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Abstract 
In this paper, we investigated stability and bifurcation behaviors of a preda-
tor-prey model with Michaelis-Menten type prey harvesting. Sufficient con-
ditions for local and global asymptotically stability of the interior equilibrium 
point were established. Some critical threshold conditions for transcritical 
bifurcation, saddle-node bifurcation and Hopf bifurcation were explored 
analytically. Furthermore, It should be stressed that the fear factor could not 
only reduce the predator density, but also affect the prey growth rate. Finally, 
these theoretical results revealed that nonlinear Michaelis-Menten type prey 
harvesting has played an important role in the dynamic relationship, which 
also in turn proved the validity of theoretical derivation. 
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1. Introduction 

The predator-prey model is one of the dominant population models, which has 
been researched extensively to comprehend interactions between various species 
in a fluctuant natural environment [1] [2] [3] [4] [5]. However, in reality, pre-
dators are unable to catch all prey because prey can decrease the risk of preda-
tion by using refuge [6] [7] [8]. So the prey refuge will more accord with authen-
tic circumstance, and many scholars have achieved considerable process in this 
field [9] [10] [11] [12]. 

However, many researchers only consider directly killing of prey by predator, 
but ignore the impact of the presence of predator on prey. Zanette et al. [13] ex-
perimentally showed that the predation fears can reduce offspring production by 
40%, which is even more intensively than the impact of direct hunting. In fact, 
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all prey can exhibit different kinds of anti-predator behaviors, such as changes of 
habitat, physiological and foraging [14] [15] when they are confronted with preda-
tion risks. Many studies in this direction have been carried out and obtained 
numerous attractive results [16] [17] [18] [19] [20]. Particularly, Wang et al. [19] 
firstly proposed a predator-prey model with the cost of fear:  

( ) ( )

( )

2
0

d , ,
d
d ,
d

u r uf k v du au g u v
t
v mv cg u v
t

 = − − −

 = − +


 

where k is the level of fear, which causes anti-predator behaviors of prey. Bio-
logically speaking, ( ),f k v  can reasonably obey the following conditions:  

( ) ( ) ( )0, 1, ,0 1, lim , 0,
k

f v f k f k v
→∞

= = =  

( ) ( ) ( ), ,
lim , 0, 0, 0.
v

f k v f k v
f k v

k v→∞

∂ ∂
= < <

∂ ∂
 

They concluded that the cost of fear does not change the dynamical behaviors of 
this model and the unique equilibrium is globally asymptotically stable when the 
model with the linear functional response. 

Inspired by the insightful work [19], Chakraborty [20] proposed a preda-
tor-prey model with fear factor, which is given by:  

 
( )d 11 ,

d 1
d ,
d

u uru u auv
t K fv
v auv mv
t

θ

α

  = − − −  + 

 = −

              (1) 

where u and v represent prey and predator densities at time t, respectively. r is 
the intrinsic growth rate, k is the carrying capacity of prey, a is the predation rate, 
α  is the conversion factor, m is the mortality rate of predator, θ  is the Allee  

threshold. 1
1 fv+

 is the fear factor term. They showed that fear can dramatically  

lessen the per-capita growth rate, but cannot affect the equilibrium stability, but 
can generate richer dynamics such as bi-stability. 

From the perspective of human needs and long-term progress, the exploita-
tion of natural resources and the storage of renewable energy, harvesting are al-
ways one of the most crucial factors in the dynamics of predator-prey model 
[21]. We find that the predator-prey model with harvesting can lead to more 
complex properties than the model without it [22] [23] [24], which inspires us to 
take harvesting into account. Harvesting regimes can be classified into three 
main types: 1) ( )h x h= , constant rate harvesting, 2) ( )h x qEx= , constant-effort  

harvesting, and 3) ( )
1 2

qExh x
m E m x

=
+

, nonlinear harvesting [25] [26]. Huang et  

al. [27] systematically studied the dynamics of a Leslie-Gower type predator-prey 
model with constant-yield predator harvesting. They have shown that the model 
can have various kinds of bifurcations, such as saddle-node bifurcation, Hopf 
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bifurcation, and Bogdanov-Takens bifurcations. These results reveal that the 
harvested model can exhibit more complex dynamics compared to the model 
without harvesting. Refs. [28] [29] also paid close attention to investigating the 
impact of constant-yield harvesting in predator-prey models. A ratio-dependent 
predator-prey model with non-constant predator harvesting rate was analyzed 
by Lajmiri et al. [30]. They investigated the stability of equilibria and some bi-
furcation behaviors. Gao et al. [31] considered the temporal, spatial and spati-
otemporal dynamics of a ratio-dependent predator-prey diffusive model, in which 
the predator subject to constant effort harvesting. Lenzini and Rebaza [32] discov-
ered several bifurcations and connecting orbits by studying a ratio-dependent 
predator-prey model with non-constant harvesting. Singh et al. [33] proposed a 
Leslie-Gower predator-prey model with Michaelis-Menten type predator har-
vesting to explore the stability and bifurcation behaviors. Liu et al. [34] pre-
sented a super cross-diffusion predator-prey model to study its Turing instability 
and pattern formation. Chen et al. [35] proposed a predator-prey model with 
nonlinear harvesting to consider the effect of diffusion on pattern selection. The 
dynamics of a delayed diffusive predator-prey model with nonlinear predator 
harvesting has been investigated by Liu and Zhang [36], and they obtained the 
conditions for Turing and Hopf bifurcation, and found that the delay has re-
markable impact on the emergent spatial patterns. Liu and Jiang [37] discussed 
the stability and Hopf bifurcation in detail for a Gause predator-prey model with 
gestation delay, Michaelis-Menten prey harvesting and Holling type III func-
tional response. Zhang et al. [38] proposed stochastic non-autonomous preda-
tor-prey models with and without impulse; they concluded that the model dy-
namics can be appreciably influenced by the stronger noises and nonlinear har-
vesting, which also can cause the extinction of the predator species. 

