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Abstract 
The principles of the HIV-AIDS epidemics are established based on the sub-
population 1) Susceptible; 2) HIV-infected; 3) AIDS-infected; 4) Immunized. 
The immunized subset of the population in this paper is the total individuals 
who were infected and cured or immunized by vaccination. The immunized 
group can be identified by removing individuals from the susceptible group. 
A general mathematical model is developed for HIV-AIDS epidemics with 
Vaccination to understand the spread of the virus throughout the population. 
Particularly we use numerical simulation with some values of parameters to 
predict the number of infected individuals during a certain period in a popu-
lation and the effect of vaccine to reduce infected group and increase the num-
ber of immunized individuals. Further, we expand the research to special cases 
with no vaccinations. A special case is when the removal subset of the popu-
lation is empty, or there is no recovery in this epidemic. We also can consider 
the total infected number is equal to the sum of the HIV infected and the 
number of AIDS infected. As a result, one can reduce four-stage HIV-AIDS 
investigation to a three-stage of SIR. With this introduction and modification, 
the numerical simulation can be developed the Monte Carlo simulation me-
thod in SIR case to verify the Validity of the HIV-AIDS model.  
 

Keywords 
Epidemics of “SHAR”, s(t): Susceptible, h(t): HIV Infected, a(t): Aids, r(t): 
Removed, Antibody, HIV-Vaccine 

 

1. Introduction 

It is very important to present a mathematical description of a natural disaster 
like HIV-AIDS epidemics. To forecast the spread of any disease, one can use a 
deterministic approach or use stochastic modeling.  
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In the deterministic model, the use of the method of differential equations and 
Monte Carlo simulation is also a powerful approach for prediction of the epi-
demics (see [1]). 

We postulated all related assumptions and defined all parameters involved in 
this epidemics process. The mathematical model presented in this investigation 
is a nonlinear ODE (ordinary differential equation) that can predict the progress 
of the infected population or epidemics throughout time (see [2]). 

To solve a nonlinear system of ODE, one can choose a numerical, graphical, 
or analytical approach. 

The basic concept of mathematical modeling in epidemiology is the variety of 
subsets of the population and their fundamental interactions. Simple subsets of 
the epidemic population model for HIV-AIDS are: Susceptible, HIV-Infected, 
AIDS-infected, and Removed subsets for which we used s(t), h(t), a(t), and r(t). 

Our simulation, using numerical and graphical approaches will be demon-
strated with imposed conditions or choices of parameters. Initially, one HIV in-
fected individual can transmit the virus to the entire susceptible population and 
can infect the entire population. 

In the simplest epidemic model, it is usually assumed that the population is 
partitioned into s(t) = “susceptible”, I(t) = “ infected”, and r(t) = “removed or 
recovered” which is called the SRI model (see [3] and [4]). 

We will consider the vaccination factor for modeling this epidemic. A rea-
sonable function for removing the immune individuals who are not susceptible 
to the virus will be denoted by r(t). The nonlinear system will be a system of four 
ODE equations. Further research analysis, refining the model and qualitative 
analysis is the goal of this research. 

1) HIV stands for human immunodeficiency virus. If left untreated HIV can 
lead to the disease AIDS (acquired immunodeficiency syndrome). Unlike some 
other viruses, the human body can’t get rid of HIV completely. So once you have 
HIV, you have it for life. HIV attacks the body’s immune system, specifically the 
CD4 cells (T cells) which help the immune system fight off infections. If left un-
treated, HIV reduces the number of CD4 cells (T cells) in the body, making the 
person more likely to get infections or infection-related cancers. Over time, HIV 
can destroy so many of these cells that the body cannot fight off infections and 
disease. These opportunistic infections or cancers take advantage of a very weak 
immune system and signal that the person has AIDS, the last state of HIV infec-
tion. No effective cure for HIV currently exists, but with proper treatment and 
medical care, HIV can be controlled. The medicine used to treat HIV is called 
antiretroviral therapy or ART. If taken the right way, every day, this medicine 
can dramatically prolong the lives of many people with HIV, keep them healthy, 
and greatly lower their chance of transmitting the virus to others. Today, a per-
son who is diagnosed with HIV, treated before the disease is far advanced, and 
stays on treatment can live nearly as long as someone who does not have HIV. 

