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Abstract 
A widely held view in time series analysis is the concept of duality that a finite 
order stationary autoregressive process of order p (AR(p)) is equivalent to an 
infinite order moving average (MA) process and a finite order invertible 
moving average of order q (MA(q)) is equivalent to an infinite order autore-
gressive (AR) process. The purpose of this paper is to demonstrate that the 
concept is not universally true. Thus, a finite order stationary autoregressive 
process of order p (AR(p)) can be written as an finite order moving average 
process and a finite order moving average process of order q (MA(q)) can be 
written as a finite order stationary autoregressive process. The regions of 
breakdown of concept of duality were determined for 1,2p q= =  using me-
thod of moments. The method involves equating non-zero autocovariances of 
the stationary AR(p) to the equivalent non-zero autocovariances of the in-
vertible MA(p) to determine the region of non-duality. In such region of 
breakdown in duality, 1) both the Autocorrelation function and the Partial 
Autocorrelation function of the AR process and MA process cuts off after 
equal lags 2) a finite AR model can be adequately represented by a finite MA 
model of equal order and conversely with the same error variance and 3) 
negative values of the parameters of the AR process are equal in magnitude 
but opposite in direction to the parameters of the equivalent MA process and 
conversely. Empirical examples (simulation and real life examples) were used 
to illustrate these. Therefore, it has been recommended that caution should 
be exercised in using the concept of duality in time series analysis until future 
research proves otherwise. 
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1. Introduction 

The concept of duality is an old topic and a fruitful idea that can be found in 
many areas of Mathematics and other related disciplines [1] [2] [3]. Duality is a 
principle that gives two different points of view to the same object [1] [4] [5]. 
These points of view constitute an instance of opposition or contrast between 
concepts that are interchangeable, such that all results in one formulation also 
hold in the dual formulation [6]-[11]. As a consequence, the concept of duality 
involves symmetry within a system such that a theorem remains valid if certain 
objects, relations or operations are interchanged [12]. 

In a mathematical system, the concept of duality forms bases for describing 
and identifying the property of algebraic structures, theorems and/or expres-
sions, being dual to each other. In his views, [13] stated that the concept of dual-
ity involves two objects plus a relation between them that is symmetric, such that 
one can get from one object to the other and vice versa. Some examples where 
the principle of duality applies in Mathematics include the linear duality in plane 
geometry and linear algebra, duality for Abelian groups and Non-Abelian groups, 
duality for non-linear geometry and Fourier theory, etc. [1]. Similarly, in Physics, 
the concept of duality has been applied to describe and identify the properties of 
variables in space. These include mirror symmetry, position momentum, quan-
tum mechanics and electromagnetism [1] [6] [14].  

Dual Aspect Concept, also known as Duality Principle, is a fundamental con-
vention of accounting that forms basis for double entry accounting system. Un-
der the accounting system, transactions are classified into debit or credit, loss or 
profit, etc. which enables every transaction to have dual effects [15] [16]. These 
dual effects ensure that all aspects of a transaction are accounted for in the fi-
nancial statements.  

In Statistics duality has been used to describe the relationship between models 
for two classes of stationary time series (the autoregressive and moving average 
processes). A given stationary autoregressive process of order p (AR(p)) was 
denoted by [17]; 

( )p t tB X e=φ                           (1.1) 

we can write (1.1) as 

 ( )t tX B e= ψ                           (1.2) 

such that 

 ( ) ( ) 1p B B =φ ψ                         (1.3) 

In (1.1) and (1.2), ( )2~ 0,te N σ  and 

  2
1 2( ) 1 p

p pB B B Bφ φ φ= + + + +�φ                 (1.4) 

( ) 1 2
1 21B B Bψ ψ= + + +�ψ                   (1.5) 

That is, a finite order stationary AR process (1.1) is equivalent to an infinite or-
der moving average process (1.2).  
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Conversely, for a given invertible moving average process of order q, (MA(q)) 
denoted by 

( )t q tX B e= θ                           (1.6) 

we can write (1.6) as 

 ( ) ( )1
t q t te B X B X−= = ∏θ                      (1.7) 

such that 

 ( ) ( ) 1q B B∏ =θ                         (1.8) 

In (1.6) and (1.7), ( )2~ 0,te N σ  and 

( ) 1 2
1 21 q

q qB B B Bθ θ θ= + + + +�θ                (1.9) 

( ) 1 2
1 21B B Bπ π∏ = + + +�                   (1.10) 

is an infinite but converging series. That is, a finite order invertible MA process 
(1.6) is equivalent to an infinite order AR process (1.7).  

The dual relationship also exists in their autocorrelation functions (ACFs) and 
partial autocorrelation functions (PACFs) [17]. For an AR(p) process, while the 
ACF tails off, the PACF cuts off after lag p, but for MA(q) process, the ACF cuts 
off after lag q while the PACF tails off.  

The works of [18]-[27] outlined other properties of the duality principle 
among these models. Using the duality principle, [28] showed that if AR and 
MA processes of the same order are simulated from the same sequence of errors 
using the same parameter values, then to a close approximation, the least squares 
estimates calculated from the MA series will tend to underestimate the true pa-
rameter values while those from AR series will tend to over-estimate them by the 
same amount. Thus, suggesting that the duality principle between AR(p) is equiv-
alent to an infinite order moving average (MA) process and MA(q) processes is 
equivalent to an infinite order autoregressive (AR) process may be universally 
true.  

However, certain real life examples have shown that this principle may not be 
strictly true. Thereby raising some doubts about the universality of duality in 
time series analysis. The question that we now ask is, “Is the duality between 
models for stationary AR(p) and invertible MA(q) processes universally true? If 
not, under what condition(s) will the principle break down? This question is 
what this study intends to address. Therefore, the ultimate objective of this study 
is to determine the parameter region within which the principle of duality be-
tween models for stationary AR(p) and invertible MA(q) processes breaks down. 
This region has been designated as the ‘Non-Duality’ region in this study. For 
the translation from stationary AR(p) process to invertible MA(p) process and, 
from invertible MA(p) process to stationary AR(p) process, the method adopted 
to determine the non-duality region was discussed in Section 2. In Section 3, the 
study illustrated the breakdown in duality principle between stationary AR(p) 
and invertible MA(p) processes using empirical examples (real life data and si-
mulated series examples) while Section 4 is the concluding remark. 
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2. Methodology 