Stimulated by the above review of literature, we will propose a predator-prey 
model with Michaelis-Menten type prey harvesting and prey refuge based on 
model (1), which can be expressed by the following equation,  

 
( )

( )

1
1 1 2

1 1 1

d 11 1 ,
d 1
d 1 ,
d

X X qEXrX a m XY
K f Y m E m X

Y e a m XY d Y

τ

τ

  = − − − −  + +  

 = − −

         (2) 

where q is the catchability coefficient, E is the effort used on harvesting the prey 
species, 1m  and 2m  are proper constants. The rest of the parameters have the 
same meanings as model (1). For simplicity, we will nondimensionalize the  

model (2) with the substitutions such as Xx
K

= , 1a Yy
r

=  and t rτ= , hence 

we have  

 
( ) ( ) ( )

( ) ( )

d 11 1 , ,
d 1
d 1 , ,
d

x hxx x m xy F x y
t fy c x
y e m xy dy G x y
t

 = − − − − = + +

 = − − =

           (3) 
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where 
2

qEh
rm K

= , 1

2

m Ec
m K

= , 1 1a e Ke
r

= , 1

1

rff
a

=  and 1dd
r

=  are positive 

constants. 
The objective of this paper is to provide a stability and bifurcation analysis of 

model (3). The rest of the paper is arranged as follows. The existence of equili-
bria and their stability are presented in Section 2. Section 3 deals with the bifur-
cation, such as transcritical bifurcation, saddle-node bifurcation and Hopf bi-
furcation. In section 4, we analyze the impact of fear and prey refuge. Numerical 
simulations for model (3) are given in section 5 to illustrate the theoretical works. 
Finally, a brief conclusion is drawn in section 6. 

2. Existence and Stability of Equilibria  
2.1. Existence of Equilibria 

Model (3) always has the trivial equilibrium point ( )0 0,0E = , and the other 
equilibria are the intersection of the horizontal isocline and vertical isocline of 
model (3), which are given by  

 
( ) ( ) ( )

( ) ( )

1, 1 1 0,
1

, 1 0.

hxF x y x x m xy
fy c x

G x y e m xy dy

 = − − − − = + +
 = − − =

           (4) 

It is obvious that the possible boundary equilibria are the positive roots of the 
quadratic equation ( ),0 0F x = , i.e.,  

 1 0,hx
c x

− − =
+

                         (5) 

which discriminant is ( ) ( )21 4h c h∆ = + − . Denote 
( )2

* 1
4
c

h
+

=  when  

( ) 0h∆ = . then the equation of (5) has two roots 1
1

2
cx − − ∆

=  and  

2
1

2
cx − + ∆

=  when *h h< ; a double root 1
2SN

cx −
=  when *h h= ; no real 

root when *h h> . We summarize our finding in the following Lemma.  
Lemma 1. Besides 0E , the existence of boundary equilibria of model (3) is as 

follows. 
1) If ( )0,1c∈ , the existence of boundary equilibria is concluded in Table 1. 
2) If 1c = , there exists an equilibrium point ( ) ( )3 3 ,0 1 ,0E x h= = −  when 

0 1h< < . 

3) If 1c > , there exists an equilibrium point ( )4 4
1,0 ,0

2
cE x

 − + ∆
= =   

 
 

when *0 h c h< < < .  
Evidently, the interior equilibrium point ( )* * *,E x y=  is the intersection of 

the nullclines. By simple calculation, we obtain the abscissa of interior equilibrium  

point *E  is 
( )

*

1
dx

e m
=

−
, and the ordinate *y  is the positive root of the equa-  
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Table 1. Boundary equilibria besides 0E  of model (3) when 0 1c< < . 

cases Equilibria 

0h h c∗> > >  None 

0h h∗= >  ( ) 1,0 ,0
2SN SN

cE x − = =  
 

 

0h h c∗ > > >  ( )1 1
1,0 ,0

2
cE x

 − − ∆
= =   

 
 and ( )2 2

1,0 ,0
2

cE x
 − + ∆

= =   
 

 

0h c h∗ > = >  ( ) ( )2 2 ,0 1 ,0E x c= = −  

0h c h∗ > > >  ( )2 2
1,0 ,0

2
cE x

 − + ∆
= =   

 
 

 

tion ( )* , 0G x y =  if 0H <  hold. That is, ( )*

2
a hf

y
af

− + + ∆
= , where  

( )( )*1a m c x= − + , ( )( )* *1H h x c x= − − +  and ( )2 4a hf afH∆ = + − . Hence, 
we can have the following result.  

Lemma 2. The positive equilibrium point ( )* * *,E x y=  exists when 0H < . 
Where  

 
( )

( ) ( )2
* * 4

, ,
1 2

a hf a hf afHdx y
e m af

− + + + −
= =

−
         (6) 

with ( )( )*1a m c x= − + , ( )( )* *1H h x c x= − − +  and ( )2 4a hf afH∆ = + − .  

2.2. Stability of Equilibria 

Now we analyze the local stability of equilibria identified above. The general Ja-
cobian matrix of model (3) takes the form of  

 11 12

21 22

,
J J

J
J J

 
=  
 

                         (7) 

where 

( ) ( )
( )11 2

1 11 1 ,
1 1

h hJ x m y x
fy c x fy c x

 
= − − − − + − + 

+ + + +  
 

( )
( )

( )12 21 1 ,
1

fJ x x m
fy

 
= − − + − 

+  
 

( )21 1 ,J e m y= −  

( )22 1 .J e m x d= − −  

Theorem 1. The origin ( )0 0,0E =  is a saddle point if h c<  and a stable 
node if h c>  or 1h c= = ; when 1h c= ≠ , 0E  is a saddle-node.  