2) AIDS stands for acquired immunodeficiency syndrome. AIDS is the final 
stage of HIV infection, and not everyone who has HIV advances to this stage. 
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AIDS is the stage of infection that occurs when the immune system is badly 
damaged, and one becomes vulnerable to opportunistic infections. When the 
number of your CD4 cells falls below 200 cells per cubic millimeters of blood 
(200 cells/mm3), you are considered to have progressed to AIDS. The CD4 count 
of an uninfected adult/adolescent who is generally in good health ranges from 
500 cells/mm3 to 1600 cells/mm3. You can also be diagnosed with AIDS if you 
develop one or more opportunistic infections, regardless of your CD4 count. 
Without treatment, people who are diagnosed with AIDS typically survive about 
3 years. Once, someone has a dangerous opportunistic illness, life expectancy 
without treatment falls to about 1 year. People with AIDS need medical treat-
ment to prevent death (see [5] [6] [7]). 

3) Where AIDS-HIV Come From? 
Scientists identified a type of chimpanzee in Central Africa as the source of 

HIV infection in humans. They believe that the chimpanzee version of the 
immunodeficiency virus (called simian immunodeficiency virus, or SIV) most 
likely was transmitted to humans and mutated into HIV when humans hunted 
these chimpanzees for meat and encountered their infected blood. Studies show 
that HIV may have jumped from apes to humans as far back as the late 1800s. 
Over decades, the virus slowly spread across Africa and later into other parts of 
the world. We know that the virus has existed in the United States since at least 
the mid- to late 1970s. 

In a recent investigation, a mathematical model of HIV-AIDS developed with-
out considering the vaccination factor when the vaccination of HIV-AIDS did 
not exist (see [8]). This paper was produced during the COVID-19 pandemic 
when the vaccination became important and possible. In this model using vac-
cination factor in developing the model, computation, and simulation we ob-
serve that the cured subpopulation and immunized individuals together create a 
larger set of removed subpopulation. 

2. Basic Assumptions for (SHAR) Model 

Each population develops and evolves through two important basic principles, 
variations and natural selection. The principle of evolution causes some charac-
teristics in a diverse environment and genetic changes. The HIV-AIDS epidem-
ics is not an exception, and it follows the rule of evolution. For developing a 
model, we subdivide the population into the following characteristics that can be 
observed in a subset of a population. 

1) Infective (I): A person in the population who has the disease and can 
spread it to another individual who is not yet exposed to HIV-aids virus. 

2) Susceptible (S): Person who does not have the symptoms of the disease but, 
can be infected by exposure to the virus from the infective. 

3) Exposed to Virus: Individual did not develop the symptoms of HIV but is 
contaminated and carrying the virus through the infected environment.  

4) Infected Person: Infected individual who tested positive and is a potentially 
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infectious contact which spreads the disease to a susceptible person. 
5) Latently Infected (L): Those currently exposed and tested positive but may 

not be certain to yet be capable of transmitting the disease to others. 
6) Immunized Person: is a person who developed antibodies through recovery 

or by Vaccination. Individuals who developed immune system fight against the 
virus naturally or by vaccination. 

7) Removed (R): Those who have had the disease and are dead or have recov-
ered and are permanently immunized or isolated until death, recovery, or per-
manent immunity occurs (Figure 1). 

Principles and the dynamics of the subpopulations: The epidemic model is 
based on the following Susceptible (s), Infected (I), and Removed (r) subpopula-
tion called (SIR) is well known and developed extensively. In addition, we will use 
E(t) for individuals exposed to the virus, L(t) for latency, and V(t) for the popu-
lation vaccinated at time t. 

