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Abstract 
The nature of turbulent swirling and rotating flow in a straight pipe is inves-
tigated using a family of near-wall two-equation models. Specifically, the via-
bility of three different near-wall two-equation models is assessed. These mod-
els are asymptotically consistent near the wall. The first two models, one with 
isotropic and another with anisotropic eddy viscosity invoked, solved a dissi-
pation rate equation with no explicit correction made to account for swirl and 
flow rotation. The third model assumes an isotropic eddy viscosity but solves 
an improved dissipation rate equation that has explicit corrections made to 
account for swirl and flow rotation. Calculations of turbulent flows in the 
swirl number range 0.25 - 1.3 with and without a central recirculation region 
reveal that, with the exception of the third model, neither one of the other 
two models can replicate the mean field at the swirl numbers tested. Fur-
thermore, taking stress anisotropy into account also fails to model swirl effect 
correctly. Significant improvements can be realized from the third model, 
which is based on an improved dissipation rate equation and the assumption 
of isotropic eddy viscosity. The predicted mean flow and turbulence statistics 
correlate well with measurements at low swirl. At high swirl, the two-equation 
model with an improved dissipation rate equation can still be used to model 
swirling and rotating pipe flows with a central recirculation region. However, 
its simulation of flows without a central recirculation region is not as satis-
factory.  
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1. Introduction 
1.1. Motivation 

In order to avoid the necessity of having to incorporate a fuel compartment in 
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ramjet design, a solid-fuel combustor that integrates fuel storage into the com-
bustor is usually adopted. However, ramjet rotation (Figure 1(a)) could compli-
cate the complex reacting flow downstream of the combustor entrance (Figure 
1(b)) and could give rise to premature combustion extinction. Since spin is 
common in ramjet operation, it could impact combustor performance and ram-
jet trajectory in the duration of its flight. Ahmed et al. ref. [1] have examined the 
effect of spin on the flow alone inside a ramjet combustor in the laboratory. From 
this experiment, a large decrease in combustion efficiency could be inferred from 
the fluid dynamic study. The combustion efficiency decrease could be as large as 
50% or more depending on the solid fuel used. Therefore, it could be speculated 
that spin is a major cause of this decrease. 

To shed light on this reduction, it is necessary to understand the combusting 
flow behaviour inside the combustor. Once the oxidant air enters the combustor, 
it immediately encounters a sudden expansion, thus, creating a recirculation re-
gion and a flow reattachment (Figure 1(a)). Downstream of the reattachment  
 

 
(a) 

 
(b) 

Figure 1. (a) Flow behavior downstream of entrance nozzle in a solid fuel ramjet com-
bustor; (b) Details of flow field downstream of recirculation zone. The flow downstream 
of nozzle entrance is made up of four regions: (1) Air region; (2) Air plus combustion 
products region; (3) Flame region; (4) Fuel vapor plus combustion products region. Den-
sity differences in these four regions give rise to stratification effect in the combusting 
flow. 
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point, a wall jet and a boundary-layer type flow will develop (Figure 1(b)) and 
they will last until the flow reaches the exit expansion nozzle. The ramjet com-
bustor is normally designed in such a way that the recirculation region serves 
to anchor the flame (Figure 1(a)) and will probably occupy about 20% of the 
combustor length, while the wall jet, the boundary-layer and the pipe flow that 
follows dominate the other 80%. The recirculation region is necessary for stable 
combustion to occur inside the combustor. Therefore, in order to maintain con-
tinuous combustion with good efficiency, a thorough understanding of the flow 
dynamics inside the combustor is necessary.  

Besides the backstep flow, there is also a plane wall jet downstream of the 
reattachment point, and a developing boundary layer as the flow slowly evolves 
into a pipe flow in its passage to the exit nozzle (Figure 1(b)). These complexi-
ties are further complicated by combustion that creates density stratification, 
and ramjet spin that creates swirl in the combusting flow. In order to achieve 
optimal design of the combustor, a good understanding of the isothermal flow 
complexities inside the ramjet is of utmost importance. If the turbulent flow 
inside the ramjet were to be simulated, a relatively simple turbulence model, 
such as a two-equation model, is preferred because it could be easily extended to 
tackle turbulent combusting flow. Furthermore, if the complex flow were to be 
correctly modelled by relatively simple turbulence models, such as two-equation 
models, then an accurate modelling of the individual complex flow by a two- 
equation model needs to be demonstrated and established. Successful modelling 
of backstep flow, plane wall jets, and flow with density stratification using two- 
equation models have been demonstrated by So et al. ref. [2], by Gerodimos and 
So ref. [3], by Sommer et al. ref. [4], and by Yoo and So ref. [5], respectively, 
while their suitability for rotating pipe flows has been shown to be viable by Yoo 
et al. ref. [6], who made comparisons of two-equation simulation results with 
those obtained using Reynolds-stress models. Furthermore, the Yoo et al. ref. [6] 
study also showed that two-equation models need improvements, especially in 
their viability and suitability for modelling swirl and rotating flow in ramjet com-
bustor simulation.  

1.2. Characteristics of Swirling Flow 

Swirl decay in a straight pipe can be classified into two different types depending 
on the way swirl is imparted into the flow. The swirl in the first type is created by 
a rotating pipe while the second type is created by a swirler installed at the en-
trance of the pipe. A forced vortex or a solid-body rotation is generated in the 
first type, while the vortex could be a free vortex, a forced vortex, or a combined 
free/forced vortex in the second flow type. Consequently, the resultant swirling 
flow behaves differently in the two flow types. 

In the creation of a rotating pipe flow, the flow could either pass through a 
continuously rotating pipe, such as that reported by Murakami and Kikuyama 
ref. [7] and by Kikuyama et al. ref. [8], or through a rotating pipe into a statio-
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nary pipe where the swirl velocity decays as the flow moves downstream, such as 
the Weske and Sturov ref. [9] experiment, and the investigation of Anwer and So 
ref. [10]. The counterpart to a concentric annulus has been examined by Hirai et 
al. ref. [11]. If the term “destabilizing” is used to describe the phenomenon of 
extra turbulence production created by flow rotation, while the term “stabiliz-
ing” is used to describe the rotating flow characteristics without the extra turbu-
lence production present, then flow regions with extra turbulence production 
present (destabilizing) or absent (stabilizing) could be found in different parts of 
an axially rotating pipe flow. Near the entrance of a rotating pipe, the wall 
boundary layer is very thin. Consequently, fluid rotation has to decrease rapidly 
from pipe rotation at the wall to zero outside of the wall boundary layer. The 
flow near the wall is influenced by a very high mean tangential shear strain and 
turbulence production is greatly enhanced.  

