) ( )    
   

1 1 .
2 4

dabc e a b b
d a b ce abf f f f f f f

g
α α µ ν αµνω

µ ν ω ν µ µ νε η ε ηΩ = − ∂ = ∂ − ∂
 

µϒ  is Keller connection, µΩ  is Gu-Nester potential which is a pseudo vector. 
If the metric can be diagonalized, we have 0µΩ ≡ . The nonlinear potential 

( ),F F γ ϑ=
��  is a function of the following quadratic scalar and pseudo scalar 

0 5, , , .F FF Fγ ϑγ φ γ φ ϑ φ ϑ φ
γ ϑ

+ + ∂ ∂
= = = =

∂ ∂

�� ��          (4.18) 

the coefficients in (4.17) belong to 0 1 3 4
1,3CΛ ∪Λ ∪Λ ∪Λ ⊂ � . 

To get the Hamiltonian formalism of (4.17), the time t must be the global 
cosmic time, that is to say, the Hamiltonian formalism can be clearly expressed 
only in Gu’s natural coordinate system (NCS) [15] 

2 2  0 3d d d d , d d d , d d .k l
tt kl tt ts g t g x x g t f t V g xτ= − = = =     (4.19) 

In which ds  is the 4-d length of line element, dτ  is the Newton’s absolute 
cosmic time element and dV  is the absolute volume element of space at time t. 
The NCS generally exists and the global simultaneity is unique. Only in NCS can 
we clearly establish the Hamiltonian formalism and calculate the Noether 
charges of a spinor. 

The NCS is different from the Gaussian coordinate system that is valid only in 
the neighborhood of the initial Cauchy hypersurface. The isodistant translating 
hypersurface will deform soon, so that the metric 2 2d d d dk l

kls t g x x= +  becomes 
invalid. The NCS is also different from the Einstein’s lift moving along a geodes-
ic, namely the co-moving coordinate system, as this requires the lift to be an in-
finitesimal volume in curved space-time. While NCS holds unconditionally and 
globally, and its time is objective cosmic time. ttg  represents gravity and can-
not be merged into the time coordinate t. 

In NCS, to lift and lower the index of a vector means 
0 00

0 , , .k kl ln n
l kl kg g g g δϒ = ϒ ϒ = − ϒ =             (4.20) 

Then the eigen equation of (4.17) can be rewritten in the following Hamiltonian 
formalism 

( )0 ˆi ,t t Hα φ φ∂ + ϒ =                    (4.21) 

( )0 0 5
0

ˆˆ ˆ ,k
kH p eA mc F F S µ

γ ϑ µα α γ ϑ= − + + − − −Ω         (4.22) 

where Ĥ  is the Hamiltonian in curved space-time, and ( )ˆ, Sµ µα  are respec-
tively current and spin operators defined by 

https://doi.org/10.4236/jamp.2022.104097


Y. Q. Gu 
 

 

DOI: 10.4236/jamp.2022.104097 1388 Journal of Applied Mathematics and Physics 
 

( ) ( )0 51 1ˆdiag , , = diag , .
2 2

Sµ µ µ µ µ µ µ µα γ γ σ σ α γ σ σ≡ = ≡ −� �� �  (4.23) 

3S ∈Λ
�

 is the usual spin of the spinor. 
To get the eigen state of energy of a particle, we must separate the drifting 

motion of the particle by a local Lorentz transformation to its comoving coordi-
nate system. Thus we get eigen equation 

( ) ( )0ˆ i , .t tH E Eφ α φ φ= ∂ + ϒ = ∈              (4.24) 

In (4.24) 4,0Ĥ C∈ �  with the generators ( )0 , kγ α , so we introduce the gene-
rators of 4,0C�  as follows, 

( )0 , , , 2 ,a k b a b b a ab
a abϑ γ α ϑ δ ϑ ϑ ϑ ϑ ϑ δ= = + =        (4.25) 

( ) 
 , , 2 2diag 1, ,a a
a a klt t g gµ µ

µ µ µ ν ν µ µνϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ= = + = =    (4.26) 

