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Abstract 
We present a geometric approach to describe quantum information systems. 
Precisely, we elaborate a genuine correspondence between toric geometry and 
qubit systems using the construction of Clifford graph algebras. This map-
ping may be explored to investigate qubit information applications using tor-
ic geometry considered as a potent tool to understand high energy physics in-
cluding black holes and string theory. Explicitly, we examine in some details 
the cases of two and three qubits, and we find that they are associated with 
certain Clifford graph structures. Mixed states are also discussed. 
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1. Introduction 

Quantum information combined with toric geometry is considered a powerful 
tool to study complex varieties used in modern physics like string theory and re-
lated models [1] [2]. As well, toric geometry has been also used to build mirror 
manifolds providing an outstanding way to understand the extension of T-duality 
in the presence of D-branes moving near toric Calabi-Yau singularities using 
combinatorial calculations. Also, it has been remarked that such a combination 
can be exploited to understand a special class of black hole solutions obtained 
from type II superstrings on local Calabi-Yau manifolds [3] [4]. Recently, the 
black hole physics has found a place in quantum information theory using qubit 
building blocks. Precisely, many connections have been established in the con-
text of STU black holes as proposed in Refs [5] [6]. 

Studies have been realized to develop new geometric approach to deal with 
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qubit information systems using hypercube graph theory and toric geometry [7] 
[8]. These investigations have brought new understanding of the fundamental 
physics associated with qubits and theirs supersymmetric extensions. These lat-
ter are connected to various theories including D-branes, toric geometry and 
supermanifolds. Precisely, a nice interplay between the black holes and qubits 
has been discussed using higher-dimensional supergravity models [9] [10]. More-
over, Clifford algebras play a key role in the link between quantum information 
and physics of black holes, rigorously dyonic black classes obtained from lower 
dimensional toroidal compactification are mapped to Clifford algebras using vee 
product [11]. Moreover, the superpotential depending on four quaternionic fields 
has been considered as an element of a particular Clifford class [12]. 

The aim of this paper is to contribute to this program by introducing a map-
ping between Clifford graph algebras, toric geometry and its relation to quantum 
information systems. The main objective is to deal with qubit systems using 
geometry and graph theory which is considered a potent tool to grasp modern 
physics such as string theory and related models. As an illustration, we examine 
lower-dimensional qubit systems. In particular, we consider in some details the 
cases of one, two and three qubits. Concretely, we find that they are linked with 

1 1CP CP×  and 1 1 1CP CP CP× ×  toric varieties respectively. Using a geometric 
procedure, we show that the qubit physics can be converted into a scenario 
working with toric data of such manifolds with the help of Clifford graph alge-
bras. Mixed states are also approached. 

The present paper is organized as follows. In Section 2, we give an overview of 
the construction of Clifford graph algebras. Section 3 provides materials on toric 
geometry which is used to discuss qubit information systems. The connection 
between these later and Clifford graph algebra is explored in Section 4 where we 
focus on a one-to-one correspondence that binds them all. Section 4 is devoted 
to some concluding remarks. 

2. Construction of Clifford Graph Algebras 

The strong character of Clifford algebras gives the possibility of using them as a 
mapping between quantum computation, and high energy physics [13]. They 
can play a key role in supersymmetry as supersymmetric description of qubits 
systems [14]. To make a link between graph theory and quantum information 
systems, we present an overview of a useful construction of Clifford graph alge-
bras. 

Let A is a classical Clifford algebra, then it is an unital algebra over   with n 
generators 1 2, , , ne e e�  which verify the following relations  

 
2 1 for any

for
i

i j j i

e i
e e e e i j
 = −
 = − ≠

                      (2.1) 

Every monomial in this algebra either commute or anticommutes with genera-
tors ie . The center of this algebra is none other than the subalgebra of elements 
that commute with all elements. Moreover, a graph G with m vertices and no 
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multiple edges and no loops can be associated with an algebras GA  over  , 
with m generators corresponding to the vertices as  

 

2

th th

th th

1 for any
if there is an edge between the and vertices
if there is no edge between the and vertices

i

i j j i

i j j i

e i
e e e e i j
e e e e i j

 =


= −
 =

  (2.2) 

In the present work, we are interested in such a construction of graphs called 
Clifford graph algebras which may be used to describe quantum information 
systems. Precisely, we focus on the dimension of the center of Clifford algebra. 
More precisely, it has been shown that two graphs with the same number of ver-
tices belong to the same Clifford class if the centers of their Clifford algebras 
have the same dimension. Their Clifford algebras are isomorphic [15]. 

