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Abstract 
In this paper, we study the p-order cone constraint stochastic variational in-
equality problem. We first take the sample average approximation method to 
deal with the expectation and gain an approximation problem, further the ra-
tionality is given. When the underlying function is Lipschitz continuous, we 
acquire a projection and contraction algorithm to solve the approximation 
problem. In the end, the method is applied to some numerical experiments 
and the effectiveness of the algorithm is verified. 
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1. Introduction 

Variational inequality has important applications in many aspects such as phys-
ics, economic equilibrium theory, cybernetics, engineering, optimization, etc. [1] 
[2] [3]. Since there are many random factors that cannot be ignored in real life, 
such as weather, demand, price, etc., stochastic variational inequality has be-
come a research hot-spot of many scholars in recent decades. In this paper, we 
consider the stochastic variational inequality problem with p-order cone (ab-
brevd.POSVI), which is to find x C∈ , such that 

( ), , 0,E f x y x y Cξ − ≥ ∀ ∈                    (1) 

where ,⋅ ⋅  denotes the Euclidean inner product, ξ  is a random variable de-
fined in probability Ω , ( ) ( )( ) ( ), , dE f x f x Pξ ξ ω ξ ω

Ω
=   ∫  is the expectation 

of ξ , ( ), : n nf x R Rξ ×Ω→  is a given mapping, { }| pC x x K= ∈ , pK  is a 
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p-order cone, pK ∗  is the dual cone of pK , which can be expressed as [4]: 
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where 1q >  and satisfies 1 1 1
p q
+ = . pK  and pK ∗  are both closed convex  

cone, pK  is not a self-dual cone when p q≠ , in other words, the pK  is not a 
symmetric cone for 2p ≠ . It is clear that the p-order cone is the second-order 
cone with n-dimension when 2p = , which means: 

( ){ }1
1 2 1 2: , |n nK x x R R x x−= ∈ × ≥

 
Thus, the POSVI in this paper can be regarded as an extension of the 

second-order constrained stochastic variational inequality problem. The re-
search of theory and algorithm has made great progress in recent decades. Our 
research focuses on transforming solving the POSVI into finding the zero point 
of equation and constructing optimization algorithm under certain condition. 
Hence, the work below is down first. 

Assume that a closed convex subset of nR  is C and nx R∈ , then the projec-
tion of x on C is [5]: 

( ) { }arg min |CP x y x y C= − ∈                  (2) 

Refer to reference [6], *x  is the solution of problem (1) if and only if for any 
α , the equation holds below 

( )( )* * * ,Cx P x E f xα ξ = −                      (3) 

Define the residual of the equation as ( ),G x α  

( ) ( )( ), : ,CG x x P x E f xα α ξ= − −                    (4) 

then, solving POSVI only needs to find a zero point of ( ),G x α . 
In the following, we concentrate on constructing algorithm to solve the prob-

lem. There are some optimization algorithms that have been applied to stochas-
tic optimization problem, for example, Korpelevich and Antipin study the outer 
gradient projection algorithm and every iteration should compute the projection 
twice, see [7] [8]. On the basis of previous research, Tseng proposes a gradient 
projection algorithm and every iteration only should compute a projection one 
time, see [9]. Different from the first two algorithms, Duong and Yekini receive 
step size through Amjo-type search method, which can decrease the difficulty of 
[9] to estimate the Lipschitz constant, see [10] [11]. Under a mapping is mono-
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tone and Lipschitz continuous, Yang and Liu give a projection algorithm and the 
better of which is that the compute of the step size does not depend on Am-
jo-like search, see [12] [13] [14]. Combined the above algorithms, we propose a 
projection and contraction method. 

The organizational framework of this paper is as follows: In part 2, we intro-
duce some definitions and conclusions about the p-order cone. In part 3, the ba-
sic idea of sample average approximation method is shown and the revelent 
conclusions are given. In part 4, a projection and contraction method is pro-
posed and it is proved that the sequence generated by the method converges to 
the real solution. In part 5, a numerical example is given, and the method is ap-
plied to solve it. The numerical results claim that the method is effective. In part 
6, the work of this paper is summarized and future research topic is given. 

2. Preliminaries 

In this section, we give some basic concepts and conclusions related to p-order 
cone in order to facilitate the following research. 