In the entrance region of the rotating pipe, the near-wall flow is destabilized 
by rotation. Far downstream, the flow becomes fully developed and the fluid 
rotates as a solid body. Since the solid-body rotation curve has a constant slope, 
turbulence production due to the tangential mean strain is essentially zero. In 
this downstream region, rotation gives rise to a stabilizing effect on the flow. 
Between the entrance and the fully developed region, the flow is influenced by 
both destabilizing and stabilizing forces created by the rotating pipe. However, 
the transition from destabilizing to mixed to stabilizing occurs over a finite 
length and depends on different factors; among them are inlet flow conditions, 
the flow Reynolds number, Re, and the swirl number, S. In this case, S can be 
approximated by the ratio of the pipe rotation velocity to the mean bulk velocity 
of the pipe, or S = ωD/2Um. This three-dimensional flow has also been investi-
gated and reported by Murakami and Kikuyama ref. [7], and Kikuyama et al. ref. 
[8].  

In the experiments carried out by Weske and Sturov ref. [9] and by Anwer 
and So ref. [10], the flow very near the wall was immediately affected by a large 
mean tangential shear strain due to the sudden relaxation of surface rotation. 
Therefore, the flow in the entrance region of their rotating pipe flow is influ-
enced by both stabilizing and destabilizing effects. Eventually, the solid-body 
rotation would decay completely, and a fully developed pipe flow would result. 
Therefore, the flow characteristics downstream of the rotating section would de-
pend on the inlet conditions, on Re and on S. Weske and Sturov ref. [9] meas-
ured the Reynolds stresses and the mean flow for two different S and they found 
that, even at 150D downstream, the turbulence field has not completely recov-
ered its stationary behavior. On the other hand, the experiments of Anwer and 
So ref. [9] were carried out to study the effects of S on wall shear only and did 
not examine the decay phenomenon. Their measurements were obtained at 2D 
downstream of the entrance. From their data, it is clear that the destabilizing ef-
fect, although only present in about 10% of the pipe diameter, dominates over 
the stabilizing effect, thus promoting turbulence production along the pipe. 
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Swirling flow, with either a free or a forced vortex generated by swirl genera-
tors, in a straight pipe has not been investigated extensively in the past. In this 
case, the free or forced vortex evolves in the downstream direction into a com-
bined free and forced vortex before decaying. Among the more relevant studies, 
the work of Kreith and Sonju ref. [12], Backshall and Landis ref. [13], Yajnik and 
Subbaiah ref. [14], Murakami et al. ref. [15], Padmanabhan and Janek ref. [16], 
Ito et al. ref. [17], Kito ref. [18], Kito and Kato ref. [19], Algifri et al. ref. [20], 
Kitoh ref. [21] and Parchen et al. ref. [22] could be mentioned. The earlier stu-
dies up to 1984, including the axisymmetric nature of swirling flow examined by 
Kito ref. [18], were mainly concerned with the mean field, the pressure drop, 
and the decay of mean swirl in a pipe. Little attention has been paid to the decay 
of the turbulence field. On the other hand, some measurements of the turbu-
lence field evolution have been provided by Algifri et al. ref. [20], Kitoh ref. [21] 
and Parchen et al. ref. [22]. As a result, turbulence structure in the core and the 
outer region is found to be quite different from those in the near wall region. 
This difference might be difficult to replicate using conventional turbulence mod-
els for swirling flow simulations.  

The studies mentioned above cover a wide range of S. Depending on the type 
of swirler used, the free-to-forced portion of the vortex will vary. The flow cha-
racteristics near the pipe centerline also differ significantly depending on S. For 
flows with S   1, a recirculation region did not exist near the pipe core be-
cause the resulting pressure depression is not sufficient to create such a reversed 
flow. For flows with S ≈ 1, a reversed flow region starts to appear depending on 
whether other conditions, such as Re, inlet conditions, etc., are favorable to the 
formation of a recirculation region. For example, the experiments of Kitoh ref. 
[21] showed a reversed flow region while the measurements of Murakami et al. 
ref. [15] did not, even though both studies were carried out at an initial S ≥ 1. 
The decay rate was also found to be dependent on the above conditions. For 
example, in the experiments of Murakami et al. ref. [15], the mean flow was still 
evolving even at 190D downstream of the inlet. On the other hand, Weske and 
Sturov ref. [9] found that the mean flow was quite similar to that of a fully de-
veloped turbulent pipe flow at about 150D downstream of the inlet, while the 
turbulence field was still evolving. 

1.3. Modelling Swirling Flow 

Due to the complex nature of swirling flow and its decay in a straight pipe, it’s 
modelling has not been investigated extensively. Among the more notable stu-
dies are those of Kreith and Sonju ref. [12], Parchen et al. ref. [22], Kobayashi 
and Yoda ref. [23], and Khodadadi and Vlachos ref. [24]. Three different ap-
proaches to model swirl decay were discussed in these studies. In all but one in-
vestigation, wall functions were assumed. An analytical approach was adopted 
by Kreith and Sonju ref. [12] who assumed a constant eddy viscosity and an axial 
flow given by the mean axial velocity in a fully developed pipe flow. Thus simpli-
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fied, the equation governing the tangential velocity, W, can be reduced to an eq-
uation with one unknown once the eddy viscosity is specified. Using their own 
experimental data, they were able to derive an eddy viscosity that was parametric 
in Re and used it to solve for the evolution of W. They were able to derive an 
exponential decay law for S. The results thus obtained were in good agreement 
with their own experimental measurements. Two-equation k-ε models and their 
variations had been deployed by Kobayashi and Yoda ref. [23] and Khodadadi 
and Vlachos ref. [24] to simulate swirl decay in a straight pipe. These calcula-
tions indicated that the k-ε model was, in general, inadequate and gave poor 
prediction of the flow in the pipe core region, especially the flow depression 
along the axis. The coefficients and model constants of the k-ε model could be 
modified to give better correlations with data as suggested by Kobayashi and 
Yoda [23]. However, such modifications were rather ad hoc and could not be 
easily generalized to flows other than those analyzed by Kobayashi and Yoda ref. 
[23], and Khodadadi and Vlachos ref. [24]. 