The methodology adopted to determine the Non-Duality region is the method of 
moments. The method involves equating non-zero autocovariances of the sta-
tionary Autoregressive Process of order p (AR(p)), to corresponding non-zero 
autocovariances of the invertible Moving Average Process of order p (MA(p)). 
This is because as noted by [17], the dual relationship between models for sta-
tionary AR(p) and invertible MA(q) processes also exists between the autocor-
relation functions (ACFs) and partial autocorrelation functions (PACFs). For a 
given sequence of errors, our bases for determining breakdown in duality is to 
evaluate 

 ( ) ( ) ( ) ( )AR MA , 0,1, ,p p
kR k R k h k p− = = �              (2.1) 

where ( ) ( )AR pR k  is the lag k autocovariance of the stationary AR(p) process, 
( ) ( )MA pR k  is the lag k autocovariance of the invertible MA(p) process and kh  

is the degree of precision. The principle of duality is considered to have broken 
down if 0kh ≈  k∀  to some degree of approximation. The parameters of sta-
tionary AR(p) process and invertible MA(p) process for which 0kh ≈  give the 
region where duality breaks down (Non-duality region). Hence, for various de-
grees of approximations allowable for kh , the real values of the parameters for 
the Non-Duality region are determined. 

2.1. Non-Duality between AR(1) and MA(1) Processes 

For the model and autocovariances of stationary autoregressive process of order 
one (AR(1)) [20]: 

( )2
1 1 1; ~ 0, , 1 1t t t tX X e e Nφ σ φ−= + − < <� �              (2.2) 

( ) ( )

( )

2

2
1

AR 1 2
1

2
1

1

, 0
1

, 1
1

1 , 1

k

R k
k

R k k

σ
φ

φ σ
φ

φ


= −

=  = −
 − >

                  (2.3) 

and for invertible moving average process of order one (MA(1)) [20]:  

( )2
1 1 1; ~ 0, , , 1 1t t t t t tX e e e N X Xθ σ µ θ−= − = − − < <� �        (2.4) 

( ) ( )
( )2 2

1
MA 1 2

1

1 , 0

, 1

0, 1

k
R k k

k

σ θ

θ σ

 + =
= − =


>

                 (2.5) 

where t tX X µ= −�  and ( )tE Xµ = . By equating non-zero autocovariances of 
AR(p) and MA(p) processes: p = 1, we obtain 

( )
2

2 2
12

1

1
1
σ σ θ
φ

= +
−

                     (2.6)  
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2

1 2
12

11
φ σ

θ σ
φ

= −
−

                         (2.7)  

By combining (2.6) and (2.7), we obtain 

 1 2
1 1 1 1 12

1

0
1
θ

φ φ θ θ φ
θ

−
= ⇒ + + =

+
                 (2.8) 

Note that for invertible MA(1) process, the autocorrelation function of MA(1)  

process at lag 1 ( )MA 1
10.5 0.5ρ− < < . This implies that 1

2
1

0.5 0.5
1
θ
θ

−
− < <

+
. Hence, 

for Non-duality, it is expected that 10.5 0.5φ− < < , since 1
1 2

11
θ

φ
θ

−
=

+
. 

In solving Equation (2.4), two cases arise.   
Case I: Non-Duality Region in movement from stationary AR(1) process to 

invertible MA(1) process.  
The solutions for 1θ  in the resulting quadratic Equation (2.8) are 

  
2
1

1
1

1 1 4

2

φ
θ

φ

− ± −
=                       (2.9) 

For real values 2
11 4 0D φ= − ≥ , 2

14 1φ⇒ ≥ , 2
1

1
4

φ ≥  and 1
1 1
2 2

φ− < < . 

For 11 1θ− < < , the acceptable value of 1θ  is 

 
2
1

1
1

1 1 4

2

φ
θ

φ

− + −
=                      (2.10) 

Therefore when moving from stationary AR(1) process to invertible MA(1) 
process, the region of breakdown of duality is determined using (2.1), and illu-
strated in Table 1. 

Case II: Non-Duality Region in movement from invertible MA(1) process to 
stationary AR(1) process.  

 
Table 1. Regions of 1φ  and 1θ  for non-duality of AR(1) and MA(1) processes. 

Degree of approximation 
allowable for kh  

Region of Non-duality 

Remark AR(1) Process MA(1) Process 

1φ  1θ  

1 [ ]0.38,0.38−  [ ]0.46,0.46−  
Negative values 1φ  are mapped into positive 

values of 1θ  and vice versa 

2 [ ]0.24,0.24−  [ ]0.26,0.26−  
Negative values 1φ  are mapped into positive 

values of 1θ  and vice versa 

3 [ ]0.14,0.14−  [ ]0.14,0.14−  
Negative values 1φ  are mapped into positive 

values of 1θ  and vice versa 

4 [ ]0.08,0.08−  [ ]0.08,0.08−  
Negative values 1φ  are mapped into positive 

values of 1θ  and vice versa 
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When it is assumed that the process is invertible MA(1), that is 1θ  is known, 
and it is required to determine the region of Non-Duality, 1φ  is determined in 
terms of 1θ  subject to 11 1φ− < <  using Equation (2.8). Hence, when moving 
from invertible MA(1) process to stationary AR(1) process, the region of break-
down of duality is determined using (2.1), and illustrated in Table 2. 

Remark 2.1: As shown in Table 1 and Table 2, if we allow beyond two or 
more decimal places, the intervals of breakdown of duality are the same for AR(1) 
process and MA(1) process. However, beyond three or more decimal places, the 
intervals are quite small and whose significance may be questionable. Therefore, 
we recommend that for breakdown of duality, one to three decimal places of the 
absolute difference between the lag k corresponding autocovariances of statio-
nary AR(p) process and that for the invertible MA(p) process may be allowed. 