To assimilate the purpose of this, let a Clifford graph algebras have dimension 
2n  over  , and has a basis of monomials eα , where every element c a eα α= ∑  
of the center form a subalgebra and also the dimension of the center is always a 
power of 2. For instance, as we can notice in Figure 1 if the generators of the 
Clifford graph algebra of the complete graph are ie  and the generators of the 
Clifford of path graph are ie′ . Then, it has been verified that the Clifford alge-
bras of these two graphs are isomorphic by giving an isomorphism as  

 
1 1

2 1 2

2 for 2i i

e e
e e e
e e e i

′ =
 ′ =
 ′ = >

                      (2.3) 

These graphs with the same dimension of Clifford algebras belong to the same 
Clifford class and can be used to graphically describe and present the physics of 
n-qubit systems. 

3. Toric Geometry and Clifford Graph Algebra 

Toric geometry has been considered as a potent tool in context of study of com-
plex Calabi-Yau manifolds used in the string theory compactification and asso-
ciated subjects [16]. 

Firstly, n/2-complex dimensional toric manifold, which we denote as 2nM∆ , is  

obtained by considering the 
2
n r + 

 
-dimensional complex spaces 2

n r
C

+
 para-

meterized by homogeneous coordinates 1 2 3
2

; , ; ; nx x x x x r
 

= +  
 

� , and r toric 

transformations âT  acting on the ix ’s as follows  
 

 
Figure 1. Isomorphism between Clifford graph algebras of complete and path graph. 
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( ): .
a
iq

a i i aT x x λ→                       (3.1) 

Here, we consider the aλ  as r non-vanishing complex parameters. Then, the 
a
iq  are integers called Mori vectors for each a which encode several geometrical 

information on the manifold and its applications to modern physics. Thus these  

toric manifolds can be identified with the coset space 2
n r rC C
+ ∗ . In fact, toric  

graphic realization is generally represented by an integral polytope ∆ , namely a  

toric diagram which is spanned by 
2
n r + 

 
 vertices iv  of the standard lattice 

nZ . The toric data { };i iav q  must satisfy the following r relations  

 
1

2

0
0, 1, , .

n r
a
i i

i
q v a r

+ −

=

= =∑ �                    (3.2) 

These equations encode geometric data of 2nM∆ . The a
iq  integers are inter-

preted in lower dimensional field theory, namely in the 2N =  gauge linear 
sigma model language, as the ( )1 rU  gauge charges of 2N =  chiral multiples. 
Furthermore, they have also a geometric perception in terms of the intersections 
of complex curves aC  and divisors iD  of 2nM∆  [17] [18]. This exceptional 
connection has been explored in many fields in modern physics. In particular, it 
has been used to construct type IIA local geometry. 

The basic example in toric geometry is 1CP  which can play an essential role 
in the building block of higher dimensional toric varieties. It is defined by 1r =  
and the Mori vector charge takes the values ( )1,1iq = . This geometry has an 
( )1U  toric action 1CP  acting as follows  

 exp ,iz zθ=                           (3.3) 

where 1 2z x x= = , with two fixed points 0v  and 1v  placed on the real line. 
These later are the North and south poles respectively which describe such a 
geometry, considered as the (real) two-sphere 2 1S CP , satisfying the follow-
ing constraint toric equation  

 0 1 0.v v+ =                           (3.4) 