Assuming these subsets are mutually disjoint subsets of the population, then: 
Assumption 1: The population during the time of study remains approx-

imately constant and has mutually exclusive subgroups such that 

( ) ( ) ( ) ( ) ( ) ( )P s t E t L t h t a t r t= + + + + +              (2.1) 

We are assuming in HIV-AIDS model both L(t) and E(t) are zero. Of course, 
in corona virus case this is not true. 

Assumption 2: The susceptible population is negatively proportional to the 
contacts with the HIV infected and the AIDS infected sub-populations. 

Assumption 3: Vaccination during the epidemic reduces the susceptible and 
converts to the immunized individuals.  

Using these assumptions there exist positive constants k, l, and m1, such that 

( ) ( ) ( ) ( ) ( )1
d
d
s k h t s t l a t s t m s t
t
= − ⋅ − ⋅ −               (2.2) 

The following is the definition of the parameters used in Equation (2.2): 
 

 
Figure 1. This is a diagram showing the subpopulations s(t)-susceptible, HIV-infected- 
h(t), AIDS infected subset-a(t), and immunized group or removed-r(t). 
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1

transmision rate from Susceptible to HIV
transmission rate from Susceptible to AIDS

rate chaging susceptible to recovere

k
l
m

=
 =
 =

 

Assumption 4: The rate of change in the HIV infected population h(t) is po-
sitively proportional to the number of contacts with the susceptible. 

Assumption 5: The rate of change of HIV infection will be reduced by some 
factors in transforming to AIDS and by some factors in converting to the im-
mune group.  

( ) ( ) ( ) ( ) ( ) ( )2
d
d
h k h t s t l a t s t n h t m h t
t
= ⋅ + ⋅ − ⋅ −           (2.3) 

Two new parameters in this equation are defined: 

2

transmision rate from HIV to AIDS caused by virus mutation
rate chaging of HIV to recovere by vaccination

n
m
=

 =
 

By taking the derivative of the relation (2.1) we can find the rate of change for 
AIDS infection. 

d d d d
d d d d
a s h r
t t t t
= − − −                       (2.4) 

Assumption 6: The rate of change in removable set of the epidemic is pro-
portional to the vaccine contribution to the immune group from susceptible, 
HIV, and AIDS groups. 

( ) ( ) ( ) ( )1 2

d
d
r t

m s t m h t m a t
t

= + ⋅+⋅                (2.5) 

We can combine (2.4) and (2.5) to find d
d
a
t

. As a result: 

( ) ( ) ( )
d

d
a t

n h t m a t
t

= ⋅ − ⋅                    (2.6) 

Given a function h(t), the relation (2.6) will be a first order linear differential 
equation. 

To summarize the result, we will have a system of the following nonlinear dif-
ferential equations: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2

1 2

d
d
d
d
d

d
d

d

s k h t s t l a t s t m s t
t
h k h t s t l a t s t n h t m h t
t
r t

m s t m h t m a t
t

a t
n h t m a t

t

 = − ⋅ − ⋅ −

 = ⋅ + ⋅ − ⋅ −

 = + +


 = ⋅ − ⋅


⋅ ⋅



        (2.7) 

with the initial conditions: ( ) ( ) ( ) ( )0 0 0 00 , 0 , 0 , 0s s h h a a r r= = = = . We can use 
the technology of MAPLE (CAS) to demonstrate the solution. 
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3. Solution of the Nonlinear System by Numerical  
Computation 

Solving the nonlinear system (2.7) using an analytical approach to analyze the 
behavior of the system is a challenge. In this presentation, we will try to use a 
computational approach to simulate the behavior of the solution of the nonli-
near system. There is much research work that focuses on susceptibility, infec-
tion, and removed the (SIR) using a variety of computational tools like MAPLE 
and Sage (see [9]). The model (2.7) is a four-stage model representing suscepti-
ble, HIV, AIDS, with Removed of (SHAR) model. 

In the first stage, we present MAPLE code to show the numerical and graphi-
cal results. 

In Figure 2, the first result of the graphs of all s(t), h(t), a(t), and r(t) are in 
the same coordinate system.  