An algebraic stress model plus the standard k and ε equations were adopted 
by Parchen et al. ref. [22] to simulate swirl decay in a straight pipe. They also 
compared their results with standard k-ε model calculations and other model 
predictions obtained by their colleagues. The results showed that, as far as swirl 
decay was concerned, the standard k-ε model gave a better prediction than the 
algebraic stress model. However, both models failed to capture the behavior of 
the mean flow correctly as swirl decayed in the downstream direction. Specifi-
cally, the standard k-ε model failed to predict any enhancement of radial mo-
mentum exchange as a result of swirl. On the other hand, the algebraic stress 
model predicted a weak enhancement. Also, for flows with small S, the standard 
k-ε model performed the best among all models tested. These results were quite 
puzzling and could be partially explained by attributing the discrepancies to the 
use of wall functions in the modelling. Consequently, near-wall diffusive trans-
port of all stress components was under-estimated; thus, it could lead to a situa-
tion where error cancels out error and give rise to a better prediction by the k-ε 
model. 

These studies led to the realization that not a single k-ε model, without some 
kind of ad hoc modifications, could correctly track the swirling flow evolution in 
a straight pipe. Therefore, an alternative approach to model swirling flow is ne-
cessary. According to Bardina et al. ref. [25], who studied rotation effects in iso-
tropic turbulence, their findings indicate that the effects of flow rotation and/or 
swirl should be accounted for in the ε-equation. They suggest modelling the 
ε-equation to take swirl effects into account directly and explicitly. In addition, 
Fu et al. ref. [26] and Kim and Rhode ref. [27] showed that using algebraic and 
second-moment closure models could greatly improve swirl flow simulations. 
Their model results were in good agreement with rotating flow data. On the other 
hand, Bernard and Speziale ref. [28] and Speziale and Bernard ref. [29] have 
found that, if homogeneous shear flow and its asymptotic state were to be calcu-
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lated correctly, an explicit term representing the effect of vortex stretching 
should be included in the modified ε-equation.  

The two-equation models and their improvements discussed above cannot 
fulfill the need for a general two-equation model that could simutaneously rep-
licate backstep flow, wall jet, thermal boundary-layer flow, developing pipe flow, 
and swirling and rotating pipe flow, such as those commonly encounter in spin-
ning ramjet combustors. Recent studies on swirling flow simulations reported by 
Andrew and Cui ref. [30], Sagol et al. ref. [31], Javadi ref. [32], Li et al. ref. [33] 
and Alhmadi et al. ref. [34], to mention a few recent studies, also did not em-
phasize their ability to model the highly complex swirling flow found in spinning 
ramjet combustors. Similar to other swirling flow models, theirs could also ac-
curately mimic swirling flow without the presence of added flow complexities 
found in spinning ramjet combustor. Therefore, the need to develop a turbu-
lence model that could properly handle these complexities still has not been ful-
filled.  

1.4. Present Objectives 

Based on the above review on swirling flow modelling, it can be concluded that 
the time is ripped for the development of a relatively more general swirling flow 
model based on the two-equation model used in the studies of So et al. ref. [2], 
Gerodimos and So ref. [3], Sommer et al. ref. [4], Yoo and So ref. [5], and Yoo et 
al. ref. [6]. Thus configured, the new model could better handle flow complexi-
ties found in spinning ramjet combustors. In addition, the swirling flow model-
ling studies quoted above suggest that the conventional ε-equation also needs 
modification if the effects of vortex stretching and rotation also were to be si-
mulated. These studies further suggest that the ideas of Bardina et al. ref. [25], 
Bernard and Speziale ref. [28] and Speziale and Bernard ref. [29] could be used 
to derive a new near-wall ε-equation. The resultant ε-equation together with a 
near-wall k-equation, such as that adopted by So et al. ref. [2] to treat backstep 
flow, by Gerodimos and So ref. [3] to model plane wall jets, by Sommer et al. ref. 
[4] to treat flow with heat transfer, and by Yoo and So ref. [5] to simulate density 
stratified flows, could give rise to an improved k-ε model. 

The approach used to accomplish this objective is similar to that adopted by 
So et al. ref. [35] to account for low-Reynolds-number and near-wall turbulence 
effects in the ε-equation in order to correctly simulate such flows. Therefore, in 
the present approach, the ε-equation is modified to account for swirl and pipe 
rotation, while the modified k-equation adopted in previous studies refs. [2] [3] 
[4] [5] [6] is used without implementing further modelling change to account 
for swirl effects. Thus formulated, the k-equation and the modified ε-equation 
together will give an improved k-ε model that is suitable for modelling complex 
turbulent flows such as those found in spinning solid-fuel ramjet combustor.  

The improved k-ε model is validated against swirling and rotating pipe flow 
measurements and other two-equation k-ε modelling results. In particular, the 
new model with isotropic eddy viscosity invoked is assessed against the simula-
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tions of two other conventional models that adopt the conventional k-ε equations. 
One model retains the isotropic eddy viscosity assumption, while another invokes 
anisotropic eddy viscosity. This way, the effects of stress anisotropy on swirling 
flow simulations can also be assessed; thus allowing the merits or lack thereof of 
the explicit modelling of swirl effects in the ε-equation to be thoroughly studied 
in this investigation. 

2. Two-Equation Models 

In order to avoid the use of wall function approximations, the present study 
chooses to apply near-wall models to calculate swirling flows in a straight pipe. 
The advantage of this approach has been fully demonstrated in the modelling 
studies of back-step flow, plane wall jet, and boundary-layer flow, refs. [2] [3]. 
Therefore, three different near-wall two-equation models are investigated in this 
study. Two of the models share the same set of k and ε equations while a third 
has a totally different ε-equation, which is derived to specifically account for the 
effects of rotation and vortex stretching. The first two models are designated as 
SAYS and ASAYS and they differ only in the eddy viscosity assumed. The SAYS 
model proposed by So et al. ref. [36] assumes an isotropic eddy viscosity and is 
based on the SSG model formulated by Speziale et al. ref. [37] without near-wall 
correction, while the ASAYS model adopts the anisotropic eddy viscosity put 
forward by Speziale ref. [38]. The SAYS and ASAYS models have been used by 
So et al. refs. [2] and Gerodimos and So ref. [3], respectfully, to tackle backstep 
flow and plane wall jet. Therefore, both SAYS and ASAYS models can account 
for near-wall effects, which consists of both low-Reynolds-number and wall 
blocking effects but cannot predict the effects of low-Reynolds-number turbu-
lence in a free shear flow. A third model formulated to also take this low-Re ef-
fect into account so that it is valid for both free and wall-bounded shear flows 
has been put forward by So et al. ref. [36]. This new model is designated as the 
modified SSGZ model. In order to accomplish the present objective, it is neces-
sary to directly model the effects created by swirl and rotating pipe flow in the 
already improved ε-equation adopted in the SSGZ model. It should be pointed 
out that this SSGZ model also invokes the assumption of isotropic eddy viscosi-
ty. These three models, SAYS, ASAYS, and the modified SSGZ, are briefly de-
scribed below.  