Then, we consider a class of toric varieties that we are interested in by giving a 
trivial product of one-dimensional projective spaces 1CP ’s admitting a similar 
description. We will show later that this class can be used to elaborate a special 
mapping between quantum information systems and graph theory. We treat the 
cases of 1 1CP CP×  and 1 1 1CP CP CP× ×  for simplicity reason and in the case  

of higher dimensional geometries 12
1

n

i iCP=⊗ , the toric descriptions can be given 

by a similar way. In fact, the 
2
n -dimensional toric manifolds present ( )21

n
U   

toric actions. A close inspection shows that there is a similarity between toric 
graphs of such manifolds and qubit systems using a link with an interesting con-
struction of Clifford graph algebras [15]. To assimilate this mapping, we present 
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G as a graph with n vertices and no multiple edges and no loops. This later is 
associated with algebra GA  over  , with n generators 1 2, , , ne e e�  corres-
ponding to the vertices, thus the Clifford algebra associated with a given graph 
it’s called a Clifford graph algebra, precisely we are interested in the number of 
graphs with n vertices such that the center of their Clifford graph algebras has 
dimension 2k  being denoted by  

 ( )2
,kCliff n                           (3.5) 

where k is an integer that fixes the dimension of the center of Clifford algebras. 
The connection that we are after is given by considering a special class of toric  

manifolds associated with 12
1

n

i iCP=⊗ =  and with ( )21
n

U  toric actions exhibiting  

2n  fixed points. Then, roughly speaking, we can propose a correspondence 
connecting two different subjects apparently separate which are Clifford graph 
and toric geometry  

2n  fixed points ↔  n generators. 

Furthermore, in toric geometry language, the manifolds are represented by 
2n  vertices belonging to the nZ  lattice satisfying n toric equations. Then these 
graphs share a strong resemblance with Clifford graph algebra formed by n nodes  

connected with a precise number of edges which are equal or less than ( )1
2

n n −
.  

Precisely when we fix the number of vertices n k=  and the number of edges 
equal to 1n − . Thus, we can propose the following notation  

 ( )2
2 , 2 1 ,n

n nCliff −                      (3.6) 

which can be associated with the number of toric actions as following: number 
of toric actions ↔  ( )2

2 , 2 1n
n nCliff − .  

We believe that this type of toric manifolds can be used to describe graphically 
the physics of quantum systems by the help of Clifford graph algebras. 

4. Qubits Systems as Clifford Graphs Algebra 

Motivated from combinatorial computations in quantum physics, we explore 
toric geometry to deal with qubit information systems [9] [11]. Precisely, we 
elaborate a toric description in terms of a trivial fibration of one dimensional 
projective space 1CP ’s. First, it is recalled that the qubit is a two-level system 
which can be realized, for instance, by a 1/2 spin particle. The one qubit is in a 
superposition of two states generally written in Dirac notation as  

 0 10 1 ,a aψ = +                       (4.1) 

where ia  are complex numbers satisfying the normalization condition  
2 2

0 1 1a a+ = . 
It has been revealed that this constraint can be interpreted geometrically in 

terms of the Bloch sphere, identified with the quotient group ( ) ( )2 1SU U  [16] 
[18]. The analysis can be extended to the case of bipartite systems which can be 
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entangled states playing a fundamental role in the applications of quantum in-
formation. Using the usual notation 1 2 1 2i i i i= , the corresponding state in 
superposition can be expressed as follows  

 
1 2

1 2

1 2 00 10 01 1100 10 01 11 ,i i
i i

a i i a a a aψ = = + + +∑        (4.2) 

where ija  are complex numbers verifying the normalization condition  

 2 2 2 2
00 01 10 11 1,a a a a+ + + =                   (4.3) 

describing the 3CP  projective space. 
For n-qubits, the general state has the following form  

 
1

1

1
0,1

,
n

n
i i n

i i
a i iψ

=

= ∑ �
�

�                     (4.4) 

where ija  satisfy the normalization condition  

 
1

1

2

0,1
1.

n
n

i i
i i

a
=

=∑ �
�

                       (4.5) 

In fact, this condition defines the 2 1n
CP −  projective space generalizing the 

Bloch sphere associated with 1n = . 
Roughly, the qubit systems can be described by toric manifolds 2nM∆  having 

a strong resemblance with Clifford graph algebras. A close inspection in Clifford 
graph algebras and toric geometry shows that when we fix the number of qubit 
n k=  and the number of edges is 2 1n − , we can propose the following corres-
pondence connecting quantum systems and toric geometry via Clifford graph 
algebras (Table 1). 