2.2. Non-Duality between AR(2) and MA(2) Processes 

For the model and autocovariances of stationary autoregressive process of order 
two (AR(2)) [20]: 

( )2
1 1 2 2 2 1 2 1 2; ~ 0, , 1, 1, 1 1t t t t tX X X e e Nφ φ σ φ φ φ φ φ− −= + + − < + < − < <� � � (2.11) 

 ( ) ( )

( )
( )( )( )

( )( )( )
( )( )

( )( )( )
( ) ( )

2
2

2 2 1 2 1

2
1

AR 2
2 2 1 2 1

2 2
1 2 2

2 2 1 2 1

1 2

1
, 0

1 1 1

; 1
1 1 1

1
; 2

1 1 1

1 2 , 2

k

k
R k

k

R k R k k

φ σ

φ φ φ φ φ

φ σ

φ φ φ φ φ

φ φ φ σ

φ φ φ φ φ

φ φ

 −
 =
 + − + − −



= + − + − −= 


+ −
=

+ − + − −


− + − >

         (2.12)  

and for invertible moving average process of order one (MA(1)) [20]:  
 

Table 2. Regions of 1θ  and 1φ  for non-duality of MA(1) and AR(1) Processes. 

Degree of approximation 
allowable for kh  

Region of Non-duality 

Remark MA(1) Process AR(1) Process 

1θ  1φ  

1 [ ]0.47,0.47−  [ ]0.38,0.38−  
Negative values 1θ  are mapped into positive 
values of 1φ  and vice versa 

2 [ ]0.26,0.26−  [ ]0.24,0.24−  
Negative values 1θ  are mapped into positive 
values of 1φ  and vice versa 

3 [ ]0.14,0.14−  [ ]0.14,0.14−  
Negative values 1θ  are mapped into positive 
values of 1φ  and vice versa 

4 [ ]0.08,0.08−  [ ]0.08,0.08−  
Negative values 1θ  are mapped into positive 
values of 1φ  and vice versa 
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( )2
1 1 2 2 2 1 2 1 2; ~ 0, , 1, 1, 1 1t t t t tX e e e e Nθ θ σ θ θ θ θ θ− −= − − − < + < − < <�   (2.13) 

( ) ( )

( )
( )

2 2 2
1 2

2
MA 2 1 2

2
2

1 , 0

1 , 1

, 2
0, 2

k

kR k
k

k

σ θ θ

θ θ σ

θ σ

 + + =

− − == 
− =


>

                 (2.14) 

By equating corresponding non-zero autocovariances from stationary AR(2) 
process and invertible MA(2) process respectively, we obtain 

( )( )( )
2 2 2

1 2
2 2 1 2 1

1
1

1 1 1

φ
θ θ

φ φ φ φ φ

−
= + +

+ − + − −
             (2.15) 

 
( )( )( ) ( )1

1 2
2 2 1 2 1

1
1 1 1

φ
θ θ

φ φ φ φ φ
= − −

+ − + − −
             (2.16) 

 
( )

( )( )( )
2
1 2 2

2
2 2 1 2 1

1

1 1 1

φ φ φ
θ

φ φ φ φ φ

+ −
= −

+ − + − −
               (2.17) 

From (2.15), we have 

 
( )( )( )

2 2
1 2

22 2 1 2 1

11
11 1 1
θ θ
φφ φ φ φ φ

+ +
=

−+ − + − −
            (2.18) 

From (2.16), we have 

 
( )( )( )

( )1 2

12 2 1 2 1

11
1 1 1

θ θ
φφ φ φ φ φ

− −
=

+ − + − −
            (2.19) 

From (2.17) 

 
( )( )( ) ( )

2
2

2 2 1 2 1 1 2 2

1
1 1 1 1

θ
φ φ φ φ φ φ φ φ

−
=

+ − + − − + −
         (2.20) 

Equating the right hand sides of (2.18), (2.19) and (2.20), we obtain 

 
( )

( ) ( )( )( )
1 2 2

2
1 1 2 2 2 2 1 2 1

1 1
1 1 1 1

θ θ θ
φ φ φ φ φ φ φ φ φ

− − −
= =

+ − + − + − −
  (2.21) 

Hence, Equation (2.21) is the relational equation connecting 1 2 1, ,φ φ θ  and 2θ . 
Using transitivity rule, these three equations can be used to obtain the desired 
solutions. That is 

 
( )

( )
1 2 2

2
1 1 2 2

1
1

θ θ θ
φ φ φ φ

− − −
=

+ −
                  (2.22) 

 
( )

( )( )( )
1 2

1 2 2 1 2 1

1 1
1 1 1

θ θ
φ φ φ φ φ φ

− −
=

+ − + − −
           (2.23) 

 
( ) ( )( )( )

2
2
1 2 2 2 2 1 2 1

1
1 1 1 1

θ
φ φ φ φ φ φ φ φ

−
=

+ − + − + − −
          (2.24) 

In considering the above three equations, two cases arise resulting in the 
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Non-Duality region. 
Case I: Non-Duality Region in movement from stationary AR(2) process to 

invertible MA(2) process.  
Given the stationary AR(2) process, we determine 1θ  and 2θ  (in terms 1φ  

and 2φ ) that must satisfy the invertibility conditions explicitly from the rela-
tional Equation (2.24) as 

 
( )( )

( )( )( )
( )

( )( )( )
2 2
1 2 2 1 2 2

2
2 2 1 2 1 2 2 1 2 1

1 1

1 1 1 1 1 1

φ φ φ φ φ φ
θ

φ φ φ φ φ φ φ φ φ φ

− + − − − −
= =

+ − + − − + − + − −
 (2.25) 

Substituting (2.25) into (2.23), we obtain 1θ  as 

 
( )( )( )( ) ( )( )

1
1 2

2 2 1 2 1 1 2 21 1 1 1

φ
θ

φ φ φ φ φ φ φ φ

−
=

+ − + − − + + −
       (2.26) 

From the invertibility conditions of MA(2) process, 2 1θ <  implies that 

 
( )( )

( )( )( )
2
1 2 2

2
2 2 1 2 1

1
1

1 1 1

φ φ φ
θ

φ φ φ φ φ

− + −
= <

+ − + − −
              (2.27) 

The expression (2.27) is added to the stationarity conditions to obtain the 
Non-duality region/conditions for movement from AR(2) to MA(2) processes 
as 

 

( )( )
( )( )( )

2 1

2 1

2

2
1 2 2

2 2 1 2 1

1

1 stationarity conditions

1 1 Non-duality region

1
1

1 1 1

φ φ

φ φ

φ

φ φ φ

φ φ φ φ φ

− <


+ < 
 − < <  
− + − < + − + − − 

      (2.28) 

This region (2.28) is illustrated graphically in Figure 1. Then, using (2.1), the re-
gion of breakdown of duality when moving from stationary AR(2) process to in-
vertible MA(2) process is determined. This region determined is shown in Table 3. 