2.1. Isotropic Eddy Viscosity Model—SAYS 

Consider an incompressible turbulent swirling flow in a straight pipe. The mean 
flow and modeled k-ε equations with gradient transport assumed can be written 
in Cartesian tensor form as 

0i

i

U
x

∂
=

∂
,                            (1) 

21 i ji i

i i j j

u uDU UP
Dt x x x x

ν
ρ

∂∂∂
= − + −

∂ ∂ ∂ ∂
,                 (2) 
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i k i

Dk k
Dt x x

ν
ν ε

σ
  ∂ ∂

= + +Π −  ∂ ∂   
,                 (3) 

1 2
t

k
i i

D C C
Dt x x k kε ε

ε

νε ε ε εεν ξ
σ

  ∂ ∂
= + + Π − +  ∂ ∂   



,           (4) 

where D/Dt is the material derivative, Ui is the ith component of the mean veloc-
ity, xi is the ith component of the coordinate, ( )k i j i ju u U xΠ = ∂ ∂  is the pro-
duction of k, P is the mean pressure, ρ is fluid density, t is time,  

( )2
2 ik xε ε ν= − ∂ ∂  is a reduced ε, νt is the turbulent eddy viscosity, i ju u−  

is the Reynolds stress tensor, ξ is a near-wall correction function for the 
ε-equation and σk, σε, Cε1 and Cε2 are model constants. Here, the overbar is used 
to denote time average. The near-wall correction function derived for the SASY 
model is given by So et al. ref. [35] as 

2

1w kf L M N
k k k
ε ε εεξ

 
= − Π + − 

 

 

,                 (5) 

where ( )2
1 exp 40w tf Re = −   is a damping function used to ensure the disap-

pearance of the effects of ξ away from the wall, 2
tRe k νε=  is the turbulence 

Reynolds number and the constants are given as L = 1.5, M = 0.5 and N = 0.57. 
Another reduced ε is introduced and this is given by 2

22 k xε ε ν= − , where x2 
is the wall normal coordinate. The other model constants are specified as σk = 1, 
σε = 1.45, Cε1 = 1.50 and Cε2 = 1.83. 

If an isotropic eddy viscosity is assumed, the definitions for i ju u−  and the 
eddy viscosity, νt, are given by 

22
3i j t ij iju u S kν δ− = − ,                     (6a) 

2

t
kC fµ µν
ε

= ,                         (6b) 

where ( ) 2ij i j j iS U x U x= ∂ ∂ + ∂ ∂  is the mean strain rate, Cμ = 0.096 and fμ is 
a damping function introduced to render proper asymptotic behavior for the 
Reynolds shear stress. The specification for fμ is 

23.451 tanh
115t

xf
Reµ

+   
= +   
    

,                    (7) 

where 2 2x u xτ ν+ =  and uτ  is the friction velocity. 
The boundary conditions for swirling flows can be stated as U = V = 0, W = 0 

for a stationary pipe and W = ωD/2 for a rotating pipe, k = 0 and  

( )2

22w w
k xε ν= ∂ ∂  at x2 = 0. Here, x2 is taken to measure positive away from 

the wall. Its relation to r, the radial coordinate, is x2 = D/2 − r (Figure 2). At the 
symmetry axis, the boundary conditions are zero radial gradient for all quanti-
ties except the Reynolds shear stress, which is specified as zero. 
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Figure 2. Co-ordinate system for swirling and rotating pipe flow. 

2.2. Anisotropic Eddy Viscosity Model—ASAYS 

The above model assumes gradient transport and isotropic eddy viscosity. There-
fore, it cannot account for anisotropy effects. In order to capture this particular 
characteristic without resorting to a full second-order modelling of the flow, it is 
proposed to couple an anisotropic eddy viscosity with the above two-equation 
model to calculate swirling flows. The anisotropic model adopted is that pro-
posed by Speziale ref. [38] and can be written as 

22 1 12 4
3 3 3

D t
i j t ij ij ik kj kl kl ij ij kk ij

C
u u S S Sk S S S S

k
ν

ν δ δ δ − = − − − + −  
  ,    (8a) 

where 

ij ij ji
ij k kj ki

k k k

S S UU
U S S

t x
S

x x
∂ ∂ ∂∂

= + − −
∂ ∂ ∂ ∂

 ,                (8b) 

is the frame indifferent Oldroyd derivative of Sij and CD = 1.68 is a dimensionless 
constant. It should be noted that the isotropic eddy viscosity is recovered in the 
limit of CD goes to zero. This anisotropic eddy viscosity along with Equations 
(3) to (5) is designated as the ASAYS model. The objectives here are first to 
demonstrate the ease with which the two-equation model can be used with an 
anisotropic eddy viscosity, where no other modifications are required of the mod-
eled equations, and second to assess the anisotropy effects on the calculation of 
turbulent flows with high swirl. Once the validity of the concept has been dem-
onstrated, the anisotropic eddy viscosity can be used with other two-equation 
models. Of course, alternative anisotropic eddy viscosities can be used. An ex-
ample is the proposal of Gatski and Speziale ref. [39]. 

2.3. The Modified SSGZ Model for Swirling Flow—Modified SSGZ 

The improved ε-equation for swirling flows is derived in two steps. For the sake 
of completeness, a brief description of this model is given below. First, the abili-
ties to model free shear flows and their decay as well as near-wall flows are con-
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sidered. The model thus derived is the SSGZ model reported in So et al. ref. [36]. 
This is followed by a second modification where the effects of swirl and their 
modelling are examined. These requirements, therefore, necessitate a complete 
re-examination of the e-equation and its modelling. However, the form of the 
modeled equation should remain simple and should not deviate substantially 
from the established form of a modeled production and a modeled destruction 
term. In other words, the e-equation should have the same form as that given in 
Equation (4), but with different constants and damping functions assumed for 
the production and destruction terms. Furthermore, the near-wall correction 
function ξ should again be derived to render the improved equation asymptoti-
cally correct near a wall. 