We can run the Maple numerical solution for the nonlinear system (2.7) with 
different initial conditions and different values of parameters: 

> display([ps2, ph2, pa2, pr2]) (Figure 3).  

4. Numerical Approximation by Computer Algebra (Maple) 

We can take advantage of the discrete system of (2.7) to view the solution fore-
cast for the epidemics. Consider an index 0,1,2, ,j N=   counting the step by 
step calculation for a unit time interval ( ) ( )1t t j t j∆ = + − . The equivalent sys-
tem will be the following discrete difference equations: 
 

 

Figure 2. The numerical solution with the given parameter values, for the system (2.7) 
demonstrates that the initial susceptible s(0) = 10,000 will approach to zero, the initial hiv 
and aides infected h(0) = 1, a(0) = 0 and a rise to maximum and decrease to annihilated, 
The removed sub population that immunized due to the epidemic will be increasing in 
longer period of time. 
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Figure 3. A similar solution is demonstrated with the following parameters. k = 0.000008, 
l = 0.000007, m = 0.0002, n = 0.00025, m1 = 0.00004, m2 = 0.0002. 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] ( ) [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

1

2

1 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1

s j s j k s j h j l s j a j m s j

h j h j k h j s j l h j a j n m h j

a j a j n s j m a j

r j r j m s j m h j m a j

 = − − ∗ − ∗ − − ∗ − ∗ − − ∗ −


= − + ∗ − ∗ − + ∗ − ∗ − − + −


= − + ∗ − − ∗ −
 = − + ∗ − + ∗ − + ∗ −

(4.1) 

with initial conditions: [ ] [ ] [ ] [ ]0 0 0 00 , 0 , 0 , 0s s h h a a r r= = = = . 
To compare the variations between every two graphs and the output of the dis-

crete system, we depicted the following graph of curve A for susceptible, curve B 
for HIV infection, curve C for aids infection, and curve D for removed immu-
nized set. 

Please see Figure 4 for MAPLE code to solve these nonlinear difference equa-
tions. 

5. Numerical Approximation by Excel Spreadsheet 

The method of discrete computation of the nonlinear system (Section 4.) is good 
to visualize the behavior graphically throughout a longer time. It is important 
to know the numerical values to forecast the epidemics in a city or country. The 
spreadsheet can produce the number of infected individuals in every time- 
period. 

Notice that the last three columns are auxiliary columns to help us to move 
the computations from one time-period to the next (see [10]) (Figure 5 and Ta-
ble 1). 

6. HIV-AIDS Modeling without Vaccinations 

Assume that during the studying of the spread of the Virus, no vaccination ex-
ists. We are wondering what is going to happen in the population. 
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Figure 4. This is a demonstration of the variations of susceptible, HIV-AIDS and recov-
ered two by two for comparison.  
 

 

Figure 5. The susceptible population is diminishing; the HIV reaches to the highest level, 
and the AIDS and recovered population is demonstrate to be approximately constant.  
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Table 1. The numerical prediction for s(j), h(j), a(j), and r(i) when j = 1… 40-time inter-
val (day), with the given parameters are computed.  

Numerical Computation for HIV-AIDS Modeling with Recovery (Vaccination) 
using Excel spreadsheet 

n s(n) h(n) a(n) r(n) s(n + 1) h(n + 1) a(n + 1) r(n + 1) 