Proof. The Jacobian matrix of model (3) at the equilibrium point 0E  is given 
by:  
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( )0
1 0

.
0

h
J E c

d

 − =   − 

 

Obviously, the eigenvalues of ( )0J E  are 1 1 h
c

λ = −  and 2 dλ = − . According  

to the Routh-Hurwitz criterion, 0E  is a saddle point if h c<  and a stable 
node if h c> . When h c= , we have 1 0λ = . To determinate the stability of 

0E , we rescale t by dtτ = −  and expand the obtained model in power series 
around 0E , under which we get  

 
( ) ( )

( )

2 3 2 2
12

d 1 1 1 11 1 , ,
d
d 1 ,
d

x f fx f m xy x x y xy p x y
d c d d ddc

y ey m xy
d

τ

τ

  = − + + − − − − +   

 = − −

 (8) 

where ( )1 ,P x y  is a power series in ( ),x y  with terms i jx y  satisfying 4i j+ ≥ .  

Hence, by Theorem 7.1 in [39], if the coefficient of 2x  is 1 11 0
d c
 − ≠ 
 

, i.e., 

1h c= ≠ , then 0E  is a saddle-node; if 1 11 0
d c
 − = 
 

, i.e., 1h c= = , then 0E  

is a unstable node due to 2

1 0
dc

> . However, the orbits with time going in the  

opposite direction because of the transformation dtτ = − . Hence, 0E  is a sta-
ble node.                                                        □ 

Theorem 2. The equilibrium point 1 ,0
2SN

cE − =  
 

 is a saddle-node if  

( )( )1 1
0

2
e m c

d
− −

− ≠ , and a saddle point if 
( )( )1 1

0
2

e m c
d

− −
− = .  

Proof. By replacing ( ),x y  in matrix (7) with SNE , The Jacobian matrix of 
model (3) at SNE  is given by:  

( )
( )

( )( )
0 1 1

.1 1
0

2

SN SN

SN

x x f m
J E e m c

d

  − − + −  
=  − −

− 
 

 

Clearly, we find that the eigenvalues of ( )SNJ E  are 1 0λ =  and  

( )( )
2

1 1
2

e m c
dλ

− −
= − . We therefore consider the following two cases. 

1) 2 0λ ≠ . Transforming SNE  to the origin by the translation SNX x x= − , 
Y y=  and expanding model (3) in a power series around the origin, under 
which model (3) becomes  

 

( )

( ) ( ) ( ) ( )

( ) ( )

2
3

2
2

d 1 1
d

2 1 1 1 , ,

d 1 1 ,
d

SN
SN SN

SN

SN SN SN

SN

hxX x x f m Y X
t c x

f x m XY fx x Y P X Y

Y e m x d Y e m XY
t

  = − − + − −  +
  + − − − + − +  

 = − − − −  

   (9) 
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where ( )2 ,P X Y  is a power series in ( ),X Y  with terms i jX Y  satisfying 
3i j+ ≥ . Then, under the transformation  

( )
( )
1 1

1
.1

0 1

SN SN

SN

x x f m
x X

e m x dy Y

  − + −     
= − −    

    
 

 

Model (9) becomes  

 
( )2 2

20 11 02 3

2
01 11 02

d , ,
d
d ,
d

X a x a xy a y P x y
t
Y b y b xy b y
t

 = + + +

 = + +


              (10) 

where ( )3 ,P x y  is a power series in ( ),x y  with terms i jx y  satisfying 3i j+ ≥  
and  

( )
( ) ( )

( ) ( )

( ) ( )
( )

2

11 3

2 1 1
2 1 1

1

1 1 1
,

1

SN SN
SN

SN SN

SN SN

SN

hx x f m
a f x m

c x e m x d

e m x x f m
e m x d

 − + − = − + − − −
+ − −  

 − − + − +
− −

 

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

( ) ( )
( )

23

02 3

1 1
1

1

1 1
2 2

1

1 1 1 1 1
,

1 1

SN SN
SN SN

SN SN

SN SN
SN

SN

SN SN SN SN

SN SN

hx x f m
a fx x

c x e m x d

x x f m
f x m

e m x d

x x f m e m x x f m
e m x d e m x d

 − + − = − + −
+ − −  
 − + −   + − − − −

    − + − − − + −   +  
− − − −  

 

( ) ( )20 01 113 , 1 , 1 ,SN
SN

SN

h
a b e m x d b e m

c x
= − = − − = −

+
 

( ) ( )
( )20

1 1 1
.

1
SN SN

SN

e m x x f m
b

e m x d
 − − + − = −
− −

 

Introducing a new time variable ( )1 SNe m x d tτ = − −   , since the coefficient of 

2x  is 
( ) ( )3 0

1
SN

SN SN

hx
c x e m x d

− ≠
+ − −  

, by Theorem 7.1 in [39] again, SNE  is a 

saddle-node. 
2) 2 0λ = . Let ( )1 1SN SNx x f m tτ  = − − + −  , then model (9) can be rewrit-

ten as  

 

( ) ( )
( ) ( )
( )

( )
( ) ( ) ( )

( )
( )

( )

2
3

2
4

4

2 1 1d
d 1 11 1

1
, , ,

1 1

1d , .
d 1 1

SN

SN SNSN SN

SN SN

SN SN

SN

SN SN

f x mX hY X XY
t x x f mc x x f m

fx x
o X Y Y P X Y

x x f m

e m x dY XY Q X Y
t x x f m

 − − −
= + −

 − + − + − + −   


− − + = +
 − + −  

 − − = − =
  − + − 

(11) 
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From ( )4 , 0Y P X Y+ = , we obtain an implicit function  

( )
( ) ( )

( ) ( )
( )

2
3

3

1 1

2 1 1
,

1 1

SN SN

SN

SN SN

hX X
c x x f m

h f x m
X

x x f m

ϕ = −
 + − + − 

 − − − + +
 − + − 

�

 

and we have  

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

3
23

4
432

1

1 1

1 2 1 1
,

1 1

SN SN SN

SN

SN SN SN

he m
X X

x c x x f m

he m f x m
X

x c x x f m

ψ
−

= −
 + − + − 

 − − − − + +
 + − + − 

�

 

( ) ( )( )
( ) ( )

[ ]
3

3 2

2 1
.