    
  , , .a b a a a

ab b b at t g t t t tµ ν ν
µ ν µν µ µ µδ δ δ= = =             (4.27) 

The complete bases of 4,0C�  and their relations are given by 
5 0123 5, , , , .a ab a b abc abcd

dI ϑ ϑ ϑ ϑ ϑ ε ϑ ϑ ϑ ϑ≡ ∧ = − =      (4.28) 

By (4.25)-(4.28), the Hamiltonian can be rewritten in Clifford algebra 4,0C�  
as 

00 0 5 00 0 5 5
0 0

i iˆ ˆ ,
2 2

H eA g P g Fµ µ
µ µ ϑϑ ϑ ϑ ϑ ϑ ϑ= + + Ω + Ω −
� �

    (4.29) 

in which the Clifford numbers 
0 1 2 3 4

0 0
ˆ,  ,  ,  ,  .A P Fµ ϑ∈Λ ∈Λ Ω∈Λ Ω ∈Λ ∈Λ

�
         (4.30) 

We find the grade of some quantities in hyperbolic system µγ  has been 
changed in elliptic system µϑ . For example, ( ) 3, SΩ ∈Λ

��
 in system µγ  have 

been converted into ( ) 2, SΩ ∈Λ
��

 in system µϑ . The 4-vector momentum P̂µ  
is redefined as 

( )( )ˆ , i .k k kP mc F eAµ γ= − − ∂ + ϒ −�               (4.31) 

In P̂µ  the sign of keA  should be changed, this is because the Minkowski me-
tric 1kkη = −  in 1,3C�  has been converted into 1kkδ =  in 4,0C� . So we have 
ˆ ˆk

k kP P mvφ φ φ= → . 

4.4. Integrable Conditions for Dirac Equations 

The common method to solve the eigensolution of (4.24) is the method of sepa-
ration variables, which is based on the following well-known theorem [16]. 

Theorem 3. For two linear Hermitian operators , A B  on a vector space with 
finite degeneracy, if they commute with each other [ ], 0A B = , then they have 
common eigenvectors. 

For any Hamiltonian operator Ĥ , if we can construct the following Hermi-
tian operators set [17], 

( ) ( ) ( )1 1 1 2 2 1 2 1 2
ˆ ˆ ˆ, , , , , , , ,n nH H H H H H= ∂ = ∂ ∂ = ∂ ∂ ∂� �    (4.32) 
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which form an Abelian Lie algebra 

( )ˆ ˆ, 0, , 1, , ,j kH H j k n  = =  �                (4.33) 

then (4.33) forms the integrable conditions of the eigen equation Ĥ Eφ φ= , and 
the eigen solutions can be completely solved by means of separating variables. 
The operators of observables in such sets have a joint system of eigenstates, and 
their eigenvalues determine quantum numbers of each state. It is well known 
that in the relativistic Coulomb problem the Hamiltonian and the angular mo-
mentum do not generate a complete set of commuting observables, and an addi-
tional operator is needed to complete the set. So the existence of complete 
commutative operator chain forms the integrable condition for Dirac equation 
or Schrödinger equation. 

Since (4.29) is a hypercomplex operator in 4,0C� , the operator equation 
(4.33) can be converted into an algebraic equation in 4,0C� . The derived aux-
iliary commutative operator is a hypercomplex operator, so each term is a cova-
riant tensor and has special physical significance. Now we take spherical coordi-
nate system as example to show the concepts and the advantage of Clifford alge-
bra. For static potential ( )0 0 ,A A r θ=  and magnetic field 5z

zB B ϑ ϑ=
�

, we have 
( ),A A r ϕθ ϑ=

�
 and 

( ) ( ) ( ) ( )2 2 2  diag 1,1, , sin , diag 1,1, , sin .ag r r t r rµν µθ θ= =     (4.34) 

1 10, , cot ,0 , 0.
2rµ µθ ϒ = Ω = 

 
               (4.35) 