0 24,650 10 1000 100 24,643 222 1000 101 

1 24,643 222 1000 101 24,531 477 1000 102 

2 24,531 477 1000 102 24,295 785 1001 104 

3 24,295 785 1001 104 23,911 1154 1001 105 

4 23,911 1154 1001 105 23,357 1591 1001 106 

5 23,357 1591 1001 106 22,612 2105 1001 108 

6 22,612 2105 1001 108 21,658 2701 1002 109 

7 21,658 2701 1002 109 20,486 3382 1003 111 

8 20,486 3382 1003 111 19,098 4144 1003 113 

9 19,098 4144 1003 113 17,514 4977 1004 114 

10 17,514 4977 1004 114 15,769 5866 1006 116 

11 15,769 5866 1006 116 13,918 6784 1007 118 

12 13,918 6784 1007 118 12,028 7703 1009 121 

13 12,028 7703 1009 121 10,174 8590 1011 123 

14 10,174 8590 1011 123 8425 9416 1013 125 

15 8425 9416 1013 125 6838 10,159 1015 127 

16 6838 10,159 1015 127 5448 10,804 1018 130 

17 5448 10,804 1018 130 4270 11,346 1021 133 

18 4270 11,346 1021 133 3301 11,790 1023 135 

19 3301 11,790 1023 135 2522 12,144 1026 138 

20 2522 12,144 1026 138 1909 12,421 1029 141 

21 1909 12,421 1029 141 1435 12,634 1032 143 

22 1435 12,634 1032 143 1072 12,795 1036 146 

23 1072 12,795 1036 146 798 12,915 1039 149 

24 798 12,915 1039 149 592 13,004 1042 152 

25 592 13,004 1042 152 438 13,069 1045 155 

26 438 13,069 1045 155 323 13,115 1049 158 

27 323 13,115 1049 158 238 13,148 1052 160 

28 238 13,148 1052 160 176 13,171 1055 163 

29 176 13,171 1055 163 129 13,187 1058 166 

30 129 13,187 1058 166 95 13,196 1062 169 
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Continued 

31 95 13,196 1062 169 70 13,202 1065 172 

32 70 13,202 1065 172 52 13,204 1068 175 

33 52 13,204 1068 175 38 13,205 1072 177 

34 38 13,205 1072 177 28 13,203 1075 180 

35 28 13,203 1075 180 21 13,201 1078 183 

36 21 13,201 1078 183 15 13,197 1082 186 

37 15 13,197 1082 186 11 13,193 1085 189 

38 11 13,193 1085 189 8 13,189 1088 192 

39 8 13,189 1088 192 6 13,184 1091 195 

40 6 13,184 1091 195 4 13,179 1095 197 

 

k= 0.0002 

l= 0.00000005 

m1 0.0004 

n1= 0.00025 

m2= 0.0002 

n2= 0.025 

 
In this case we are actually assuming that 2 1 0m m m= = = , and the system 

(2.7) will be reduced to the following:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

d
d
d
d
d

0
d

d
d

s k h t s t l a t s t
t
h k h t s t l a t s t n h t
t
r t

t
a t

n h t
t

 = − ⋅ − ⋅

 = ⋅ + ⋅ − ∗

 =


 = ⋅


             (5.1) 

The third equation implies that r(t) = r0 is a constant. When there is no im-
munity in the population system the removal number is zero. 

7. Special Case When the HIV-AIDS Model System Does Not  
Have Removable Subset (r(t) = 0) 

The Epidemic Model with zero removed individuals, that is when r(t) = 0 will be 
in the following form. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

d
d
d
d
d

d

s k h t s t l a t s t
t
h k h t s t l a t s t
t
a t

n h t m a t
t


= − ⋅ − ⋅


 = ⋅ + ⋅



= ⋅ − ⋅
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This model was developed in [11]. 

8. Special Case of SHAR Modeling 

If the parameters in the system (2.7) are selected such that: 

1 2 0m m n m= = = =  

Then, we will reduce the system to SIR model 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

d
d
d
d
d

0
d

d
0

d

s k h t s t l a t s t
t
h k h t s t l a t s t
t
r t

t
a t

t

 = − ⋅ − ⋅

 = ⋅ + ⋅

 =


 =


               (6.1) 

According to the new nonlinear system we have only two subsets, susceptible 
and HIV infected. That is 

( ) ( )
( ) ( )
( ) ( )

constant

constant 0

constant 0

s t h t P

r t r

a t a

+ = =


= =
 = =

                 (6.2) 

In a particular case when the initial AIDS infection is considered zero then 
two systems of Equations (5.1) and (5.2) will be the SIR model. 