1 1
SN SN

SN SN SN

h e m c x
X X X

x c x x f m
δ

+ − +
= − +

 + − + − 
 

Using the notations of Theorems 7.2 in [39], we have 2 1k m= + , 1m = ;  
( )

( ) ( )3

1
0

1 1
k

SN SN SN

he m
a

x c x x f m

−
= >

 + − + − 
. Hence, SNE  is a saddle point.   □ 

Theorem 3. The equilibrium point 1E  is always unstable. Especially, 1E  is a 
unstable node if ( ) 11 0e m x d− − >  and a saddle if ( ) 11 0e m x d− − < .  

Proof. The Jacobian matrix of model (3) at 1E  is given by:  

( ) ( )
( )

( )

1 1 1 12
11 1

1

1 1 1 1
.

0 1

h hx x x x f m
c xJ E c x

e m x d

     − − + − + − − + −     +=  +     − − 

 

We note that one of the eigenvalues of ( )1J E  is  

( )1 1 1 2
1 1

1 1h hx x
c x c x

λ
  
 = − − + − +   + +   

, which follows that  

( )
( )

( )1 2 *

4 1 0.
1

hc hh c h c
hc

λ  > ∆ + − > ∆ + − > 
 +

 

So the stability of 1E  is determined by the eigenvalue ( )2 11e m x dλ = − −  and 
the conclusion is tenable.                                           □ 

As discussed in the previous section, we know that 2E  exist when 0 1c< <  
and 0h h c∗ > > > ; 3E  exist when 1c =  and 0 1h< < ; 4E  exist when 1c >  
and 0h c h∗ > > > . We now discuss the stability of the boundary equilibrium 

( )2,3,4iE i = .  
Theorem 4. The boundary equilibrium point ( )2,3,4iE i =  is a stable node 

if ( )1 0ie m x d− − <  and a saddle point if ( )1 0ie m x d− − > .  
Proof. Similar to the proof of Theorem 3, the Jacobian matrix of model (3) at 

iE  is  
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( ) ( )
( )

( )

121 1 1 1
.

0 1

i i i
ii i

i

h hx x x x f m
c xJ E c x

e m x d

       − − + − + − − + −    +=  +    
 − − 

 

Then the eigenvalues of ( )iJ E  are 
( )1 21 1i i

i i

h hx x
c x c x

λ
  
 = − − + − +   + +   

  

and ( )2 1 ie m x dλ = − − . One can easily prove that the following two expres-
sions 

[ ]
( )

11 2
2

41 0
1i

c ix

hx
c

λ − + ∆
=

 
 = − + < 

+ + ∆  

, for 2i =  and 4, 

[ ]
( )3

1 2 21

41 0
1 1

x h

hx
h

λ
= −

 
 = − + < 

+ −  

, 

hold on the basis of existence conditions of iE  from Lemma 1, which means 
that the stability of ( )2,3,4iE i =  is determined by the sign of ( )1 ie m x d− − . 
Therefore, this theorem follows.                                      □ 

Next, we study the local stability of the positive equilibrium ( )* * *,E x y= , 
and give sufficient conditions on its global stability. 

Theorem 5. The interior equilibrium point *E  is locally asymptotically sta-
ble when 0 Hph h< <  with  

( ) ( ) ( ) ( ) ( )

( ) ( )( )

2

2

12 1 1 1 2 1 1
4

2 1 1 1 2Hp

e c f m m df e m c m e d

h
e f m m c e d

   − + − − − + − − −          = −
− − − −  

(12) 

and unstable when Hph h> .  
Proof. The Jacobian matrix at *E  is:  

( ) ( )
( )

( )
( )

* * *
* * 2 2* *

*

1 1 1
.1 1

1 0

h fx x x m
J E fy c x fy

e m y

    
    − + − − + −    = + + +       
 − 

 

Then we can easily gain the determinant of the matrix ( )*J E  is given by  

( ) ( ) ( )
( )

( )* * * *
2*

1 1 1 0,
1

fDet J E e m x y x m
fy

 
 = − − + − >
 +  

 

which implies that *E  is an antisaddle. It is easy to see the trace is  

( )
( )

* *
* 2*

1 .
1

hTr J E x
fy c x

 
 = − +
 + +  

 

By simple calculation, we find that ( )* 0Tr J E <  is equivalent to Hph h< . There-
fore, ( )*J E  has two negative eigenvalues when Hph h< , which indicates that 
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*E  is locally asymptotically stable. On the contrary, both characteristic roots of 

( )*J E  are positive and *E  loses its stability when Hph h>  hold.        □ 
In Theorem 5, we have proved that the interior equilibrium point *E  of 

model (3) is locally asymptotically stable when 0 Hph h< < . Now we are going 
to give adequate conditions on its global stability. 

Theorem 6. Suppose 0 Hph h< < , then the interior equilibrium point *E  of 
model (3) is globally asymptotically stable in the positive quadrant if one of the 
following conditions holds. 