Definition 2.1 ([15]). Let : n nh R R→  be Lipschitz continuous then for any 
, nx y R∈ , there exist a constant 0L > , such that 

( ) ( )h x h y L x y− ≤ −
 

Definition 2.2 ([15]). Let : n nh R R→ . Then for any , nx y R∈ , the mapping 
h is said to be 

(a) monotone if 

( ) ( ), 0x y h x h y− − ≥
 

(b) strictly monotone if 

( ) ( ), 0x y h x h y− − >
 

(c) strongly monotone with constant 0β >  if 

( ) ( ) 2,x y h x h y x yβ− − ≥ −
 

Definition 2.3. ([4]). For any ( ) 1
0 , nx x x R R −= ∈ ×  and ( ) 1

0 , ny y y R R −= ∈ × , 
the Jordan product of p-order cone is expressed by 

,
:

x y
x y

w
 

⋅ =  
   

where ( )T
2: , , nw w w= � , and 0 0

p p
q qi i iw x y y x= − , 2,3, ,i n= � . 

Definition 2.4. ([16]). Let ( ) 1
0 , nx x x R R −= ∈ × . Then, the projection of x 

onto pK  is defined as 

( ) *

0

,

0,

,
p

p

K p q

q p

x x K

x x K K

x x xν

 ∈
Π = ∈− = −
 − < <

                (5) 

where ( )0 ,ν ν ν= , ( )T 1
2 3, , , n

n Rν ν ν ν −= ∈�  with 
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Definition 2.5. ([16]). Let ( ) 1
0 , nx x x R R −= ∈ × , then x can be decomposed 

into 

( ) ( ) ( ) ( ) ( ) ( )1 2
1 2x x v x x v xρ ρ= ⋅ + ⋅  
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and xw
x

=  if 0x ≠ . If 0x = , then any vector in 1nR −  satisfying 1w = . 

Lemma 2.1. ([5]). If the projection formula is defined as (2), then the proper-
ties below can be received: 

(i) ( ){ } ( ){ }T
0, , .n

C Cx P x P x x R Cκ κ− − ≤ ∀ ∈ ∀ ∈  

(ii) { } ( ) ( ){ } ( ) ( ) 2T , , .n
C C C Cx y P x P y P x P y x y R− − ≥ − ∀ ∈  

(iii) ( ) ( ) , , .n
C CP x P y x y x y R− ≤ − ∀ ∈  

(iv) ( ) ( )2 22 , .C CP x x x P x Cλ λ λ− ≤ − − − ∀ ∈  

3. Sample Average Approximation 

If the integral involved in POSVI can be evaluated, then it can be solved as a de-
terministic stochastic variational inequality problem. However, ( ),E f x ξ    
are usually not accurately evaluated, because the distribution of ξ  is unknown 
and the information of ξ  can only be acquired from the past data samples, 
which inspires us to search a function to approximate ( ),E f x ξ   . Many 
scholars have explored approximation methods [17] [18] [19]: sample-path op-
timization (SPO), sample average approximation (SAA) and stochastic approx-
imation (SA). In this paper, we select SAA method, whose main idea is to gener-
ate N independent and identically distributed (i.i.d.) samples 1 2, , , Nξ ξ ξ� , and 
use the sample average function 

( ) ( )
1

1 ,
N

N
i

i
F x f x

N
ξ

=

= ∑
 

to approximate ( ),E f x ξ   . Then we acquire the problem: find x C∈ , such 
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that 

( ) , 0,NF x y x y C− ≥ ∀ ∈                    (6) 

where { }| pC x x K= ∈ , we call (1) as true problem and (6) as SAA problem. 
Definition 3.1 ([20]) Let ( ),jf x ξ  denote jth component of ( ),f x ξ , 

1,2, ,j N= � . Define the moment function of ( ),jf x ξ  as: 

( ) ( ),: e j
j

tf x
fM t E ξ =    

and the moment function of ( ) ( ), ,j jf x E f xξ ξ −    is 

( ) ( ) ( )( ), ,
: e j jt f x E f x

xM t E
ξ ξ −   =     

thus, 

( ) ( ) ( )( ),
: e

N
j j

j

t F x E f xN
fM t E

ξ −   =     
Lemma 3.1. ([20]) Let X be a compact subset of C, 1,2, ,j n= � . Suppose the 

conditions hold below: 
1) The moment function ( )xM t  is finite with respect to (w.r.t.) x in a certain 

neighborhood of zero; 
2) There is a metric function ( ) :k Rξ +Ω→ , such that for any ξ ∈Ω , and 
,x x X′ ∈ , there is 