The SIR model is a simple model, due to Kermack and McKendrick (see [2]), 
of an epidemic of an infectious disease in a large population [9].  

According to SIR model, we need to redefine the total infection as the sum of 
the HIV and AIDS infections. That is h(t) + a(t) = I(t) and the accumulated rate 
of contagion factor between healthy susceptible individuals and infected group is 
denoted by beta. 

( ) ( ) ( )S t I t S tβ′ = − ⋅  for all non-negative t. 
Axiom 3: Assume that the latency period, which is negligibly short, that is: 
L(t) = 0 for all t. 
Axiom 4: Assume that there is no removal from the population, that is the 

population of removed remains at zero. r(t) = 0 for all t. 
Axiom 5: Assume that the initial population is I(0) = I0. 

9. Analytical Attempt to Find the Exact Solution 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

d
d
d
d
d

d

s h t s t a t s t
t
h h t s t a t s t
t
a t

m s t h t n s t a t
t

α β

δ δ


= − ⋅ − ⋅


 = ⋅ + ⋅



= ⋅ + ⋅


                (6.3) 

where 1m α δ= −  and 2n β δ= − . Thus, systems (6.1) and (6.3) are equivalent. 
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Two subsets of the populations HIV infected, and AIDS infected in general 
have different rates of transmitting the disease. That is all parameters in (6.1) to 
(6.3) are not equal and the nonlinear systems can be solved by numerical ap-
proximation and demonstrate the general behavior of the system using the 
technology of computer algebra system (CAS) or spreadsheet. 

But for simplicity in checking the validity of the model, we may assume that 
the susceptible group can be infected at equal rates by mixing with the subsets of 
the big population. That is, consider 

1 2, and m nα β δ δ= = =                    (6.4) 

We can add another condition: h(t) + a(t) = I(t) to (6.4), then the system (6.3) 
will change to, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

d
d
d
d
d

d

s h t a t s t
t
h h t a t s t
t
a t

m h t a t s t
t

β

δ


= − +   


 = +   



= ⋅ +   

                 (6.5) 

Or, equivalently 

( ) ( )

( ) ( )

( ) ( ) ( )

d
d
d
d
d

d

s I t s t
t
h I t s t
t
a t

m I t s t
t

β

δ


= − ⋅ ⋅


 = ⋅ ⋅



= ⋅ ⋅


                    (6.6) 

Adding the second and the third equation in (6.6) we will get 

( ) ( ) ( ) ( ) ( ) ( )
d

.
d
I t

h t a t m I t s t
t

δ′ ′= + = +  

With no removal function, using s(t) = P − I(t) and k = (δ + m), we can pro-
duce the following set of SIR differential equations that can be solved by separa-
tion of variables. 

( ) ( ) ( )
( )

( )
( ) ( )

d
dd

or
d

0

I t
k tI t I N IM I t s t

t
I t I


= −= ⋅ 

 =

            (6.7) 

The well-known solution of Equation (6.7) can be described by 

( ) ( )
( ) ( )( )

0

0
0 0 e

1 1 e
Nkt

Nkt

N I NI t
I N I N

I

−
−

⋅
= =

+ − ⋅  
+ − ⋅ 
 

        (6.8) 

This result shows that the total HIV plus AIDS infection over the time interval 
[0, t] can be calculated (see [11] and [12]). 

10. Mathematical Modeling of Simple (SIR = SHAR) 

When a model has only the three stages of Susceptible, Infected, and Removed 
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subsets of the population, then a well-known differential equation model will be 
in the following from. With the assumption: 

R(t) = 0, the differential equation of the epidemic will be  

( ) ( )

( ) ( )

( ) ( )

d
d
d
d

S S t I t
t
I S t I t
t

S t I t P

β

β

 = − ⋅

 =


+ =

                     (7.1) 

where, I(0) = I0 and S(0) = P − I0.  
In our HIV-AIDS model one can use the Monte-Carlo method by the simple 

assumption  

( ) ( ) ( )I t h t a t= +                       (7.2) 

After a substitution S(t) = P − I(t) in the second equation of (7.1), we can 
solve a first order differential equation: 

( ) ( )( ) ( ) 0
d , 0
d
I I t P I t I I
t

β= ⋅ − =                (7.3) 

using separation of variables. 
The solution to this differential equation is in the following form: 

( )
( )

0

01 e Pt

P I
I t

P I β−

⋅
=

+ −
                    (7.4) 

This function can be rearranged to 

( ) 0

0
0

1 e Pt

P I
I t

PI
I

β−

⋅
=

 
+ − 
 

                   (7.5) 

where the constant number B is defined, 
0

1PB
I

= − . 