 
Table 3. Regions of ( )1 2,φ φ  and ( )1 2,θ θ  for non-duality of AR(2) and MA(2) processes. 

Degree of  
approximation 

allowable for kh  

Region of Non-duality 

Remark AR(2) Process MA(2) Process 

1φ  2φ  1θ  2θ  

1 [ ]0.30,0.30−  [ ]0.30,0.30−  [ ]0.37,0.37−  [ ]0.43,0.32−  
positive values ( )1 2,φ φ  are mapped into  

negative values of ( )1 2,θ θ  and vice versa 

2 [ ]0.30,0.30−  [ ]0.20,0.20−  [ ]0.30,0.30−  [ ]0.22,0.20−  
positive values ( )1 2,φ φ  are mapped into  

negative values of ( )1 2,θ θ  and vice versa 

3 [ ]0.10,0.10−  −0.10 [ ]0.10,0.10−  0.09 
positive values ( )1 2,φ φ  are mapped into  

negative values of ( )1 2,θ θ  and vice versa 
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Figure 1. The shaded portion under the triangular region (stationarity region) specifies 
the non-duality region for movement from AR(2) Process to MA(2) process. 
 

Case II: Non-Duality region in movement from invertible MA(2) process to 
stationary AR(2) process.  

Given the invertible MA(2) process, we determine the values of ( 1φ  and 2φ ) 
that lead to break down in duality from Equation (2.22). Solving for 1φ  and 2φ , 
the expression reduces to the quadratic Equation 

( ) ( )22
1 1 2 2

1 2

1 0
1
θ

φ φ φ φ
θ θ
 

− + − = 
−  

                 (2.29) 

Equation (2.29) is a quadratic equation in both 1φ  and 2φ . By either solving 
for 1φ  first in (2.29) or 2φ  first in (2.29), Case II breaks into two-sub cases. 
Case II (a) involves solving for 1φ  first in (2.29) and we obtain 

( ) ( ) ( )
2

2 2
2 2

1 2 1 2
1

4 1
1 1

2

θ θ φ φ
θ θ θ θ

φ

 
± − − − − =           (2.30) 

for fixed 1θ  and 2θ  with 21 1φ− < < . For real roots of 1φ , it is requested that 
the discriminant 

( )

2

2 2
2 2

1 2

4 4 0
1

D θ
φ φ

θ θ
 

= − + ≥ 
−  

               (2.31) 

For fixed values of 1θ  and 2θ  satisfying the invertibility conditions, Equation 
(2.31) is a quadratic inequality in 2φ . First, we solve for 2φ  in  

( )

2

2 2
2 2

1 2

4 4 0
1
θ

φ φ
θ θ
 

− + = 
−  

                (2.32) 

to obtain 

( )

2

2

1 2
2

1 1
1

2

θ
θ θ

φ

 
± −  − =                  (2.33) 

Since (2.26) is a quadratic inequality, the roots of (2.33) split the interval for 2φ , 
( )2 1,1φ ∈ − , into three intervals [29] [30]. If we define 

 
( )

2

1 21
W

θ
θ θ

=
−

.                     (2.34) 
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then, the intervals are 
21 11,

2
W − −

 −
 
 

, 
2 21 1 1 1,

2 2
W W − − + −

 
  

 and  

21 1 ,1
2

W + −
 
 
 

. 

From (2.33), it is clear that for two distinct real roots of 2φ ; 

 
( )

2

2

1 2

1
1
θ

θ θ
 

< 
−  

                       (2.35) 

 
( )

2

1 2

1
1
θ

θ θ
⇒ <

−
                       (2.36) 

Similarly, Case II (b) involves solving for 2φ  first in (2.29) to obtain  

( )
2

1 1
1 2

2

1 1 4
1

2

θφ φ
θ θ

φ

  
± + −  −   =                (2.37) 

for fixed 1θ  and 2θ  with 12 2φ− < < . For real roots of 2φ , 

( )
2

1 1
1 2

1 4 0
1
θ

φ φ
θ θ

  
+ − ≥  

−    
                  (2.38)  

Equation (2.38) is a quadratic inequality on 1φ . Solving for 1φ , we use 

 
( )

2
1 1

1 2

1 4 0
1
θ

φ φ
θ θ

  
+ − =  

−    
                 (2.39) 

to obtain  

( ) ( )

2

2 2

1 2 1 2
1

1
1 1

2

θ θ
θ θ θ θ

φ

 
± − − − =                (2.40) 

for fixed 1θ  and 2θ . Since (2.38) is a quadratic inequality, (2.40) split the in-
terval for 1φ , ( )1 2, 2φ ∈ − , into three intervals [30]. The intervals are:  

2 12,
2

W W − −
 −
 
 

, 
2 21 1,

2 2
W W W W − − + −
 
  

 and 
2 1 , 2

2
W W + −
 
 
 

  

From (2.40), it is clear that for distinct real roots of 1φ ; 

 
( )

2

2

1 2

1
1
θ

θ θ
 

> 
−  

                      (2.41) 

 
( )

2

1 2

1
1
θ

θ θ
⇒ >

−
                      (2.42) 

Equation (2.36) and (2.42) combined with the invertibility conditions gives what 
we call the Non-Duality conditions/region when going from MA(2) to AR(2) 
processes. The Non-Duality conditions/region when moving from MA(2) to AR(2) 
processes is given as 
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( )

2 1

2 1

2

2

1 2

1
1 invertibility conditions

1 1 Non-duality region

1
1

θ θ
θ θ

θ

θ
θ θ

− < 
 + <  
 − < <  


≠
− 

    (2.43) 

See Figure 2 for illustration of Equation (2.43). Then, using (2.1), the region of 
breakdown of duality when moving from invertible MA(2) process to stationary 
AR(2) process for case IIa and case IIb are determined and illustrated in Table 4 
and Table 5 respectively. 
 

 
Figure 2. The shaded portion under the triangular region (invertibility region) specifies 
the non-duality region for movement from MA(2) Process to AR(2) process.  
 

Table 4. Regions of ( )1 2,θ θ  and ( )1 2,φ φ  for non-duality of MA(2) and AR(2) processes. 