To see how this works in practice, we present at first the usual toric geometry 
notation. Inspired by combinatorial formalism used in quantum information 
theory, the toric data can be written as follows  

 
1 1

1

0, 1, , ,
n n

n

a
i i i i

i i
q v a r= =∑ � �

�

�                  (4.6) 

where the vertex subscripts indicate the corresponding quantum states. To illu-
strate this notation, we present the model associated with 1 1CP CP×  toric variety  

where 2
2
n
= . This model is related to 4n =  classification of Clifford graph 

algebras. Here, the combinatorial Mori vectors can take the following form  
 
Table 1. This table presents correspondence between toric geometry, and quantum sys-
tems via Clifford graphs algebras. 

Qubits systems Toric Geometry Clifford Graph algebra 

Basis state Fixed point Vertices such as the dim of the center 

  of corresponding Clifford algebra is 2n  

Number of 
qubits 

Number of toric 
actions 

( )2
2 ,2 1n

n nCliff − ≡  number of  

graphs with 2n  vertices 

  such that the center of their Clifford graph algebras 

  has dimension 2n  and 2 1n −  edges. 
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( ) ( )

( ) ( )
1 2

1 2

1 1 1 1 1
00 01 10 11

2 1 1 1 1
00 01 10 11

, , , 1,0,0,1 ,

, , , 0,1,1,0 .

i i

i i

q q q q q

q q q q q

= =

= =
                (4.7) 

The corresponding manifold to this toric equations is  

 
1 2 1 2

1 2

0, 1, 2.a
i i i i

i i
q v a= =∑                      (4.8) 

The toric data require the following vertices  

 
( ) ( )
( ) ( )

00 01

01 11

1,0 , 0,1 ,

0,1 , 1,0 ,

v v

v v

= − =

= =
                    (4.9) 

which can be connected to the Clifford graph algebra denoted as  

( )1
2 4

2 4,2 3n
n nCliff −

=
= = . 

These data can be encoded in Clifford graph algebras describing the case of 
two qubits illustrated below in Figure 2. These two graphs have been chosen among 
eleven graphs in the case of 4n =  nodes of Clifford graph algebras, and it has be-
longed to the same Clifford class so their Clifford algebras are isomorphic [15]. 

Due to this representation, we can link the basis of n-qubit with the toric 
geometry. The mapping is given by  

 
1 1 ,

ni i nv i i→� �                        (4.10) 

and the number of qubits is related as follow in Equation (4.11) to the number of 
Clifford graph algebras with 2n  vertices and 2 1n −  edges such the dimension 
of their center is none other than 2n ,  

 ( )2
2 , 2 1 .n

n nn Cliff→ −                     (4.11) 

In the case of 3-qubit 3n = , it is remarked that the geometry can be identi-
fied with the blow-up of 1 1 1CP CP CP× ×  toric manifold. In toric geometry 
language, this manifold is described by the following equations  

 
1 2 3 1 2 3

1 2 3

0, 1, ,5,a
i i i i i i

i i i
q v a= =∑ �                  (4.12) 

where 23 vertices 
1 2 3i i iv  belong to 3Z . 

These combinatorial equations can be solved by the following Mori vectors  

 

( )
( )
( )
( )
( )

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1

2

3

4

5

1,0,0,1,0,0,0,0 ,

0,1,0,0,1,0,0,0 ,

0,0,1,0,0,1,0,0 ,

1, 1,0,0,0,0,1,0 ,

0,0,1,1,0,0,0,1 .

i i i

i i i

i i i

i i i

i i i

q

q

q

q

q

=

=

=

= −

=

                 (4.13) 

 

 
Figure 2. Clifford graph representation of two qubits 2n = . 

https://doi.org/10.4236/jamp.2022.102039


M. Bensed, Y. El Maadi 
 

 

DOI: 10.4236/jamp.2022.102039 534 Journal of Applied Mathematics and Physics 
 

The corresponding vertices 
1 2 3i i iv  are given by  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

000 100

010 001

110 101

110 111

1,0,0 , 0,1,0 ,
1,0,0 , 1,0,0 ,
1,0,0 , 0,0, 1 ,
1,0,0 , 0, 1, 1 ,

v v
v v
v v
v v

= =
= = −
= = −
= = − −

               (4.14) 

which can be connected to the Clifford graphs algebra denoted as  

( )2 8
2 8,2 1 7n

n nCliff
=

= − = . 
The study above is limited to the case of pure states, however, the study of 

mixed states is very important in modern physics and has a strong utility in 
many applications of quantum information. To deal with it we consider the case 
of two qubits described in Figure 2. It is denoted that in the graph of the left side, 
we have four 0-simplex, three 1-simplex and one 2-simplex. Moreover, the graph 
on the right side of Figure 2 is composed of four 0-simplex and three 1-simplex. 
Then it has been revealed that this composition of simplex forms the space of 
mixed states  , and the space of pure states   is nothing but the vertices [19] 
[20]. 