1 1ˆ , i , i cot , i .
2rP mc F eA

rµ γ θ ϕθ    = − − ∂ + − ∂ + − ∂ −    
    
� � �     (4.36) 

In the case of diagonal metric we have 0µΩ = , and the Hamiltonian becomes 
5

0
ˆ ˆ .H eA P Fµ

µ ϑϑ ϑ= + −                    (4.37) 

Then we simply have 

ˆ ˆ ˆi , , 0.z zL H Lϕ  = − ∂ = �                   (4.38) 

Different from the usual operator 3
1ˆ i
2zJ Sϕ= − ∂ +� � , the spin Ŝ  vanishes in 

the operator, this is because the spinor φ  has been implicitly made the follow-

ing spin-
1
2

 transformation [6], 

*, = ,ψ ψ ψ ψ′ ′= Π Π� �                    (4.39) 

in which 

i i i exp     exp
2 2 2 21

2 i iexp i exp
2 2 2 2

θ ϕ θ ϕ

θ ϕ θ ϕ

       − + + − +              Π =         − − − + − + +              

π π

π π

 
and *Π = Π . 
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Now we look for the additional Hermitian commutator 

( ) 0ˆ ˆ ˆ, ,T T T P T Pθ ϕ
θ ϕ θ ϕ∂ ∂ = + +                 (4.40) 

in which ( )0 , ,T T Tθ ϕ  are all Hermitian matrices. By ˆ ˆ, 0zL T  =  , we get 
ˆ 0Tϕ∂ = . This means ( )0 , ,T T Tθ ϕ  should be independent of ϕ . We examine 

ˆ ˆ, 0H T  =  . For any eigen solution φ , we have ( )ˆ
zP m eAϕφ φ= −� . This means 

P̂ϕ  can be regarded as an ordinary function for any eigen solution. Then we 
have integrable condition as 
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where ˆ ˆ,
A

H T    stands for algebraic commutation taking µ∂  as ordinary 
numbers. The notation ˆ ˆ,

A
H T    is convenient for calculation, especially for 

programming. Then we get integrable conditions 

ˆ, , , 0.r rT T Tθ θ θϑ ϑ ϑ    = = = =      �              (4.42) 

By Hermiticity of T̂  and (4.28), T θ  can be represented by the following 
Clifford algebra 

0 0i i ,r rT X Y Z U Vθ µ µν µ θϕ θϕ
µ µν µϑ ϑ ϑ ϑ ϑ= + + + +         (4.43) 

in which all coefficients are real functions of ( ),r θ  and Z Zµν νµ= − . Then by 
(4.9)-(4.11) and (4.34), we have 
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 (4.44) 

By , 0r T θϑ  =   we get 

0 0 0.r r r rY Y Y Z Z Z U Vθ ϕ θ ϕ= = = = = = = =  

( )0 0 0 0
0 0 0= i i i i .r r

rT X Y Z Z Z U U Uθ θ ϕ θϕ θ ϕ θϕ
θ ϕ θϕ θ ϕϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ+ + + + + + +

 
By , 0Tθ θϑ  =   we get 

( )0 0 0
0 0

1 , 2i i 0,
2

r r
rT Y Z g Z Z g U gθ θ θ θθ θϕ θθ ϕ θθ θϕ

θ ϕ θϕ θϑ ϑ ϑ ϑ ϑ ϑ  = + − − + + =   

( )0 0 0
0 0i i i .r r rT X U U X U U gθ ϕ θϕ θϕ ϕϕ θ

ϕ ϕϑ ϑ ϑ ϑ ϑ= + + = + −
 

Similarly, by Clifford calculus of (4.41) we finally derive the integrable condi-
tions as 

( )0 0ˆ ˆ ˆi .r rT r P Pθ ϕ
θ ϕϑ ϑ= +                   (4.45) 

( ) ( )0 , , 0, 0.A V r A A F Fθ γ ϑθ= = ∂ = =           (4.46) 