( ) ( ) ( ), ,j j jf x f x k x xξ ξ ξ′ ′− ≤ −
 

3) The moment function ( ) ( )etk
kM t E ξ =    of ( )k ξ  is finite w.r.t. t in a 

certain neighborhood of zero. 
Then for any 0ε > , there exists ( ) 0c ε > , ( ) 0β ε > , independent of N, 

such that 

( ) ( ){ } ( ) ( )Prob sup , e NN

x X
E f x F x c β εξ ε ε −

∈
− ≥ ≤  

 
Lemma 3.1 guarantees that the approximation by the SAA method is reasona-

ble. 
Lemma 3.2. ([21]). Let { }Nx  be a solution of SAA problem (6) and *x  be 

set of solutions to true problem (1). Suppose that: 
a) Lemma 3.1 holds; 
b) ( ) ( ): lim

j j

N
f N fM t M t→∞=  ( 1,2, ,j n= � ) exists, for every x X∈  and 

t R∈ ; 
Then for every 0ε > , there is ( ) 0c ε > , ( ) 0β ε > , independent of N, such 

that 

( ){ } ( ) ( )*Prob , e NNd x x c β εε ε −≥ ≤  w.p.1              (7) 

for N sufficiently large. ( ), : infx Dd x D x x′∈ ′= −  denotes the distance from 
point x to set D. 

Lemma 3.2 studies the optimal solution set of SAA problem (6) convergences 
to optimal solution of true problem (1) with probability one (w.p.1.). Let 
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( ) ( )( ), : N
CG x x P x F xα α= − −

 
again, according to (4) and (3), solving SAA problem (6) is equivalent to find a 
zero of ( ),G x α . 

4. Projection and Contraction Method and Convergence 
Analysis 

In this part, we propose the projection and contraction method based on the 
former research and certify the algorithm is convergent. At last, the algorithm is 
applied to numerical examples that we give. To facilitate our research, we denote 
the projection of x onto pK  as x+  and the projection of x−  onto pK ∗  as 
x− . Hence, it is clear that , 0x x+ − =  for any nx R∈ . 

Algorithm 3.1. 
Step 0 Given 0ε > , let 0 1u w< < < , ( )0,2τ ∈ , ( )0,1s∈ , 0 1α = , and 0x  

denotes an arbitrary initial iteration point, Set : 0k = . 
Step 1 Compute ( ),k

kG x α , if ( ),k
kG x α ε< , stop; Otherwise, go to step 

2. 
Step 2 Let kl  be the smallest nonnegative integer, which satisfies kl

k sα α= , 
such that 

( ) ( )( )
( )

,

,

N k N k k
k k

k
k

F x F x G x
w

G x

α α

α

− −
≤               (8) 

if 

( ) ( )( )
( )

,

,

N k N k k
k k

k
k

F x F x G x
u

G x

α α

α

− −
≤                (9) 

then 3
2 kα α= . 

Step 3 Calculate 

( ) ( ) ( )
( )

T

2

,
, ,

,

k
kk k

k k
k

k

d x
x G x

d x

α
ρ α α

α
=                (10) 

with 

( ) ( ) ( ) ( )( ), , ,k k N k N k k
k k k kd x G x F x F x G xα α α α = − − −       (11) 

Step 4 Compute 

( ) ( )( )1 , ,k k k k
k kx x x d xτρ α α+

+
= −                (12) 

Set : 1k k= + ; go to step 1. 
Next, the convergence of Algorithm 3.1 is researched. 
Lemma 4.1 Suppose that *x  is a solution of the SAA problem (6), ( ),xρ α  

and ( ),d x α  are respectively defined by (10) and (11). Then, the inequality 
holds 

( ) ( ) ( )* , , , , ,x x d x G x d xα α α− ≥
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Proof. From the definition of projection in formula (2), we know  
( ) ( )( ), : N

CG x x P x F xα α= − − , obviously the lemma holds. 
Lemma 4.2. Let nx R∈  and 0α α> >� , the following formula holds: 