According to Launder et al. ref. [40], the spreading rate of free shear layers 
can be predicted correctly if the constants in Equations (3) and (4) are changed 
to the following set: σk = 1, σε = 1.4, Cε1 = 1.50 and Cε2 = 1.9. Further, the mod-
elled destruction term kεε  should be replaced by 2 kε . In addition, as 
pointed out by Launder et al. ref. [41], the set of constants chosen should yield a 
correct von Karman constant κ for the log-linear region of wall-bounded turbu-
lent flows. However, such an ε-equation could not yield correct results for the 
simulation of homogeneous turbulence decay. On the other hand, Hanjalic and 
Launder ref. [42] found that the decay of homogeneous free turbulence can be 
correctly simulated if and only if the destruction term in the dissipation rate eq-
uation is modified by a damping function that is dependent on Ret. They pro-
posed the following damping function ( )21 0.22exp 6 tf Reε

 = − −  . This sug-
gests that ( )1 kC kε ε Π  in Equation (4) should remain the same while ( )2C kε εε  
should be replaced by ( )2

2C f kε ε ε . Thus modified, the near-wall correction 
function ξ can be derived following the procedure outlined in So et al. ref. [43]. 
The resultant function that yields asymptotically consistent results for k and 
ε can be incorporated into the ε-equation to render it valid for both low- 
Reynolds-number turbulence and near-wall flows. The modified ε-equation is 
given by 

1 1 2 2
t

k
i i

D C f C f
Dt x x k kε ε

ε

νε ε ε εεν
σ

  ∂ ∂
= + + Π −  ∂ ∂   



           (9) 

where [ ]1 11 wf fα= −  and, as before, 1wf  is given by ( )2
1 exp 40w tf Re = −   

and 2f fε=  while ε  is given by 
2

3

2 2 i

C k
C f x

ε

ε

ε ε ν
 ∂

= −  
∂ 

 ,                   (10) 

while the constants are determined by So et al. ref. [43] to be 3 2.955Cε =  and 
10α = . The ε boundary condition would lead to 0ε =  at the wall and thus 

rendering (9) valid as the wall is approached. Therefore, the SSGZ model con-
sists of solving Equations (3), (6), (9) and (10). However, the damping function 
fμ is given by So et al. ref. [44] as 
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( ) ( )
22

3 41 80exp 1 exp 1 3 ,
43 330t t
Re Re

f Re Reε ε
µ

−  
 = + − − − − +   

   
      (11) 

where ( )1 4
2Re xε νε ν=  is a Reynolds number based on the Kolmogorov ve-

locity scale. This model has been validated against a wide variety of flows by So 
et al. refs. [43] [44] and good correlation with data is obtained for each of the 
flow case studied. 

As will be seen later, the ε-equation given by (9) fails to improve the predic-
tions of swirling flows. The reason is that it does not account for the effects of 
swirl in an explicit manner. In a study on isotropic turbulence under the influ-
ence of a constant angular velocity w, Bardina et al. ref. [25] found that the ef-
fects of rotation should appear explicitly in the ε-equation. Furthermore, their 
simulation results show that the effect on ε is approximately linear in ω. As a re-
sult, they proposed a reduced ε-equation, which can be written as, 

2

2 3
d
d

C C
t kε ε
ε ε ωε= − − ,                      (12) 

to analyze rotating isotropic turbulence. The last term in this equation was pro-
posed by Bardina et al. ref. [25] to account for constant rotation effects in iso-
tropic turbulence and the calculated results from Equation (12) are in good 
agreement with data. However, for more general flows, where the angular veloc-
ity Ω is a function of position and/or where mean strain might be present, a 
more appropriate angular velocity or rotation rate such as 

1 2
2ij ij Ω = Ω Ω   

should be used instead. Here, the mean rotation rate tensor is given by  
2ij i j j iU x U x Ω = ∂ ∂ − ∂ ∂  . In the present analysis, it is obvious that Ω 

should be adopted rather than ω. 

3. Modified ε-Equation for Swirling and Rotating Pipe Flow 

It can be inferred from the proposal given in Equation (12) that the effect of 
swirl could not appear explicitly as a coefficient in either the production or de-
struction term in the ε-equation. For isotropic turbulence, the proposed effect is 
linearly proportional to ω. The rotation effect may not be linear for non-isotropic 
turbulence. However, as a first attempt, a linear assumption is invoked. Since 
swirl affects the vorticity field and could contribute to vortex stretching, this 
suggests that the model term to account for swirl effects explicitly should take on 
a form similar to that introduced by Bernard and Speziale ref. [28], and Speziale 
and Bernard ref. [29] to model the effects of vortex stretching in the ε-equation. 
The model vortex stretching term was introduced to allow the asymptotic limit 
of homogeneous shear flow turbulence to be approached correctly. According to 
Bernard and Speziale ref. [28], the term should be proportional to  

( ) ( )1 2 2
tRe kε 

  . The present analysis adopts this proposal as the base and 
modifies it to account for swirl effects. Therefore, combining this proposal with 
the idea of Bardina et al. ref. [25] and the condition that the term should be di-
mensionally consistent with other terms in the ε-equation, a model similar to 
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that proposed by Bardina et al. ref. [25] is obtained and can be written as  
( ) ( )1 2 2

tk Re kε εΩ . With these suggested improvements, the modified ε-equation 
for swirling flow can now be written as 

1 2
1 1 2 2 4

t
k t

j j

D C f C f C Re
Dt x x k kε ε ε

ε

νε ε ε εεν
σ

  ∂ ∂
= + + Π − + Ω  ∂ ∂   



     (13) 

where Cε4 is a coefficient associated with the swirling flow term. The exact form 
of Cε4 will be determined later. It should be noted that the additional swirling 
flow model has a leading term of order 2

2x  near the wall. Therefore, its intro-
duction does not affect the near-wall balance of Equation (9), which is carried 
out to order x2 only. 

In this form, Equation (13) does not reduce to Equation (9) when swirl va-
nishes because Ω is not zero as long as mean strain is present in the flow. Since 
the Cε4 term is introduced to account for swirl effects explicitly, it should vanish 
as swirl goes to zero. In view of this, Cε4 should be made parametric in S so that 
for a given swirling flow Cε4 is a constant. This suggests that Cε4 should be para-
metric in So, the inlet swirl number, which is constant for a given flow. A simple 
form proposed for Cε4 is ( )4 1 21 expS S oC C C Sε  = − −   where CS1 and CS2 are 
constants. The value of CS1 can be estimated based on that proposed by Bardina 
et al. ref. [25] for Equation (12). They suggested a value of 0.15 for Cε3 in Equa-
tion (12). The present proposal has 1 2

tRe  in the model term, therefore, this im-
plies that Cε4 should be at least one order of magnitude less than that adopted by 
Bardina et al. ref. [25]. In other words, Cε1 can at most take on a value of 0.015 
while ( )21 exp S oC S − −   should be of order 1. Note that the additional swirling 
flow model term does not depend on Ω alone; it also depends on oS  and 1 2

tRe . 
The introduction of Ret allows the local turbulence behavior to be accounted for 
in a more general way, while the dependence on oS  permits the initial swirl to 
be taken into account. Later comparison of model calculations with experimen-
tal measurements shows that CS2 = 5.0 is most appropriate, because it allows the 
effects of very small initial swirl to be accounted for properly in swirling flow 
modelling. These small swirl effects are known to influence the flow substantially 
according to Yajnik and Subbaiah ref. [14]. Thus improved, the ε-equation is 
more general than Equation (4) and Equation (9) because it is valid for both 
low-Reynolds-number flows with and without the presence of a wall and could 
account for swirl effects explicitly. The two-equation model based on Equations 
(3), (6), (10), (11) and (13) is the modified SSGZ or MSSGZ model for swirling 
flows. As before, the model can also be used in conjunction with an anisotropic 
eddy viscosity model. 