(H1) 1c >  and * 0h c h> > > ; 
(H2) 1c =  and 0 1h< < ; 
(H3) 1c <  and * 0h c h> > > .  
Proof. Under the above conditions, we find that model (3) has the other two 

boundary equilibria 0E  and 2E , which are unstable. Meanwhile, the interior 
equilibrium *E  is locally asymptotically stable. It is easy to prove that the inte-
rior of 2R+  is the invariant set of model (3). Moreover, ( ),F x y  and ( ),G x y , 
respectively, represent the right hand side function of model (3). Choose the  

Dulac function as ( ) 1,B x y
xy

= . After calculations, we have  

( ) ( )
( )2

1 1 0
1

BF BG hD
x y y fyc x

 ∂ ∂
= + = − < 

∂ ∂ ++  
 

in the interior of 2R+ . By the Dulac theorem [40], there exists no periodic orbit 
in the first quadrant. Thus, *E  is globally asymptotically stable.           □ 

Theorem 7. Suppose Hph h>  and ( ) 21 0e m x d− − > , then model (3) exists 
a limit cycle if one of the conditions of Hi (i = 1, 2, 3) holds.  

Proof. By previous calculations, here, *E  is unstable. In addition, 0E  and 

2E  are saddle point. Recall *
2x x<  and Let 1 2: 0L x x− = , then  

( )
( ) ( ) ( )

2

1
2 2

23

d d 11 1 0, for 0, .
d d 1x x

L x hx x m y y
t t fy c x=

 
= = − − − − < ∈ ∞ + + 

 

Next, let 2 : 0L y λ− =  with 0λ >  to be specified later, then  

( )
( ) ( )*2

3

d d 1 0, for 0, .
d d y

L y e m x d x x
t t λ

λ
=

= = − − < ∈    

Moreover, let ( )( ) ( )* *
3 2: 2 0L x x y x xλ λ− − + − = . 

Since 20 x x< < , we get * *
2x x x x− < −  and 

( )
( )

*

2 *

1
22

x x
y

x x

λ
λ λ

−
= − >

−
. For 

*0 x x< < , 0y > . Simply calculation can give  

( )
( )

( ) ( ) ( ) ( )

( )( ) ( )

*3
2

3

*
2

d d d2
d d d

12 1 1 1
1

1 .
1

L y xx x
t t t

hx x e m x d y x m y
fy c x

f
fy c x

λ

λ

λ

= − +

 
= − − − + − − − −     + + 

<
− +
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where  

( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( ){ }

3

* 2
2

*
2

1
4

2 1 1
2

2 1 1 .

fx m c x
f

xf x x c x e m x d hf m c x

x x c x e m x d x hf m c x

λ λ

λ

λ

− +
= −

 + − + − − − + − +        

+ − + − − + + − +      

 

Due to ( )( )1 0fx m c x− + > , it follows that 
( )

3

3

d
0

d
L
t

<  for sufficiently large  

0λ > . Thus, when Hph h>  and ( ) 21 0e m x d− − > , by Poincare-Bendixson 
Theorem [40], model (3) exists a limit cycle if one of the conditions of (Hi) (i = 1, 
2, 3) holds.                                                   □ 

3. Local Bifurcation Analysis  

In this section, we will discuss possible bifurcations of model (3), and derive the 
conditions for various bifurcations. The following lemma is given for proving 
saddle-node bifurcation and transcritical bifurcation. 

Lemma 3. (Sotomayor’s Theorem [41]). Consider the system ( ),x F x µ=�  
and assume that ( )0 0, 0F x µ =  at equilibrium point 0x  holds. The eigenvec-
tors of zero eigenvalues of n n×  Jacobian matrix ( )0 0,J DF x µ≡  and TJ  
are V and W respectively. Then 

1) Suppose  

( )T
0 0, 0,W F xµ µ ≠  

( )( )T 2
0 0, , 0.W D F x V Vµ µ  ≠   

Hence, when the bifurcation parameter µ  through the thresholds value, that is, 

0µ µ= , the system undergoes a saddle-node bifurcation at 0x . 
2) Suppose  

( )T
0 0, 0,W F xµ µ =  

( )T
0 0, 0.W DF x Vµ µ  ≠   

( )( )T 2
0 0, , 0.W D F x V Vµ µ  ≠   

Hence, when the bifurcation parameter µ  through the thresholds value, that is, 

0µ µ= , the system undergoes a transcritical bifurcation at 0x .  

3.1. Transcritical Bifurcation 

From Lemma 1 and Theorem 1, we find that 0E  is a saddle when h c< , and 
stable node when h c> , which indicates that 0E  changes its stability when 
parameter h over the threshold value TCh c= . Particularly, the boundary equi-
librium 1E  bifurcates from 0E  when TCh c= . The above analysis implies that 
the existence of transcritical bifurcation at the trivial equilibrium 0E  when the 
value of the parameter h exceeds the threshold value TCh c= . 
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Theorem 8. Model (3) undergoes a transcritical bifurcation around 0E  at 
( )0 1TCh h c c= = < < .  

Proof. Clearly, the matrix ( )0J E  has a zero eigenvalue when  
( )0 1TCh h c c= = < < . Let v and w be the eigenvectors associate with the zero 

eigenvalue for ( )0J E  and ( )T
0J E , respectively. We get  

1 1
and .

0 0
v w   
= =   
   

 

Defining  

( ) ( )
( )

( ) ( )

( )

1

2

11 1,
1, ,

,
1

hx x m yF x y
fy c xF x y

F x y
e m x d y

  
− − − −    + += =    

   − −   

 

and calculating, we have  

( )0

0
, ,

0h TCF E h  
=  
 

 

( )0

1 110
, ,

00 0 0
h TCDF E h v c c

   − −    = =           

 

( )( )

2 2 2
2 21 1 1

1 1 2 22 2
2

0 2 2 2
2 22 2 2

1 1 2 22 2

2 12 1
, , .