( ) ( ), ,G x G xα α≥�  

Proof. Prove the above inequality is equivalent to proof 

( ) ( ) ( )( )T, , , 0, 0G x G x G xα α α α α− ≥ ∀ > >� �            (13) 

From Formula (2), we can get 

( )( ) ( )( ) ( ) ( ), ,N N
C CP x F x P x F x G x G xα α α α− − − = −� �        (14) 

then from Lemma 2.1 (1) and (13), we get 

( )( ) ( )( ){ } ( ) ( ){ }
T

, , 0N N
Cx F x P x F x G x G xα α α α− − − − ≥�      (15) 

thus we have 

( ) ( ) ( ){ } ( ) ( ) ( ){ }T T, , , , ,NG x G x G x F x G x G xα α α α α α− ≥ −� �     (16) 

Let ( ): Nx F xµ α= − �  and ( ): Nx F xη α= − , the formula holds 

( ) ( ) ( ) ( ){ } ( ) ( ) 2T , , , ,NF x G x G x G x G xα α α α α α− − ≥ −� � �       (17) 

the above formula holds because of Lemma 2.1. So the inequality (16) and (17) 
hold, the proof is complete. 

Theorem 4.1. Assume that ( ),f ξ⋅  is monotonous and Lipschitz continuous 
w.r.t. x, and constant 0 1L< < . Let the solution set of SAA problem (6) be 
nonempty. Then the sequence { }kx  obtained by Algorithm 3.1 converges to 
the solution of (6). 

Proof. From (10) and (11), it gets that 

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

2

2

, , ,

, , , ( ) ,

, , , ,

1 ,

k k k k

N N N
k k k k k k k k k

N N
k k k k k k k k k

k k

G x d x

G x F x F x F x G x

G x G x F x F x G x

L G x

α α

α α α α

α α α α

α

 = − − − 

 = − − − 

≥ −

   (18) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

2
2 , , , ,

2 , , , ,

, , , ,

, , , ,

,

k k k k k k

k k k k k k

N N
k k k k k k k k k

N N
k k k k k k k k k

N N
k k k k k

G x d x d x

G x d x d x

G x F x F x G x d x

G x F x F x G x G x

F x F x G x

α α α

α α α

α α α α

α α α α

α α

−

= −

 = + − − 

 = + − − 

 − − −   
( ) ( ) ( )( )

( ) ( )

22 2

2

, ,

1 ,

0

N N
k k k k k k k

k k

G x F x F x G x

L G x

α α α

α

= − − −

≥ −

≥

            (19) 
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which is equivalent to 

( ) ( )
( )

T
2

, 1,
2,

k k
k k

k k

d x
G x

d x

α
α

α
≥

 
that is 

( ) 1,
2k kxρ α ≥

 
the above inequality holds since the function ( ),f ξ⋅  is Lipschitz continuous. 
Let *x  be a solution of SAA problem (6), then 

( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )

22* *
1

2*

2 2* 2 2

*

2*

2 2*

, ,

, ,

, ,

2 , , ,

2 , , , ,

2 1
,

2

k k k k k k

k k k k k

k k k k k

k k k k k

k k k k k k k

k k k

x x x x d x x

x x x d x

x x x d x

x x x d x

x x x G x d x

L
x x G x

τρ α α

τρ α α

τ ρ α α

τρ α α

τ τ ρ α α α

τ τ
α

+ +
− = − −

≤ − −

= − +

− −

≤ − − −

− −
≤ − −

 
the first inequality holds since the projection operator is non-expansive, the 
second inequality holds since Lemma 4.1, and the last inequality holds from in-
equality (18) and (19). Obviously, the sequence { }kx  is bounded. 

Let *x̂  be a cluster point of { }kx  and { }jkx  is a subsequence of { }kx , 
which converges to *x̂ . Denote { } mininf kα α= , since ( ),k kG x α  is continuous, 
then 

( ) ( )*
min minˆ , lim , 0

jkj
G x G xα α

→∞
= =

 
Hence, *x̂  is a solution of (6). 