Finally, it should be noted that Equation (13) can again be cast in a form sim-
ilar to Equation (9) by modifying the definition for ε . The new ε  is given by 

( ){ }2
1 2 1 23

2 2 3

1 expS S o
t

i

C C SC k Re k
C f x C

ε

ε ε

ε ε ν
 − − ∂ = − + Ω  ∂   

        (14) 
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This expression reduces to 
2

22
w

k xε ε ν  = − ∂ ∂   at the wall and thus allows 

the wall boundary condition ( )2

22w w
k xε ν= ∂ ∂  to be satisfied exactly with  

0ε = . Therefore, Equation (9) is also applicable to swirling flows provided ε  is 
now defined by Equation (14) instead of Equation (10). Casting the equation in 
this form provides a reasonable interpretation for the additional model terms in 
the ε-equation. Essentially, Equation (14) shows that the effects of viscosity and 
of swirl could be accounted for by introducing a reduced ε for the destruction 
term of the ε-equation; an idea first broached by Jones and Launder ref. [45]. 
However, instead of replacing one of the ε in the destruction term by a reduced 
dissipation rate ε , Jones and Launder [40] proposed to solve a transport equa-
tion for the reduced dissipation rate, i.e. 

2

22
w

k xε ε ν  = − ∂ ∂  . Consequently, 
their proposed turbulence model becomes more complicated because one more 
ε -equation has to be solved.  

4. Numerical Simulation 

Swirling flows are calculated using the elliptic TEACH code developed by Gos-
man and Ideriah ref. [46]. Although it was originally developed to incorporate a 
two-equation model, it provides the basic structure for the implementation of 
more advanced turbulence models. The code uses a finite volume approach 
where the transport equations are integrated around their respective control vo-
lumes. The SIMPLE method of Patankar ref. [47] is adopted to solve the nonli-
near system of equations together with an alternating direction, line-by-line, tri-
diagonal matrix solution scheme. The convective and diffusive terms are discre-
tized using the hybrid scheme which is a combination of the central difference 
and upwind schemes depending on the cell Peclet number. The steady form of 
the equations is solved by introducing an under-relaxation factor. The iterations 
are continued until the sum of the normalized residuals reduces to 10-6 for the 
dependent variables. In all the calculations, the ix  coordinate system adopted 
in this paper will take on the following identity 1x x= , 2x y=  and 3x z=  in 
the TEACH code. Special attention is given to the placement of grids near the 
wall. A minimum of 5 grids are placed within 5y+ <  with the first grid at ap-
proximately 1y+ = , and 15 - 25 grids are located in the near-wall region 
5 65y+< < , depending on the total number of grids used. The calculation do-
main varies depending on the flow case considered. It is chosen so that the pa-
rabolic condition can be assumed at the outlet of the domain. A grid indepen-
dent study has been carried out using 51 × 56, 102 × 56 and 133 × 56 grids along 
the axial (x) and radial direction (r). The grids are closely spaced near the pipe 
entrance and gradually become coarser towards the outlet. Usually, the calcula-
tions are started at a location where reasonably reliable experimental data are 
available; e is either interpreted from the measured uv−  and k distributions or 
from the mean velocity, U, and the equilibrium turbulence assumption. Grid 
independent results are obtained with a 102 × 56 grid. 
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5. Results and Discussion 

The merit of an anisotropic eddy viscosity assumption versus an explicit model-
ling of swirl in the ε-equation is assessed by using SASY, ASASY and the mod-
ified SSGZ to simulate three different cases of swirling flows. In subsequent 
plots, all results labelled SSGZ are to be interpreted as represented by the mod-
ified SSGZ; the adjective “modified” is ommitted in order to avoid clutter in the 
model prediction labelling. The first case is the rotating pipe experiments of Ki-
kuyama et al. ref. [8]. These experiments were carried out with three rotation 
numbers, Ro = 0, 0.5 and 0.83 where Ro = Wo/Uo, Wo = wD/2 is the rotating pipe 
surface velocity and Uo is the maximum mean velocity. This gives rise to So = 
Ro/2 because in the experiments of Kikuyama et al. ref. [8] a uniform U was spe-
cified at the inlet. The present calculations are compared with the case where Ro 
= 0.5 or So = 0.25. Two other cases with a fairly high So are also considered. One 
case is the experiment of Kitoh ref. [21] with So = 0.97. The swirl in this case is 
generated by a swirler located at the entrance of the pipe. As a result of high 
swirl, a strong recirculation region was observed along the central core. An em-
pirical decay law was proposed by Kitoh ref. [21] to describe swirl decay in this 
particular experiment. Another case is the experiment of Weske and Sturov ref. 
[9] with So = 1.3. The inlet swirl was generated by a rotating pipe; therefore, the 
rotating velocity field was represented by a solid-body rotation, and the inlet U 
was maintained uniform upstream of the rotating pipe. Even though the swirl 
number was larger than that specified in the experiment of Kitoh ref. [21], no 
central recirculation was observed in the experiment of Weske and Sturov ref. 
[9]. The three cases therefore bracket a swirl number range of 0.25 to 1.3 and a 
situation where a central recirculation is present. In the following, the case of 
Kitoh ref. [21] is used to assess the choice of CS1 and CS2 since it is the most 
complicated among those selected. Consequently, the two high swirl cases are 
presented first; this is then followed by a detailed comparison of the low swirl 
case. 

In the experiment of Kitoh ref. [21], measurements at six axial locations are 
available. The mean velocity and Reynolds stress measurements at x/D = 0.57 are 
used as inputs to carry out the calculations, while ε is estimated from the meas-
ured k profile. Swirl decay is compared in Figure 3. Reference to the modified 
SSGZ in all figures is simply stated as SSGZ. In Figure 4 and Figure 5, only 
sample comparisons of the mean velocity distributions with measurements at 
x/D = 12.3 and 39.0 are shown because other stations show similar behavior. 
Different values for CS2 have been attempted. This ranges from 1 to 5. Since the 
appropriate value is found to be 5; therefore, CS2 = 5 is used from this point on. 
Four different values of CS1 are used in the modified SSGZ model to perform the 
calculations; they are 0, 0.005, 0.01 and 0.015, respectively. Therefore, the U and 
W distributions at each location shown consist of results from four values of CS1. 
On the other hand, only the CS1 = 0.015 result is compared in the swirl decay 
plot (Figure 3). Besides the calculations from the modified SSGZ model, predic-
tions from SASY and ASASY are also plotted in Figures 3-5 for comparison.  
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Figure 3. Comparison of calculated swirling decay with data of Kitoh ref. [21]. 
 