02
h TC

F F FV V V V
x yx y

D F E h v v c
F F FV V V V

x yx y

 ∂ ∂ ∂
+ +     − +∂ ∂∂ ∂    = =    ∂ ∂ ∂   + +   ∂ ∂∂ ∂ 

 

Using the expressions for v and w we get,  

( )T
0 , 0,h TCW F E h =  

( )T
0

1, 0,h TCW DF E h v
c

  = − ≠   

( )( )T 2
0

1, , 2 1 0.h TCW D F E h v v
c

   = − + ≠    
 

Thus from Lemma 3, we can conclude that model (3) undergoes a transcritical 
bifurcation from 0E  at TCh c= .                                 □ 

3.2. Saddle-Node Bifurcation 

It follows from Lemma 1, controlling the parameter h, the coexisting equilibria 1E   

and 2E  collide with each other as h crosses the critical value 
( )2

* 1
2
c

h h
+

= =  

when ( ) 0h∆ = , and become an unique equilibrium 1 ,0
2SN

cE − =  
 

. Then as  

the value of parameter h changes, the unique equilibrium SNE  disappears when 
( ) 0h∆ < . Change in number of equilibria is owing to the occurence of saddle-  

node bifurcation at 
( )2

* 1
4SN

c
h h

+
= = . Thus, we state the following theorem. 
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Theorem 9. When 1c <  and ( )( )1 1 2 0e m c d− − − ≠ , model (3) undergoes 

a saddle-node bifurcation from 1 ,0
2SN

cE − =  
 

 at 
( )21

4SN

c
h

+
= .  

Proof. We utilize lemma 3 to verify the transversality condition for the occurence 
of saddle-node bifurcation at SNh h= . It can easily verify that ( ) 0SNDet J E  =  , 
which implies that the matrix ( )SNJ E  has a zero eigenvalue. Let v and w be the 
eigenvectors corresponding to the zero eigenvalue for ( )SNJ E  and ( )T

SNJ E , 
respectively. Then we obtain  

( ) ( ) ( )
( )( )

1
1

1 1 2 1and .
0

2 1 1 2
c c f mv w
e m c d

 
   − + + − = =     

   − − −   

 

Furthermore, using the expression for F in Theorem 8, we can get  

( )
1

, ,1
0

h SN SN

c
F E h c

− − = +  
 

 

( )( )
( )

2 2 2
2 21 1 1

1 1 2 22 2
2

2 2 2
2 22 2 2

1 1 2 22 2

2 2 1
, , .1

02
h SN SN

F F FV V V V cx yx y
D F E h v v c

F F FV V V V
x yx y

 ∂ ∂ ∂
+ +  − ∂ ∂∂ ∂   = = +  ∂ ∂ ∂   + +   ∂ ∂∂ ∂ 

 

It follows that  

( )T 1, 0,
1h SN SN

cW F E h
c

−
= − ≠

+
 

( )( ) ( )T 2 2 1
, , 0.

1SN SN

c
W D F E h v v

c
−

  = − ≠  +
 

Therefore, we can conclude that model (3) undergoes a saddle-node bifurcation 

at 
( )21

2SN

c
h

+
= .                                             □ 

3.3. Hopf Bifurcation 

From Theorem 5, the steady state of *E  changes as the parameter h crosses the 
threshold value Hph h= , which implies that the interior equilibrium point *E  
may lose its stability through Hopf bifurcation under certain parametric restric-
tions. Let us adopt h as the bifurcation parameter, the Hopf bifurcation threshold  

is a positive root of ( )* 0
Hph h

Tr J E
=

  =  , and can satisfy ( )* 0
Hph h

Det J E
=

  >  . 

Therefore we conclude the result in the following theorem. 
Theorem 10. Suppose the conditions of existence of positive equilibrium *E  

stated in Lemma 2 is satisfied, then there is a Hopf bifurcation around *E  
when Hph h= , where Hph  is defined in (12).  

Proof. The characteristic equation of matrix ( )*J E  is  

( ) ( )* *
2 0

E E
tr J det Jλ λ− + = , and the conditions for the Hopf bifurcation oc-
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curs are stated below 

1) ( )* 0
Hph h

Tr J E
=

  =  , 

2) ( )* 0
Hph h

Det J E
=

  >  , 

3) ( )*d 0
d

Hph h

Tr J E
h =

  ≠  . 

The conditions (1) and (2) have already been certified from Theorem 5, we 
merely need to verify the transversality condition (3). Obviously,  

( )
( ) ( )

*
* *

2 2* *

d 1 d 0.
d d1Hp

Hp

h h
h h

f yTr J E x
h hc x fy=

=

 
   = + ≠   + +  

 

Consequently, condition (3) is satisfied, which guarantees the occurrence of 
Hopf bifurcation around *E  at Hph h= . 

Furthermore, in order to investigate the stability (direction) of the limit cycle, 
we are going to calculate the first Lyapunov number σ  at the equilibrium *E  
of model (3). 