Next, it proves that the sequence { }kx  has only one cluster point. Suppose 
that there is x̂ C∈  such that { }kx  converges to x̂ , and denote 

*ˆ ˆ: 0x xδ = − >
 

since *x̂  is a cluster point of the sequence { }kx , there is a 0ik >  such that 

*ˆ
2ikx x σ

− ≤  

thus, it follows that 

* *ˆ ˆ ,
2ik k ix x x x k kσ

− ≤ − ≤ ∀ ≥  

and 

* *ˆ ˆ ˆ ˆ
2 2k kx x x x x x σ σσ− ≥ − − − > − >  

which contradicts the assumption. Thus it is certified completely, and the se-
quence { }kx  converges to the solution of SAA problem (6). 
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5. Numerical Experiment 

In this section, we certify the effectiveness of algorithm 3.1 by giving some nu-
merical experiments. The tasks are completed by Matlab 2018b, which are in-
stalled on a computer that has 3.3 GHz CPU and 4.0 GB memory. We set para-
meters 0.75, 1.95u γ= =  respectively, and ε  denotes error defined by 

( ) *x t x− , further, ITER represents average number of iterations and ACPU is 
the average run time. 

Example 5.1. Consider the POSVI below: find x, such that 

1 , 0,
2

Dx y x y Cξ − ≥ ∀ ∈
 

where nx R∈ , { }| pC x x K= ∈ , D is a real symmetric matrix with n dimen-
sion, and the element of D is selected randomly by Matlab from the interval 
[ ]0,1 . The SAA problem: find x C∈ , such that 

1

1 1 , 0,
2

N

i
i

Dx y x y C
N

ξ
=

− ≥ ∀ ∈∑
 

We choose 2,3,5,10p =  respectively, and the corresponding numerical re-
sults are exhibited in Tables 1-4. 

 
Table 1. Solving numerical results when 2p = . 

n ITER ACPU ε  

8 20.0 0.0736 4.7016E−09 

32 36.0 0.2925 4.1026E−09 

128 95.0 4.2736 8.2989E−09 

512 293.0 190.7469 7.5065E−09 

 
Table 2. Solving numerical results when 3p = . 

n ITER ACPU ε  

8 20.0 0.0698 1.7016E−10 

32 43.0 0.3521 7.8138E−09 

128 90.0 3.3398 7.7299E−09 

512 285.0 191.2274 7.7803E−09 

 
Table 3. Solving numerical results when 5p = . 

n ITER ACPU ε  

8 19.0 0.0685 4.1032E−09 

32 47.0 0.3749 1.2591E−13 

128 113.0 3.3213 6.4962E−09 

512 310.0 194.1665 6.5617E−09 
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The error ε  corresponding to every p we choose changes with time as 
shown in Figures 1-4. 

 
Table 4. Solving numerical results when 10p = . 

n ITER ACPU ε  
8 23.0 0.0893 9.7966E−11 

32 51.0 0.3026 6.0112E−12 

128 114.0 3.7995 6.8154E−09 

512 350.0 221.4316 6.3761E−09 

 

 
Figure 1. When 2p = . 

 

 
Figure 2. When 3p = . 
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Figure 3. When 5p = . 
 

 
Figure 4. When 10p = . 

 
From Tables 1-4 and Figures 1-4, we can analyze that for different p, as the 

dimension n increases, ITER and ACPU both become larger and relatively sta-
ble, and the error ε  becomes smaller and tends to zero. Therefore, generally 
speaking, the algorithm we proposed is effective. 

Specially, p = 2 is a special case. When p = 2, P-order cone degenerates into 
second order cone. From the numerical results, when p = 2 and p = 3, the opera-
tion result is better when n is larger. 3 is the smallest number greater than 2. Af-
ter many numerical experiments, it is found that with the increase of p, the time 
for large-scale problems will become longer and longer, until p = 10, the calcula-
tion results tend to be stable. That is, after p is greater than 10, the calculation 
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result does not change much. So we chose a middle number, 5. 

6. Conclusion 

In this paper, a sample average approximation method is applied to approximate 
stochastic inequality problem with p-order cone. In order to solve p-order cone 
stochastic variational inequality problem, under moderate condition, we propose 
a projection and contraction method and prove the iteration sequence produced 
by the method converges to the solution of the SAA problem. At last, based on 
the projection and contraction method, we give some numerical examples and 
the experimental results verify the accuracy of the method. Next, we expect to 
investigate the numerical solution of circular cone constrained stochastic varia-
tional inequality problem. Find other suitable methods to further solve the 
p-order cone-constrained stochastic variational inequality problem in this paper, 
and carry out numerical simulation comparison. 
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