 
(a) 

 
(b) 

Figure 4. (a) Comparison of calculated U with data of Kitoh ref. [21] at x/D = 12.3; (b) 
Comparison of calculated W with data of Kitoh ref. [21] at x/D = 12.3. 
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(a) 

 
(b) 

Figure 5. (a) Comparison of calculated U with data of Kitoh ref. [21] at x/D = 39.0; (b) 
Comparison of calculated W with data of Kitoh ref. [21] at x/D = 39.0. 
 
Kitoh ref. [21] suggested an empirical decay law, ( )0 expS S x Dβ= −  with β = 
0.02362, to correlate the measurements. The calculated decay by SASY and 
ASASY tracks this behavior well in the near field (Figure 3) but deviates from it 
in the far field (x/D > 40). It should be pointed out that the swirl decay obtained 
from SASY and ASASY is essentially identical. The reason is that neither aniso-
tropic nor isotropic eddy viscosity assumption has much effect on the prediction 
of the mean flow (Figure 4 and Figure 5). The ASAYS model gives additional 
information on the normal stresses, while the modified SSGZ model under- 
predicts swirl decay. This could be the result of a fairly correct prediction of U 
(Figure 4(a) and Figure 5(a)) but a less accurate calculation of W (Figure 4(b) 
and Figure 5(b)). As for SAYS and ASAYS, their predications of U and W are 
both incorrect. Consequently, the under prediction of U and W could give rise 
to a better prediction of swirl decay because S is related to U and W by  

( ) ( )2 2 3 2
0

2 d 8
D

mS UWr r D U= ∫ . 
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Both SAYS and ASAYS fail to predict a velocity depression in the central core 
at x/D = 12.3 and 39.0 (Figure 4(a) and Figure 5(a)). On the other hand, the 
modified SSGZ model with CS1 = 0 is also incapable of producing a significant 
velocity depression (Figure 4(a)). It can be seen that explicit swirl correction in 
the ε-equation have a substantial effect on the prediction of the mean velocities; 
the effect is more pronounced in U than in W. With CS1 = 0.015, a very signifi-
cant axial velocity depression in the central core is predicted at x/D = 12.3. The 
model even manages to give rise to a substantial region of central recirculation 
(Figure 4(a)). Further downstream, even though measurements do not show a 
recovery from flow recirculation at x/D = 39.0, the prediction at the same loca-
tion reveals that the velocity depression in the central core has recovered sub-
stantially (Figure 5(a)). This discrepancy could be partially attributed to mea-
surement errors. It seems that a different value of CS2 would be more appropriate 
because, with CS2 = 5.0, significant discrepancy between predictions and mea-
surements of W still exist at x/D = 12.3 (Figure 4(b)). However, calculations of 
the decay behavior (Figure 3) and the other two cases reveal that CS2 = 5.0 is an 
appropriate choice for swirling flows over the range of S considered. In general, 
increasing CS1 improves the agreement with U, but only slightly with W (Figure 
4(b) and Figure 5(b)). It is believed that the W discrepancy noted in the central 
core is related to the W discrepancy shown in the near-wall region (Figure 4(b) 
and Figure 5(b)). If this discrepancy is to be improved, perhaps, swirl effects 
should also be accounted for explicitly in the near-wall region. 

From this point on, only CS1 = 0.015 and CS2 = 5.0 are used in the modified 
SSGZ model to carry out the calculations of the other two cases. Comparisons 
for the case of Weske and Sturov ref. [9] with So = 1.3 are shown in Figures 6-8. 
Again, these calculations are carried out with inlet conditions given by the mean 
flow and normal stress measurements obtained at x/D = 0.35 while ε is estimated 
from the measured k and the shear stresses are deduced from the measured U  
 

 

Figure 6. Comparison of calculated swirling decay with data of Weske & Sturov ref. [9]. 
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(a) 

 
(b) 

Figure 7. (a) Comparison of calculated U with data of Weske & Sturov ref. [9] at x/D = 
5.1; (b) Comparison of calculated W with data of Weske & Sturov ref. [9] at x/D = 5.1. 
 

and W assuming gradient transport. The decay behavior is compared in Figure 
6 while some sample distributions of U and W at two axial locations are shown 
in Figure 7 and Figure 8, respectively. It can be seen that the calculated decay by 
the SAYS and ASAYS models is again identical (Figure 6). However, their decay 
curve lies below that given by the modified SSGZ model and agrees better with 
data, much like that shown in Figure 3 for the case studied by Kitoh ref. [21]. 
These results tend to substantiate the finding of Parchen et al. [22]; namely that 
conventional k-e models yield a slightly more accurate prediction of swirl decay. 
On the other hand, the modified SSGZ model calculations of U and W at x/D = 
5.1 (Figure 7) and x/D = 20.0 (Figure 8) are in better agreement with data than 
those given by SASY and ASAYS. It appears that both the shape and magnitude 
of the velocity profiles are predicted fairly correctly at the two axial locations. 
The axial velocity depression in the central core is over-predicted by the  
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(a) 

 
(b) 

Figure 8. (a) Comparison of calculated U with data of Weske & Sturov ref. [9] at x/D = 
20; (b) Comparison of calculated W with data of Weske & Sturov ref. [9] at x/D = 20. 
 
modified SSGZ model with CS1 = 0.015, while both SAYS and ASAYS under- 
predict the velocity depression in the central core. This tends to suggest a smaller 
CS1 value would be more appropriate for swirling flows. However, the third case, 
to be presented below, seems to lend credence to CS1 = 0.015. The turbulence 
measurements were not reliable in the two high swirl number cases, therefore, 
the calculated k and uv−  are not compared with the calculations. This, howev-
er, will be carried out for the low swirl number case where the turbulence mea-
surements are much more accurate. 