Degree of  
approximation 

allowable for kh  

Region of Non-duality 

Remark MA(2) Process AR(2) Process 

1θ  2θ  1φ  2φ  

1 0.10 −0.11 [ ]0.12, 0.07− −  [ ]0.07,0.12  
positive values ( )1 2,θ θ  are mapped into 

negative values of ( )1 2,φ φ  and vice versa 

2 0.10 −0.11 −0.10 0.10 
positive values ( )1 2,θ θ  are mapped into 

negative values of ( )1 2,φ φ  and vice versa 

 
Table 5. Regions of ( )1 2,θ θ  and ( )1 2,φ φ  for non-duality of MA(2) and AR(2) processes. 

Degree of  
approximation 

allowable for kh  

Region of Non-duality 

Remark MA(2) Process AR(2) Process 

1θ  2θ  1φ  2φ  

1 −0.11 −0.22 [ ]0.09,0.11  [ ]0.17,0.21  
positive values ( )1 2,θ θ  are mapped into 

negative values of ( )1 2,φ φ  and vice versa 

2 −0.11 −0.22 0.10 0.20 
positive values ( )1 2,θ θ  are mapped into 

negative values of ( )1 2,φ φ  and vice versa 
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3. Empirical Examples 

This section presents some empirical examples to illustrate the results obtained 
in Section 2. Both simulated and real life time series data were used for the illu-
stration. The first set of simulations consist of one thousand (1000) stationary 
AR(2) series of 120 observations each, simulated using ( )2~ 0,te N σ  and  
( ) ( )1 2, 0.30, 0.30ϕ ϕ = − −  which satisfy the non-duality conditions defined in 
Equation (2.28). The estimates of the autocorrelation function, acf ( kρ ) and the 
partial autocorrelation function, pacf ( kkφ ) of the simulated series cut off after 
lag two. These indicate that the patterns in the series may be adequately de-
scribed by either the stationary AR(2) process or the invertible MA(2) process. 
Since the series were simulated from stationary AR(2) process, an MA(2) model 
was fitted to the series. The estimate of the acf and the pacf of the residuals from 
the fitted MA(2) model all lie within 2 standard deviations from mean (zero) in-
dicating that the fitted model is adequate. The estimates of the means and va-
riances of the residuals are also not significantly different from 0 and 1 respec-
tively. These indicate that the model adequately describes the pattern in the si-
mulated series. The estimates of 1θ  and 2θ , obtained using MINITAB 17 se-
ries software are shown in Table 6 (for ten simulated series only for want of 
space). As Table 6 shows, the estimates also: (i) satisfy the invertibility condi-
tions and (ii) compare favourably well, in absolute terms, with those of statio-
nary AR(2) process but with opposite signs. These indicate that a stationary 
AR(2) process can be adequately represented by an invertible MA(2) process 
contrary to the widely held duality concept. 

The second set of simulations consists of one thousand (1000) invertible 
MA(2) series of 120 observations each, simulated using ( )2~ 0,te N σ  and 
( ) ( )1 2, 0.37,0.27θ θ =  which satisfy the non-duality conditions defined in Equa-
tion (2.43). The estimates of the autocorrelation function, acf ( kρ ) and the par-
tial autocorrelation function, pacf ( kkφ ) of the simulated series cut off after lag 
two. These indicate that the patterns in the series may be adequately described 
by either the invertible MA(2) process or the stationary AR(2) process. Since the 
series were simulated from invertible MA(2) process, the AR(2) model was fitted 
to the series. The estimates of the mean, variance, acf and the pacf of the resi-
duals from the fitted AR(2) model indicate that the model adequately describes 
the pattern in the simulated series. The estimates of 1φ  and 2φ  obtained using 
MINITAB 17 series software shown in Table 7 (for ten simulations for want of 
space) also: (i) satisfy the stationarity conditions and (ii) compare favourably 
well, in absolute terms, with those of invertible MA(2) process with opposite signs. 
These indicate that an invertible MA(2) process can be adequately represented 
by a stationary AR(2) process contrary to the widely held duality concept. 

Furthermore, the breakdown of duality was illustrated using the real life data 
on the monthly average exchange rate of Naira per unit of CFA currency col-
lected from Central Bank of Nigeria for the period January 2002 to December 
2013 [31] [32]. The estimates of kρ  and kkφ  of the original series ( tX ) shown  
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Table 6. Estimates of parameters of MA(2) model fitted to simulated AR(2) process with 

1 0.30φ = − , 2 0.30φ = −  and ( )~ 0,1te N . 

S/No. i 
AR(2) Model 

i 
MA(2) Model 

îφ  ( )îstd φ  t-value 2σ̂  îθ  ( )îstd θ  t-value 2σ̂  

1 
1 −0.3241 0.0943 −3.44 

1.1220 
1 0.3105 0.0954 3.25 

1.1020 
2 −0.3612 0.0953 −3.79 2 0.3286 0.0958 3.43 

2 
1 −0.2162 0.0961 −2.25 

1.0890 
1 0.2218 0.0974 2.28 

1.0900 
2 −0.3130 0.0964 −3.25 2 0.2563 0.0975 2.63 

3 
1 −0.2127 0.0974 −2.18 

0.8725 
1 0.2718 0.0975 2.79 

0.8520 
2 −0.3010 0.0973 −3.09 2 0.2762 0.0975 2.83 

4 
1 −0.3098 0.0944 −3.28 

0.9103 
1 0.3323 0.0979 3.39 

0.9220 
2 −0.3606 0.0945 −3.82 2 0.2468 0.0981 2.52 

5 
1 −0.2619 0.0934 −2.81 

1.1780 
1 0.2009 0.0960 2.09 

1.2210 
2 −0.3873 0.0934 −4.15 2 0.3390 0.0963 3.52 

6 
1 −0.2957 0.0909 −3.25 

0.8452 
1 0.2356 0.0946 2.49 

0.8851 
2 −0.4419 0.0916 −4.82 2 0.3531 0.0953 3.71 

7 
1 −0.2177 0.0961 −2.26 

1.0073 
1 0.2896 0.0961 3.02 

0.9750 
2 −0.3064 0.0962 −3.18 2 0.3080 0.0961 3.21 

8 
1 −0.2970 0.0949 −3.13 

0.9185 
1 0.3579 0.0972 3.68 

0.9009 
2 −0.3395 0.0951 −3.57 2 0.2726 0.0972 2.80 

9 
1 −0.2634 0.0953 −2.76 

1.092 
1 0.2035 0.0983 2.07 

1.1390 
2 −0.3477 0.0956 −3.64 2 0.2255 0.0983 2.29 

10 
1 −0.3409 0.0947 −3.60 

0.9556 
1 0.3399 0.0992 3.43 

0.9664 
2 −0.3476 0.0949 −3.66 2 0.2084 0.1017 2.05 

 
Table 7. Estimates of parameters of AR(2) model fitted to simulated MA(2) model with 

1 0.37θ = , 2 0.27θ =  and ( )~ 0,1te N . 