According to 

( ) 0 012 0 0131, , ,
sin

r rA A r rθ ϕθ ϑ ϑ ϑ ϑ
θ

= = =           (4.47) 

we find T̂  is actually independent of r. 3T̂ ∈Λ  is an additional invariant, 
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whose physical meaning is still unclear. In Minkowski space-time the condition 
for vector potential becomes [17] 

( )( ) ( )1 sin ,cos ,0 , .
sin
A

A A U U
r

ϕ
ϕ

θ
ϑ θ ϕ ϕ

θ
= = − ≡
�

        (4.48) 

5. Discussion and Conclusion 

The development of the number systems has undergone a long and difficult his-
tory, not as simple as it seems now. The number system that abandons the asso-
ciative law has little practical value, because the result of a line of products must 
be determined by the order of the multiplication. In comparison, the presence of 
a zero factor is a repairable defect. For a hypercomplex number composed of real 
Clifford algebras, whose zero norm set is a closed set of special geometric signi-
ficance, like a light cone in realistic space-time. If the realistic 4-dimensional 
space-time is not hyperbolic, but is an elliptic world without zero factor like the 
quaternions, then the world will be lifeless. It is only because of this hyperbolic 
nature that space-time has an alive soul and abundant structures. From this 
perspective, the existence of a zero norm set cannot be regarded as a defect of 
hypercomplex numbers, because it has no substantial influence on algebraic op-
erations. Moreover, the relationship between zero norm set and the metric sign 
convention of basic space-time is an issue worthy of further study. 

Clifford algebra describes complex and quaternions in a unified way, and can 
be directly extended to 2n -ary associative algebras. In this generalization, the 
orthonormal basis matrix (2.5) and the set of Grassmann basis elements (2.9) 
constructed from it play a key role. Matrix representation carries more informa-
tion than the abstract definitions, such as the determinants and definition of in-
verse numbers. Without the matrix representation (2.5), the discussion for 
hypercomplex numbers will be difficult. The relations between line elements de-
fined by (4.1)-(4.3) directly generalize the Clifford algebras to curved space-time 
and differential geometry [6] [11], which bring great convenience for learning 
and research. The Clifford algebras convert the complicated mathematical oper-
ations into mechanical calculations—simple, intuitive and error-free, which can 
be well mastered by middle school students. Because of the isomorphism be-
tween the Clifford algebra and the matrix algebra, the conclusions obtained from 
the matrix algebra are also correct for Clifford algebra. In this way, the subtle 
and abstract concepts and problems are crystallized, and numbers and shapes 
are uniformly described. 

Hamilton’s original motivation for discovering quaternions was to describe 
the Maxwell equations. Since realistic space-time is not an elliptic space de-
scribed by quaternions, the vector and scalar parts in the Maxwell equations 
have to be described separately, and this weakness causes the quaternion’s failure 
in the competition with vector algebra. It can be seen from this paper that, Clif-
ford algebra has no limitation of quaternions, it is directly defined on the basic 
space-time and describes geometry and physics without superfluous or absent 
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content. From the derivation of (4.12)-(4.16), we find that the fundamental dy-
namical equations in physics are actually determined by the space-time struc-
ture. If expressing physical equations by Clifford algebras, they look simplicity in 
formalism, symmetry in structure, standard in derivation and completeness in 
content. Therefore, we can hope that this magical algebra will complete a new 
big synthesis in science [6]. 

From the above discussion, we find that there are some significant topics for 
hypercomplex numbers that deserve further study. For the Clifford-Grassmann 
number (2.3), the zero norm set is closed lower dimensional analytic surfaces 
that, like light cones, may have some interesting properties not yet revealed. If 
the differential geometry is represented in the form of Clifford algebras, as 
shown in [6] [11], the proof of theorems may be simpler, the expression may be 
clearer, and some new results may be found. For the n-ary cyclic number (3.4), it 
has not previously been taken as a number system, so its geometric and physical 
significance is completely unclear. Its zero norm set is simple and symmetric 
with respect to coordinates ka , but the geometric significance is also unclear 
and requires further investigation. 
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