The final case to compare is the rotating pipe flow experiment of Kikuyama et 
al. ref. [8] with So = 0.25. In this case, measurements were available at x/D = 28.5 
only. At the inlet, U is known from measurement and W is assumed to be given 
by W = wr. Again, the turbulence statistics are estimated from the mean U and 
W distributions assuming gradient transport and, once the normal stresses are 
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known, e is estimated from k. The flow is still developing at x/D = 28.5, there-
fore, it is dominated by both stabilizing and destabilizing effects. In view of this, 
the present comparison not only validates the model's ability to replicate swirl 
effects at small S but also its ability to correctly predict the development of the 
rotating boundary layer in the pipe entrance region. The calculated U, W, k and 

uv−  are compared in Figure 9(a), Figure 9(b), Figure 10(a) and Figure 10(b), 
respectively. Again, the modified SSGZ model results with CS1 = 0.015 are in 
much better agreement with data than those of SAYS and ASAYS. The good 
agreement is not limited to the mean flow (Figure 9(a) and Figure 9(b)) but 
extends to k (Figure 10(a)) and uv−  (Figure 10(b)). The improvements af-
forded by ASASY are quite evident in this case. In general, ASAYS yields calcu-
lations that are closer to the data (Figure 9 and Figure 10). However, the im-
provements are not as substantial as those given by the modified SSGZ model. In  
 

 
(a) 

 
(b) 

Figure 9. (a) Comparison of calculated U with data of Kikuyama et al. ref. [8] at x/D = 
28.5; (b) Comparison of calculated W with data of Kikuyama et al. ref. [8] at x/D = 28.5. 
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(a) 

 
(b) 

Figure 10. (a) Comparison of calculated k with data of Kikuyama et al. ref. [8] at x/D = 
28.5; (b) Comparison of the calculated shear stress with data of Kikuyama et al. ref. [8] at 
x/D = 28.5. 
 
fact, the modified SSGZ is the only model among the three that predicts the ro-
tating boundary layer development correctly, including the behavior of k and 

uv−  in the central core. Both SAYS and ASAYS yield a finite k in the pipe cen-
ter (Figure 10(a)), which is not consistent with data. Only the modified SSGZ 
predicts the vanishing k and uv−  correctly as the pipe center is approached 
(Figure 10(a) and Figure 10(b)). It should be pointed out that the modified 
SSGZ model results are very similar to those given by Yoo et al. ref. [6], who 
calculated the flow using a near-wall Reynolds-stress model (Model A-1 in Yoo 
et al. ref. [6]). Their results are also reproduced in Figure 9 and Figure 10 for 
comparison with the model calculations. It can be seen that their calculations 
also yield an incorrect prediction of the boundary layer thickness. While the 
modified SSGZ model predicts the boundary layer edge to occur at about (1 − 
2r/D) ≈ 0.8, the Reynolds-stress model of Yoo et al. ref. [6] yields a value closer 
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to 1 and is comparable to that given by SAYS and ASAYS. In fact, the modified 
SSGZ model gives a much better prediction of k and uv−  compared to those 
given by the Reynolds-stress model. This comparison, therefore, lends further 
support to the choice of CS1 = 0.015 for swirling flow with a wide range of S. 

6. Conclusions 

Swirling flow simulations have been investigated using two-equation turbulence 
models with and without modelling stress anisotropy, as well as with and with-
out a modified ε-equation. Based on these simulations, the following conclusions 
can be drawn.  

1) An improved ε-equation with an explicit term to simulate swirl effects is 
formulated and is used in conjunction with the conventional k-equation and an 
isotropic eddy viscosity to calculate swirling flows in pipes. This is designated as 
the modified SSGZ model. 

2) Application of the modified SSGZ model to calculate swirling flows with 
large S yields results that are dramatically improved from those obtained using a 
regular ε-equation. For the first time, a two-equation model capable of giving 
mean flow results comparable to experimental data is available. For swirling flow 
with large S and a central recirculation, the modified SSGZ could also replicate 
qualitatively the depression in U along the central core of the swirling pipe flow.  

3) Among the two-equation models tested, good predictions of the mean and 
turbulence field of the swirling flow case with So = 0.25 as reported in Kikuyama 
et al. ref. [8] are obtained using the modified SSGZ model with CS1 = 0.015 and 
CS2 = 5.0 specified. The modified SSGZ model predictions of this case are com-
parable to those given by a near-wall Reynolds-stress model reported in Yoo et 
al. ref. [6]. 

4) Near-wall two-equation models with isotropic eddy viscosity (SAYS) and 
anisotropic eddy viscosity (ASAYS) fail to replicate swirling flows in the S range 
of 0.25 - 1.3. This is especially true if the flow also involves a central recirculation 
region. The predictions of the mean field by SAYS and ASAYS are essentially 
identical, except in the rotating boundary layer flow case where ASAYS shows a 
slight improvement. However, ASAYS yields additional information for the 
normal stresses. This shows that modelling stress anisotropy in a two-equation 
closure fails to improve the prediction of flows in the range of S = 0.25 - 1.3. 
Failure of two-equation models with isotropic or anisotropic eddy viscosity can 
be traced to the lack of an explicit term to model swirl effects in the ε-equation. 

5) In view of these findings, a modified k-ε model is now available for complex 
flow simulation such as backstep flow, wall jet, and boundary layer flow with spin 
or swirl superposed on the individual elemental or combined flow. 
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Nomenclature 

1 4, ,C Cε ε  model constants 
D pipe diameter 
gi gravitational vector 
g gravitational constant 

1, ,wf fµ  damping functions introduced to in near-wall region 
k turbulent kinetic energy 
P mean static pressure 
p fluctuating static pressure 
r radial distance from origin of co-ordinate system 
Re = UmD/ν Reynolds number based on pipe diameter 

2
tRe k νε=  turbulence Reynolds number 

( )1 4
2Re xε νε ν= , a Reynolds number based on the Kolmogorov velocity 

scale 
Ro = Wo/Uo 
S = ωD/2Um is the ratio of angular momentum to the moment of linear mo-

mentum 
So inlet swirl number  
Uj mean velocity vector 
Um mean bulk velocity of pipe flow 
U mean velocity along x-axis 
Uo maximum mean velocity 
V mean velocity along r-axis or y-axis 
W circumferential mean velocity along the φ direction 
Wo = wD/2 is the rotating pipe surface velocity 
u, v, w fluctuating velocities along x, y, z or z, r, φ directions, respectively  
uτ friction velocity 
x, y, z co-ordinates along the flow, normal to the flow, and normal to the x-y 

plane, respectively 
Greek Symbols 
ϵijk alternating tensor 
ε local turbulent dissipation rate 
θ fluctuating temperature 
ρ fluid density 
ν fluid kinematic viscosity 
νt eddy viscosity or turbulent kinematic viscosity 
σk, σε model constants introduced in Equations (2) and (3) 
Τ turbulent shear stress 
ω pipe rotational speed 
Ω rotational speed of co-ordinate system about z-axis 
Ωij mean rotation rate tensor 
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