S/No. i 
MA(2) Model 

i 
AR(2) Model 

îθ  ( )îstd θ  t-value 2σ̂  îφ  ( )îstd φ  t-value 2σ̂  

1 
1 0.3427 0.0981 3.49 

1.0136 
1 −0.2615 0.0967 −2.70 

1.0450 
2 0.2862 0.0984 2.91 2 −0.3528 0.0971 −3.63 

2 
1 0.3513 0.0943 3.72 

1.0510 
1 −0.2013 0.0964 −2.09 

1.1560 
2 0.3412 0.0943 3.62 2 −0.3011 0.0966 −3.12 

3 
1 0.3902 0.0929 4.20 

1.1770 
1 −0.3004 0.0953 −3.15 

1.2770 
2 0.3940 0.0933 4.23 2 −0.3500 0.0953 −3.67 

4 
1 0.3629 0.0967 3.75 

1.0590 
1 −0.2879 0.0973 −2.96 

1.1230 
2 0.2958 0.0970 3.05 2 −0.2709 0.0973 −2.78 
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5 
1 0.3322 0.0977 3.40 

0.9375 
1 −0.2472 0.0970 −2.55 

0.9769 
2 0.2830 0.0977 2.90 2 −0.2901 0.0994 −2.92 

6 
1 0.4133 0.0975 4.24 

0.9956 
1 −0.3220 0.0963 −3.34 

1.0670 
2 0.2674 0.0991 2.70 2 −0.3053 0.0962 −3.17 

7 
1 0.2955 0.0983 3.01 

0.9634 
1 −0.2575 0.0967 −2.66 

0.9719 
2 0.2476 0.0990 2.50 2 −0.2996 0.0983 −3.05 

8 
1 0.3655 0.0987 3.70 

1.0770 
1 −0.3685 0.0933 −3.95 

1.0540 
2 0.2279 0.0987 2.31 2 −0.3906 0.0941 −4.15 

9 
1 0.3554 0.0976 3.64 

1.2330 
1 −0.3564 0.0954 −4.74 

1.2280 
2 0.2808 0.0978 2.87 2 −0.3401 0.0961 −3.54 

10 
1 0.2389 0.0958 2.49 

1.0290 
1 −0.2598 0.0940 −2.76 

1.0260 
2 0.3301 0.0963 3.43 2 −0.3869 0.0941 −4.11 

 
in Table 8 suggest that the series requires differencing to remove non-stationarity 
in mean. The estimates of kρ  and kkφ  of the first order differenced series 
( )( )1 tB X−  shown in Table 8, indicates that both kρ  and kkφ  cut off after 

lag one. This suggests that the pattern in the differenced series may be adequate-
ly described by either AR(1) process or MA(1) process. The estimates ( ˆkρ  and 

k̂kφ ) of the residuals from the fitted models (AR(1) and MA(1)) also shown in 
Table 8, indicate that both models adequately describe the pattern in the series 
[33]. The estimate ( )1̂ 0.2369φ = −  of 1φ  in the AR(1) process, shown in Table 
9 satisfies the stationarity condition, while the estimate ( )1̂ 0.2581θ =  of 1θ  in 
MA(1) process also shown in Table 9 satisfy the invertibility condition. In addit-
tion, both estimates ( 1̂φ  and 1̂θ ) compare favourably well in absolute terms, but 
with opposite signs. Here again contrary to the widely held duality concept, 
these indicate that a stationary AR(1) process can be adequately represented by 
an invertible MA(1) process. 

The second real life data used to illustrate the breakdown of duality is the 
monthly All Shares Index of the Nigeria Stock Exchange (NSE), for the period 
January 1, 1985 to December 31, 2007, collected from the CBN Statistical Bulle-
tin [31] [32] [34]. Following the procedure of [35] [36], the original series was 
shown to require logarithmic transformation to stabilize its variance. The esti-
mates of kρ  and kkφ  of the transformed series ( tY ) shown in Table 10, sug-
gest that the series requires differencing to remove non-stationarity in mean. 
The estimates ( ˆkρ  and k̂kφ ) of acf and pacf of the first order differenced series 
( tZ ) also shown in Table 10, indicate that both ˆkρ  and k̂kφ  cut off after lag 
five. These suggest that the pattern in the series may be adequately described by 
either AR(5) model or MA(5) model. Both models were fitted to the series and 
the estimates ( ˆkρ  and k̂kφ ) of acf and pacf of the residuals from the fitted mod-
els shown in Table 10, indicate that both models adequately describe the pattern 
in the series. However, some of the estimates of the parameters of the fitted  
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Table 8. The estimates of kρ  and kkφ  of tX , ( )1 tB X−  and residuals from the fitted 

models (AR(1) and MA(1) Models). 

k 

CFA 

tX  ( )1 tB X−  
Residuals ( te ) 

AR(1) MA(1) 