We firstly translate *E  to the origin by using the transformation *X x x= − , 
*Y y y= − , then model (3) can reduce to  

 ( )

2 2 3
10 01 20 11 02 30

2 2 3
21 12 03 4

10 11

d
d

, ,
d ,
d

X a X a Y a X a XY a Y a X
t

a X Y a XY a Y P X Y
Y b X b XY
t

 = + + + + +
 + + + +

 = +


       (13) 

where  

( )
( )

* *
01 2*

1 1 ,
1

fa x x m
fy

 
 = − − + −
 +  

 

( ) ( )
*

20 2 * 3* *

1 ,
1

h hxa
fyc x c x

= − −
++ +

 

( )
( )

( )
( )

( )

* * **

11 022 2 3* * *

1 1
1, ,

1 1 1

f x fx xfxa m a
fy fy fy

− −
= − + − =

+ + +
 

( ) ( )30 214 2* *

2, ,
1

hc fa a
c x fy

= − =
+ +

 

( )
( )

( )
( )

* * *

12 033 4* *

2 1 2 1
, ,

1 1

f x fx x
a a

fy fy

− −
= =

+ +
 

( ) ( )*
10 111 , 1 ,b e m y b e m= − = −  

10 01 20 02 30 21 12 03 0,a b b b b b b b= = = = = = = =  
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and ( )4 ,P X Y  is power series in ( ),X Y  with term i jX Y  satisfying 4i y+ ≥ . 
Let 1 10 01 01 10a b a b∆ = − . Then the expression of the first Lyapunov number σ  
can be expressed as follows:  

( ) ( ){

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023

2
01

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 10 10 11 02 11 20

2
10 01 10 10 03 01 30 10 2

3

2

2 2 2

2 2

3 2

a b a a b a b a a b a b a b
a

b a a a b a b b a a a a a b b

a a b b b a b a b b a a

a a b b b a a a a

σ − Π = + + + + +
∆

+ + − − − −

− + + − − 

− + − + ( ) ( ) }1 12 10 12 01 21b b a a b + + − 

 

In fact, if 0σ > , the equilibrium *E  loses its stability through a Hopf bifurca-
tion; if 0σ < , *E  will obtain stability. Since the expression of σ  is quiet 
complicated, we cannot differentiate the sign of σ . Thus, we have presented 
numerical example in Section 5.                                      □ 

4. The Effects of the Fear Factor and the Prey Refuge 

In this section, we will explore the influence of fear factor (measured by f) and 
prey refuge (measured by m) on population density of model (3). 

4.1. The Impact of the Fear on Population Density 

Using the expression of *x  in Equation (6), we note that the density of prey at 
coexistence equilibrium is independent of f, so the fear effect cannot affect the 
prey density. However, we find that the prey growth rate is greatly influenced by 
the fear effect. On the other hand, differentiation of *y  gives  

( ) ( )*

22

2d 1 0,
d 24

a hf h a Hy
f fa f

+ − + ∆
= + <

∆
 

and 
*dlim 0

df

y
f→∞
= , which indicates that *y  is strictly decreasing function with 

respect to f, i.e., increasing the level of f can decrease the final size of predator. 

4.2. The Impact of the Prey Refuge on Population Density 

We firstly denote that  

( )
( )

*
1

1 1
2

d c
m

h c e

− + ∆
= − <

−
 

is the unique solution of the equation * 0y =  in ( )0,1m∈ . 
Using the expression in Equation (6) again, we can compute the derivative of 

*x  with respect to m is  

( )

*

2

d 0,
d 1

x d
m e m

= >
−  

 

which implies that *x  is a strictly increasing function of ( )*0,m m∈ . That is, 
increasing the value of the prey refuge can rise the prey density. 
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Similarly, by simple computation, we can obtain  

( )*

2

d ,
d 2

g my
m a f

=  

where  

( ) ( ) ( ) ( )
2

.m m m
m m

a hf a f Ha aH
g m a a a a hf

′ ′ ′ + − +  ′ ′= − + − − + + ∆   ∆ 
 

If the equation ( ) 0g m =  has a suitable solution ( )* 0,1m ∈ , then it is the  

unique extreme point of *y  in ( )0,1 . Thus, 
*d 0

d
y
m

>  for all ( )*0,m m∈ , i.e., 

strictly increasing; 
*d 0

d
y
m

<  for all ( )*
* ,m m m∈ , i.e., strictly decreasing, and 

*y  reach its maximum at *m m= . 

5. Simulation Analysis 

As we all know, the relationship between prey and predator in the natural envi-
ronment is mutual restriction and influence. To better comprehend the dynamic 
relationship between prey and predator, we will perform numerical simulations 
to exhibit some complex dynamic behaviors of model (3). For convenience, we 
fix the parameters value as follows:  

 0.2, 0.3, 0.6, 0.1, 0.2f c e d m= = = = =                (14) 

In order to demonstrate how the nonlinear Michaelis-Menten type prey har-
vesting affect the bifurcation dynamics of model (3), we have constructed a bi-
furcation diagram of model (3) in h-x plane by directly continuing the threshold 
values of 0.2100328877Hph = , 0.3TCh =  and 0.4225SNh =  with parameters 
fixed as in (14) (seeing Figure 1(a)), which corresponds to Hopf bifurcation, 
transcritical bifurcation and saddle-node bifurcation, respectively. Meanwhile, 
Figure 1(b) is local amplification of (a) for [ ]0.2,0.22h∈ . Evidently, we note 
that model (3) can reveal abundant bifurcation dynamics with the value of key 
parameter h changing in Figure 1(a). Firstly, the interior equilibrium point 

( )* * *,E x y=  is stable when 0.2 0.2100328877Hph h= < = , and the interior 
equilibrium point ( )* * *,E x y=  can change from stable to unstable when the 
value of h increases and passes through the critical value Hph  with the first 
Lyapunov number 35.44023532 0σ = − < , which implies that supercritical 
Hopf bifurcation has taken place in model (3). The simulation result has been 
proved by the phase diagram in Figure 2. Furthermore, it is easy to find that 
when 0.2h =  is smaller than 0.2100328877Hph = , the interior equilibrium 
point ( )* 0.20833,0.37889E =  is locally asymptotically stable, which suggests 
that the prey and the predator can coexist and form the stable equilibrium state. 
However, We note that when Hph h> , the interior equilibrium point 

( )* 0.20833,0.37889E =  will lose its stability, a stable limit cycle will be gener-
ated, and the periodic orbit is surrounded by a trajectory passer through the  
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Figure 1. (a) Three vertical dot-dashed lines from left to right represent the critical value of transcritical, Hopf and saddle-node 
bifurcation, respectively. Two horizontal lines stand for the origin 0E  (purple) and the interior equilibrium *E  (blue). Two 
boundary equilibria 1E  and 2E  are presented by black and red curve, respectively. The dotted line indicates unstable and the 

solid line implies stable. (b) Local amplification of (a) for [ ]0.2,0.22h∈ . 