We can remark that the number of 0-simplex in both graphs of Figure 2 is 
related to the number of vertices of Clifford graphs algebra which is obvious, al-
so the number of 1-simplex corresponds to the number of edges in these later 
graphs.  

0-simplex≡ . 

simplex≡ . 

1-simplexE ≡ . 

Another link is between the dimension of complex projective space of qubits 
systems 2 1n

CP −  and the number of 1-simplex in corresponding Clifford graphs 
algebras. 

To push further the desired link, we make contact with quantum computa-
tional using the representation of a quantum n-gate as unitary 2 2n n×  matrix 
which acts on n-qubits in 2n-dimensional complex vector space [21]. The iso-
morphism exists between a complex Clifford algebra with 2n  generators and 
the algebra of all 2 2n n×  matrices  

 ( ) ( )2 , 2 2n nCl n ≅ ×                    (4.15) 

Precisely, the action of ( )2 ,Cl n   on n-qubit systems is none other than the 
action of 2 2n n×  matrix on complex vector in 2n -dimensional complex space. 
To assimilate this, we take a basis of 2n  vector space  

 
1 2

, 0,1
nL l l l ke e e e l= ⊗ ⊗ ⊗ =�              (4.16) 

where one used in quantum information science  

 1 2 1 2 ,n ni i i i i i i= = ⊗ ⊗ ⊗� �            (4.17) 

and where one has  
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1 0

0 , 1 .
0 1
   

= =   
   

                  (4.18) 

4n -dimensional basis of Clifford algebra is given by  

 
1 2

, 1, , , .
n kI l l l l x y zg σ σ σ σ σ σ σ= ⊗ ⊗ ⊗ ∈�         (4.19) 

It has been revealed that the action is defined for an element on 2n  vector 
space by  

 ( ) ( ) ( )1 21 2 ,
nI l l l ng i i iσ σ σ= ⊗ ⊗ ⊗�          (4.20) 

where 
kl kiσ  is the action of Pauli 2 2×  matrix on 2D complex vector 0  

or 1 . 
Thus, any linear transformation of 2n -dimensional space can be represented 

by elements of Clifford algebra with 2n generators  

 ( ) ( ) 2 22 , 2 2 : .n n n nCl n ≅ × →                (4.21) 

Here, we can represent the edges as the actions of ( )2 ,Cl n  . 
This mapping can be explored to study many related applications of quantum 

information including quantum computing. We expect that this analysis can be 
pushed further to deal with other toric manifolds having essential utility in 
modern physics. 

5. Conclusions 

Employing toric geometry and Clifford graph algebras correspondence, we have 
discussed qubit information systems. Precisely, we have presented a one-to-one 
correspondence between three apparently separate subjects namely toric geome-
try, Clifford graph algebras and quantum information theory. We think that this 
work may be explored to deal with qubit system problems using geometry con-
sidered as a strong tool to understand modern physics. In particular, we have 
considered in some details the cases of two and three qubits, and we find that 
they are associated with 1 1CP CP×  and 1 1 1CP CP CP× ×  toric manifolds, re-
spectively. Developing a geometric procedure, we have revealed that the qubit 
physics can be converted into a scenario turning toric data of such varieties with 
the help of the construction of Clifford graph algebras. Pure and mixed states are 
dealt with. 

In this work, we have completed partial results which come up with many 
open questions. An obvious one is to examine toric Calabi-Yau supermanifolds. 
We believe that in this issue, we can deal with superqubit systems. Furthermore, 
an important question is to investigate the entanglement states in the context of 
toric geometry and its application including mirror symmetry. We hope to ad-
dress such questions in the future. 
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