ˆkρ  k̂kφ  ˆkρ  k̂kφ  ˆkρ  k̂kφ  ˆkρ  k̂kφ  

1 0.94 0.94 −0.25 −0.25 −0.03 −0.03 −0.01 −0.01 

2 0.90 0.13 −0.05 −0.11 −0.09 −0.09 −0.03 −0.03 

3 0.86 0.03 0.08 0.04 0.07 0.06 0.06 0.06 

4 0.82 −0.05 −0.04 −0.01 −0.03 −0.04 −0.03 −0.03 

5 0.78 −0.01 −0.02 −0.03 −0.02 −0.01 −0.02 −0.02 

6 0.74 0.01 0.04 0.02 0.02 0.01 0.02 0.01 

7 0.71 0.04 −0.07 −0.06 −0.07 −0.07 −0.07 −0.07 

8 0.68 0.07 0.01 −0.02 −0.01 −0.01 −0.01 −0.01 

9 0.66 0.00 0.00 −0.01 0.00 −0.02 −0.01 −0.02 

10 0.63 −0.02 −0.03 −0.03 −0.04 −0.04 −0.05 −0.05 

11 0.61 −0.02 −0.03 −0.05 −0.07 −0.08 −0.08 −0.09 

12 0.59 0.00 −0.12 −0.16 −0.15 −0.17 −0.16 −0.18 

13 0.57 0.06 −0.02 −0.10 −0.07 −0.10 −0.09 −0.10 

14 0.55 0.04 −0.08 −0.16 −0.10 −0.15 −0.12 −0.15 

15 0.54 0.06 −0.02 −0.10 −0.04 −0.08 −0.05 −0.07 

16 0.54 0.02 0.00 −0.07 0.00 −0.06 −0.01 −0.05 

17 0.53 −0.01 0.01 −0.03 −0.01 −0.04 0.00 −0.03 

18 0.52 −0.02 −0.08 −0.12 −0.05 −0.10 −0.04 −0.08 

19 0.51 0.06 0.14 0.06 0.16 0.11 0.16 0.11 

20 0.49 −0.06 0.08 0.12 0.10 0.09 0.11 0.10 

21 0.47 −0.09 −0.08 −0.02 −0.04 −0.02 −0.03 −0.03 

22 0.45 −0.01 0.13 0.10 0.11 0.10 0.12 0.08 

23 0.42 −0.08 −0.06 −0.04 −0.04 −0.08 −0.04 −0.09 

24 0.39 −0.01 −0.02 −0.06 −0.04 −0.07 −0.04 −0.08 

25 0.36 −0.03 −0.01 −0.13 −0.03 −0.14 −0.02 −0.13 

26 0.35 0.09 −0.03 −0.13 0.00 −0.08 0.01 −0.07 

27 0.34 0.10 0.13 0.06 0.15 0.11 0.15 0.11 

28 0.31 −0.22 0.07 0.09 0.09 0.06 0.09 0.06 

29 0.28 −0.01 −0.11 −0.04 −0.09 −0.06 −0.08 −0.06 

30 0.26 0.01 0.06 0.01 0.04 0.03 0.04 0.03 

31 0.24 0.00 0.01 0.05 0.01 0.05 0.00 0.05 

32 0.22 −0.04 −0.06 0.01 −0.07 0.00 −0.07 0.00 

33 0.20 0.02 −0.01 0.00 −0.04 0.00 −0.04 0.00 

34 0.18 0.02 −0.04 0.00 −0.04 0.00 −0.05 0.00 

35 0.18 0.03 0.01 0.01 0.01 0.01 0.00 0.00 

36 0.18 0.06 
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Table 9. Estimates of parameters of AR(1) process and MA(1) process fitted to the 
monthly average exchange rate of Naira per unit of CFA currency.  

AR(1) Model MA(1) Model 

Coefficient Estimate Std Error t-value Coefficient Estimate Std Error t-value 

1φ  −0.2369 0.0816 −2.90 1θ  0.2581 0.0811 3.18 
2σ̂  0.0002 2σ̂  0.0002 

 
Table 10. The estimates of kρ  and kkφ  of tX , ( )1 tB X−  and residuals from the fit-

ted models (AR(5) process and MA(5) process). 

k 

NSE ALL SHARES INDEX 

logt e tY X=  ( )1t tZ B Y= −  
Residuals ( te ) 

AR(5) MA(5) 

ˆkρ  k̂kφ  ˆkρ  k̂kφ  ˆkρ  k̂kφ  ˆkρ  k̂kφ  

1 0.99 0.99 0.19 0.19 0.00 0.00 0.00 0.00 

2 0.98 −0.01 0.15 0.12 0.01 0.01 −0.01 −0.01 

3 0.97 0.00 0.06 0.01 −0.02 −0.02 0.02 0.02 

4 0.96 −0.01 −0.02 −0.06 0.00 0.00 0.00 0.00 

5 0.95 −0.01 0.18 0.19 0.01 0.01 0.01 0.01 

6 0.93 −0.03 0.04 −0.02 −0.01 −0.01 0.03 0.03 

7 0.92 −0.01 0.02 −0.04 −0.05 −0.05 −0.01 −0.01 

8 0.91 −0.01 0.08 0.08 0.07 0.07 0.08 0.08 

9 0.90 −0.01 0.05 0.05 0.04 0.04 0.02 0.02 

10 0.89 0.00 0.06 −0.01 0.02 0.02 0.05 0.05 

11 0.88 0.00 −0.01 −0.04 −0.03 −0.03 −0.03 −0.03 

12 0.87 0.01 −0.03 −0.02 −0.02 −0.01 −0.01 −0.01 

13 0.86 0.01 −0.08 −0.10 −0.12 −0.12 −0.10 −0.11 

14 0.84 0.00 0.04 0.07 0.03 0.02 0.03 0.02 

15 0.83 −0.01 0.04 0.04 0.01 0.02 0.02 0.01 

16 0.82 −0.01 0.10 0.08 0.11 0.11 0.11 0.11 

17 0.81 −0.02 0.02 −0.03 −0.01 −0.02 −0.01 −0.02 

18 0.80 0.02 0.02 0.03 0.02 0.01 0.01 0.00 

19 0.79 0.00 0.07 0.05 0.07 0.07 0.06 0.06 

20 0.78 0.00 0.08 0.05 0.10 0.10 0.09 0.10 

21 0.77 0.00 −0.02 −0.09 −0.05 −0.03 −0.05 −0.04 

22 0.76 0.00 −0.03 −0.02 0.00 0.01 0.00 −0.01 

23 0.75 −0.01 −0.07 −0.05 −0.04 −0.03 −0.04 −0.04 

24 0.74 −0.01 −0.09 −0.11 −0.04 −0.07 −0.04 −0.07 

25 0.73 −0.01 −0.11 −0.13 −0.10 −0.12 −0.10 −0.12 

26 0.72 −0.01 −0.10 −0.04 −0.07 −0.08 −0.05 −0.08 
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Continued 