If we define M as a mixing factor and C a contagious factor, then we can as-
sume the coefficient of proportionality will be: β = MC/P. Thus, the new version 
of (5.7) will be 

( ) ( )0 00

0 0 0e eMCt MCt

P h aP I
I t

I B h a B− −

+⋅
= =

+ + +
             (7.6) 

where, I(t) = h(t) + a(t) (see [11] [13]). 

11. Conclusions and Path to the Future 

We presented HIV-AIDS model in this paper, which is described by nonlinear 
systems of differential equation of four unknowns. The data produced for pre-
diction of the epidemics is justified in mathematical language. We used comput-
er algebra MAPLE (CAS) and numerical computation of both continuous and 
discrete dynamical systems. 

1) Further development is necessary to analyze the parameters for regularity 
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and stability of the system.  
2) There is a similarity in the spread of the HIV epidemic and Corona Virus. 

This model can be used for COVID-19 pandemic. 
3) Developing Monte Carlo simulation for SHAR model was presented in this 

article. Here is an introduction to applying a computer simulation for HIV-Aids 
epidemics. 

We would like to show how the Monte Carlo simulations can be used to con-
duct experiments. This extremely valuable application of Monte Carlo Simula-
tion will be illustrated for epidemics caused by HIV-AIDS virus. 

In the simulation we assume the following: 
1) A disease strikes a community (city, state, or country) with a population P. 
2) The disease is of sufficiently long duration so that no cures occur during 

the time-period studied. 
3) A person is infected by HIV virus and is immediately contagious for the 

duration of the epidemic. 
4) If a sick person and a susceptible person come into contact, then there is a 

100 * C percent chance that the susceptible person will become infected (We call 
C the contagion factor for the epidemic). 

5) Each susceptible person makes M contacts per day with other persons (not 
necessarily all distinct) chosen randomly from the population (M is the mixing 
factor). 

6) The epidemic begins with one sick person (randomly chosen), and we study 
the spread of disease for T days. 

Input: the input will be the following parameters. 
P—population on the city or community; 
C—contagion factor of the HIV-AIDS virus; 
M—average mixing factor of individual; 
I—initial number of infected people; 
T—The time-period of study. 
Output: The number of people infected each day to see the spread of the dis-

ease in the community. 
The computer uses a random number generator to pick a number using. 
RANDOMIZE to generate different random numbers at different times. 
RND represent a particular random number. 
INT(10 RND) to generate random positive integer 1, 2, 3, …, 9. 
INT(P * RND) + 1 generates one of the integers 1, 2, 3, …, p, that is, the 

“name” of some person in the population. 
Using the model in this paper can be helpful to implement a project for Monte 

Carlo Simulation leading to the following stages:  
1) Write a computer program to run N times and calculate the mean and 

standard deviation of the output. 
2) a) Rewrite the program to calculate the output of the epidemic using the 

exact solution to the differential equation. 
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( ) ( ) ( )0 0 0 0, ,
1 e MCt

PI t P t P I t I
B −= = =

+
 

The solution to the differential equation is where 0

0

1
P

B
I

= − . 

b) Modify the basic program so that in addition to printing D and S each day, 
the program also prints the number of sick persons predicted by the differential 
equation model.  

c) Run the program with P = 1000, C = 0.1, M = 5, I = 10, T = 15. 
d) Plot both points from the computer simulation and the points determined 

by the differential equation model (for further study see [14] [15]).  
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