 

 
Figure 2. Hopf bifurcation of model (3) around ( )* 0.20834,0.28788E = . (a) Stable periodic orbits bifurcate 

from Hopf bifurcation around *E  when 0.2100328877Hph h= = . (b) Local amplification of (a) for 

( ) [ ] [ ], 0.16,0.26 0.25,0.32x y ∈ × . (c) ( )* * *,E x y=  is local asymptotically stable with 0.2 Hph h= < . (d) 

( )* * *,E x y=  is a spiral source with 0.22 Hph h= > . 

 
saddle ( )2 2 ,0E x= , which suggests that the prey and the predator can coexist 
and produce periodic oscillation. Secondly, we can see that when the value of 
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0.25h =  is less than 0.3TCh = , the origin ( )0 0,0E =  is a saddle. In the mean-
time, the interior equilibrium point ( )* * *,E x y=  is a spiral source and the boun-
dary equilibrium point 2E  is unstable. However, when the value of h acrosses the 
threshold 0.3TCh h= = , the trivial equilibrium point 0E  becomes a nodal sink 
and model (3) will generate the boundary equilibrium point ( )1 1,0E x= , which 
is a saddle point. At the same time, it is worth noting that 1E  is unstable when-
ever it exists, and the boundary equilibrium point 2E  is also a saddle point. 
This implies that model (3) has occurred a transcritical bifurcation. The simula-
tion result can be exhibited in Figure 3. Finally, if it continues to rise the critical 
thresholds h, we firstly see that the interior equilibrium point *E  will vanish. 
Then the two boundary equilibria 1E  and 2E  will gradually be close to each 
other, and becomes an unique boundary equilibrium point ( ),0SN SNE x=  until 
the annihilation, which is owing to the occurrence of saddle-node bifurcation of 
model (3) at 0.4225SNh h= = . The simulation conclusion can be demonstrated 
by Figure 4. Moreover, it can find from Figure 4 that when 0.4h =  is less than 

0.4225SNh = , model (3) has two non-trivial boundary equilibria 1E  and 2E , 
in which 1E  is a nodal source and 2E  is a saddle. However, with the 
 

 
Figure 3. (a) The trivial equilibrium 0E  and a boundary equilibrium 2E  when TCh h< ; (b) The vector field graph for 

0.3TCh h= =  with the origin 0E  collide with 1E ; (c) The boundary equilibrium 1E  separate from the origin 0E  when 

TCh h> , which is a saddle. 

 

 
Figure 4. (a) Two boundary equilibria exist, respectively, and 1E  is a nodal source and 2E  is a saddle, and a trivial equilibrium 

0E  which is a nodal sink when SNh h< ; (b) Due to the two boundary equilibria 1E  and 2E  coincide, we get a unique boundary 
equilibrium SNE , which is a saddle-node when SNh h= ; (c) The two boundary equilibria disappear and only the origin 0E  when 

SNh h> . 
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Figure 5. (a) Relationship between the fear and prey growth rate; (b) Relationship between the fear and the final size of the predator. 
 

 
Figure 6. Relationship between population density with prey refuge: (a) prey and (b) predator. 

 
increase of the thresholds h, there only the trivial equilibrium point 0E  when 

0.45SNh h= = , which is a nodal sink. 
In addition, in order to deeply investigate their impact mechanism of fear 

factor (measured by f), we have given the diagram of model (3) in Figure 5. In 
contrast to the model without fear factor, the increment of f will decrease the 
prey growth rate (seeing Figure 5(a)) and lessen the maximum of final size of 
predator density (seeing Figure 5(b)). Besides, the diagram of model (3) in Fig-
ure 6 manifests that the population density will change due to the variation of 
prey refuge (measure by m). Moreover, Figure 6(a) shows that the prey density 
will rise as the value of m increases, which implies that the increase of prey re-
fuge can protect more prey from predation, Figure 6(b) exhibits that with the 
increase of m value, the predator density increases first, reaches the maximum 
value, and then decreases. 

6. Conclusion 

In this paper, we have studied the dynamics of a predator-prey model with non-
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linear Michaelis-Menten type prey harvesting. The main focus of this article is to 
explore the impact of a Michaelis-Menten type prey harvesting mathematically 
and numerically. Using an appropriate conversion, the original Michaelis-Menten 
type prey harvesting term becomes a nonlinear harvesting term with only two 
parameters. Based on relevant mathematical theory, we reveal that nonlinear 
prey harvesting term plays an important role in influencing the dynamics of 
model (3). Note that, the parameters h and c in nonlinear harvesting term can 
affect the number and stability of boundary equilibria, which can become a sad-
dle point, stable node, unstable node or saddle node for different parameter val-
ues. This implies that some possible bifurcation dynamic behaviors will occur, 
such as saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation. 
At the same time, comprehensive numerical simulation works have been carried 
out, which also, in turn, demonstrate the validity of these theoretical results. 
Moreover, we also discuss the influence of fear factor and prey refuge on the 
population density, it is easy to obtain that the fear factor can not only reduce 
the predator density but also affect the prey growth rate, while the prey refuge 
can affect both prey and predator population density. We hope this type of in-
vestigations will be of great help in comprehending the dynamic complexity of 
ecological system or physical systems in the future when the nonlinear Michae-
lis-Menten type prey harvesting can interact with prey populations. 
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