27 0.71 −0.02 −0.13 −0.08 −0.10 −0.10 −0.10 −0.10 

28 0.70 0.00 −0.06 0.00 0.01 −0.02 0.00 −0.02 

29 0.69 0.00 −0.11 −0.05 −0.10 −0.09 −0.10 −0.08 

30 0.68 0.04 −0.03 0.04 0.00 −0.01 0.01 0.01 

31 0.67 −0.01 0.02 0.08 0.03 0.04 0.02 0.05 

32 0.66 −0.01 −0.02 0.04 0.02 0.04 0.01 0.04 

33 0.65 −0.01 −0.04 −0.02 −0.03 0.01 −0.03 0.02 

34 0.63 −0.04 −0.02 0.01 0.00 0.00 −0.01 0.01 

35 0.62 0.01 −0.03 −0.01 −0.05 −0.05 −0.06 −0.05 

36 0.61 −0.02 0.11 0.10 0.14 0.11 0.13 0.12 

37 0.60 −0.02 0.03 0.00 0.03 0.05 0.03 0.05 

38 0.59 −0.01 −0.02 −0.07 −0.02 −0.05 −0.03 −0.05 

39 0.58 −0.01 −0.04 −0.06 −0.04 −0.07 −0.05 −0.08 

40 0.57 0.00 0.00 0.04 0.04 0.02 0.04 0.02 

41 0.56 −0.02 −0.01 −0.01 −0.02 0.01 −0.02 0.01 

42 0.54 −0.03 −0.03 −0.04 −0.03 −0.04 −0.04 −0.04 

43 0.53 −0.02 −0.06 0.01 −0.04 0.02 −0.04 0.00 

44 0.52 0.00 −0.04 0.03 −0.01 0.03 0.00 0.02 

45 0.51 0.00 −0.05 −0.02 −0.05 −0.02 −0.05 −0.01 

46 0.50 0.01 −0.02 −0.02 −0.02 −0.02 −0.01 −0.02 

47 0.48 −0.02 0.01 0.05 0.03 0.05 0.03 0.04 

48 0.47 0.00 −0.04 −0.05 −0.01 −0.01 −0.01 −0.02 

49 0.46 0.01 −0.08 −0.08 −0.08 −0.06 −0.09 −0.06 

50 0.45 0.00 0.00 −0.01 0.01 −0.03 0.01 −0.04 

51 0.44 −0.01 0.03 0.01 0.04 0.01 0.03 0.00 

52 0.43 0.01 0.06 −0.02 0.09 0.01 0.08 0.02 

53 0.42 −0.01 −0.03 −0.06 −0.03 −0.05 −0.03 −0.05 

54 0.41 0.00 −0.05 −0.05 −0.05 −0.06 −0.05 −0.06 

55 0.40 −0.01 −0.05 −0.05 −0.03 −0.07 −0.03 −0.06 

56 0.38 0.00 −0.01 −0.02 0.03 −0.04 0.02 −0.03 

57 0.37 −0.01 −0.06 −0.03 −0.07 −0.06 −0.08 −0.06 

58 0.36 0.00 −0.03 0.03 −0.03 −0.01 −0.02 −0.01 

59 0.35 −0.01 0.00 0.05 0.02 0.03 0.02 0.04 

60 0.34 0.00 0.02 0.05 0.03 0.03 0.03 0.03 

61 0.33 0.01 0.03 0.05 0.01 0.05 0.01 0.05 

62 0.32 0.00 0.03 0.06 0.04 0.07 0.04 0.07 

 
models shown in Table 11 are not significant. Therefore, the subset models were 
fitted to the series following the selection of subset time series models by [37]  
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Table 11. Estimates of parameters of AR(5) model and MA(5) model fitted to the monthly 
all shares index of the Nigeria Stock Exchange (NSE). 

AR(5) MA(5) 

Coefficient Estimate Std Error t-value Coefficient Estimate Std Error t-value 

Constant 

0φ  
 

0.0136 
 

0.0029 
 

4.75 
Constant 

0θ  
 

0.0228 
 

0.0042 
 

5.42 

1φ  0.1745 0.0599 2.91 1θ  −0.1741 0.0602 −2.89 

2φ  0.1220 0.0607 2.01 2θ  −0.1756 0.0612 −2.87 

3φ  −0.0015 0.0612 −0.02 3θ  −0.0156 0.0621 −0.25 

4φ  −0.0895 0.0607 −1.47 4θ  0.0656 0.0612 1.07 

5φ  0.1965 0.0603 3.26 5θ  −0.1711 0.0606 −2.82 
2σ̂  0.0022 2σ̂  0.0022 

 
Table 12. Estimates of parameters of subset AR(5) model and subset MA(5) model for 
the models fitted to the monthly all shares index of the Nigeria Stock Exchange (NSE). 

AR(5) SUBSET MA(5) SUBSET 

Coefficient Estimate Std Error t-value Coefficient Estimate Std Error t-value 

Constant 
0φ  

 
0.0126 

0.0036 
 

3.47 
Constant 

0θ  
 

0.0202 
 

0.0038 
 

5.31 

1φ  0.1697 0.0599 2.83 1θ  −0.1648 0.0404 −4.07 

2φ  0.1092 0.0602 1.82 2θ  −0.1793 0.0454 −3.95 

5φ  0.1801 0.0594 3.03 5θ  −0.1774 0.0388 −4.57 
2σ̂  0.0022 2σ̂  0.0022 

 
and the non-linear least squares method of estimation of parameters by [38]. 
The estimates of the parameters of the subset AR(5) model and the subset MA(5) 
model shown in Table 12 compare favourably well in absolute terms with oppo-
site signs. Contrary to the widely held duality concept, these indicate that an 
AR(5) series can be adequately represented by an MA(5) model and conversely. 

4. Conclusions 

In summary, this study has demonstrated analytically and empirically that the 
concept of duality that a finite order stationary autoregressive process of order p 
(AR(p)) stationary is equivalent to an infinite order moving average (MA) 
process and invertible moving average of order q (MA(q)) is equivalent to an in-
finite order autoregressive (AR) process is not universally true. Specifically, this 
study constructed regions of breakdown of duality starting from AR(p) to MA(p) 
processes and from MA(p) to AR(p) processes for p = 1, 2. These regions, des-
ignated as “Non-duality” regions in this study, have been illustrated mathemati-
cally and graphically. In these regions (a) both the Autocorrelation function and 
the Partial Autocorrelation function of the AR process and MA process cuts off 
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after equal lags (b) a finite AR model can be adequately represented by a finite 
MA model of equal order and conversely with the same error variance and (c) 
negative values of the parameters of the AR process are mapped into positive 
values of the parameters of the equivalent MA process and conversely.  

In view of these, it has been recommended that the concept of duality should 
be treated with caution in analysis of time series data. 
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