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Abstract 
In this paper, the new mapping approach and the new extended auxiliary eq-
uation approach were used to investigate the exact traveling wave solutions of 
(2 + 1)-dimensional time-fractional Zoomeron equation with the conforma-
ble fractional derivative. As a result, the singular soliton solutions, kink and 
anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic 
function solutions and hyperbolic function solutions of (2 + 1)-dimensional 
time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D 
graphs of some solutions were drawn by setting the suitable values of para-
meters with Maple, and analyze the dynamic behaviors of the solutions. 
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1. Introduction 

Fractional partial differential equations (FPDEs) have a wide of applications in 
different fields, such as biology, physics, signal processing, fluid mechanics, and 
electromagnetic, and so on. In recent decades, many effective methods have been 
presented to obtain the exact traveling wave solutions of FPDEs, for example, 
( )G G′  expansion method [1] [2] [3], ( )1 G′  expansion method [4] [5] [6] 
[7], the ( )( )exp ξ−Φ  function method [8] [9], the F-expansion method [10] 
[11], sine-cosine method [12] [13] and others [14] [15] [16]. There are many 
important definitions of fractional derivative, such as Riemann-Liouville, Capu-
to, Atangana’ s-conformable and the conformable fractional derivative, etc. [17] 
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[18] [19] [20] [21]. 
In this paper, we use the complex traveling wave transformation to deduce (2 

+ 1)-dimensional conformable time-fractional Zoomeron equation into ordinary 
differential equation. Furthermore, inspired by the reference [22], we introduce 
the new mapping approach and the new extended auxiliary equation approach 
[23] [24] [25] to investigate the exact solutions of (2 + 1)-dimensional time- 
fractional Zoomeron equation [20]:  

 
2 2

2
2 2 2 0,0 1.xy xy

x

u uu u u u
u ut x t

α α

α α α
   ∂ ∂ ∂  − + = < ≤     ∂ ∂ ∂   

           (1) 

when 1α = , Equation (1) reduces to the (2 + 1)-dimensional Zoomeron equa-
tion [26]. Aksoy E. [27] obtained two types of exact analytical solutions includ-
ing hyperbolic function solutions and trigonometric function solutions by using 
sub-equation and generalized Kudryashov methods in Equation (1). Hosseini K. 
[28] obtained several new wave form solutions of Equation (1) such as kink, 
singular kink, and periodic wave solutions using ( )( )exp ε−Φ  expansion ap-
proach and modified Kudryashov method. Akbulut A. [20] obtained analytical 
solutions of Equation (1) with auxiliary equation method. Based on the study of 
Akbulut A., Topsakal M. [21] obtained new exact solutions of Equation (1) by 
using the auxiliary equation method. These methods are effective in investiga-
tion of the solutions of Equation (1), the aim of this investigation is to establish 
more general solutions and some new solutions using the two methods men-
tioned above. 

The organization of this paper is as follows: In Section 2, we introduce the 
conformable fractional derivative. In Section 3, we introduce the new mapping 
approach and the new extended auxiliary equation approach to investigate the 
solutions of (2 + 1)-dimensional time-fractional Zoomeron equation, and ana-
lyze the dynamic behaviors of the solutions in Section 4. Finally, we give some 
conclusions in Section 5.  

2. The Conformable Fractional Derivative 

In this section, we introduce the conformable fractional derivative [20] [21]. 
Definition 2.1. [20] Suppose a function [ ): 0,f R∞ → . Then, the conforma-

ble fractional derivative of f of order α , which is defined by  

 ( )( )
( ) ( )1

0
T lim

f t t f t
f t

α

α ε

ε

ε

−

→

+ −
=                (2) 

for all 0,0 1t α> < ≤ . 
Properties. [20] [21] Let ( )0,1α ∈  and ,f g  be α -differentiable at a point 

0t > , then some properties of the conformable fractional derivative are by fol-
lows: 

1) Linearity: ( ) ( ) ( )T T Taf bg a f b gα α α+ = + , for all ,a b R∈ . 
2) Leibniz rule: ( ) ( ) ( )T T Tfg f g g fα α α= + . 
3) ( )T p pt pt α

α
−= , for all p R∈ . 
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4) ( )T 0α λ = , for all constant functions ( )f t λ= . 

5) ( ) ( ) ( )
2

T T
T

g f f g
f g

g
α α

α

−
= .  

6) Additionally, if f is differentiable, then 

( )( ) ( )1 dT
d
ff t t t
t

α
α

−= . 

Theorem 2.1 (Chain rule). [20] [21] Assume function [ ), : 0,f g R∞ →  be 
α -differentiable, then the following rule is obtained 

( )( ) ( ) ( )( )1T f g t t g t f g tα
α

− ′=�                  (3) 

where 0 1α< ≤ . 
Definition 2.2 (Conformable fractional integral). [21] Let 0 1α< ≤  and 

0 a b≤ < . A function [ ]: ,f a b R→  is α -ractional integrable on [ ],a b  if the 
integral 

( ) ( ) ( ) 1d d
b b

a a
I f x f x x f x x xα α

α
−= =∫ ∫              (4) 

exist and is finite.  
Theorem 2.2. [29] Let [ ],f C a b∈  and 0 1α< ≤ . Then 

( ) ( )d .
d

I f x f x
x

α
α

α =                      (5) 

3. Description of the Methods 

Suppose that a nonlinear fractional differential equation with the conformable 
time-fractional derivative:  

 
2 2

2 2, , , , , 0u u u uH u
xt t x

α α

α α

 ∂ ∂ ∂ ∂
= ∂∂ ∂ ∂ 

�                (6) 

where H is a polynomial of ( ),u x t  and its partial conformable derivatives in-
cluding the highest order derivative and the nonlinear term. 

We use the complex traveling wave transformation  

 ( ) ( ), , , tu x y t u kx hy l
α

ξ ξ
α

= = + −               (7) 

where , ,k h l  are non-zero arbitrary constants. Equation (1) converts into a 
nonlinear ordinary differential equation:  

 ( ), , , 0P u u u′ ′′ =�                      (8) 

where P is a polynomial of ( ),u x t  and its partial derivatives, d
d

'
ξ

= . 

3.1. The New Mapping Approach 

We suppose the solution of Equation (8) as follow: 

( ) ( )
2

0

N
i

i
i

u aξ ϕ ξ
=

= ∑                     (9) 
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where ( )0,1, , 2ia i N= �  are constants, the positive integer N can be deter-
mined by balancing the highest order derivative and the nonlinear term in Equa-
tion (8). ( )ϕ ξ  satisfies the following equation:  

( ) ( )2 2 4 61 1
2 3

r p q sϕ ξ ϕ ϕ ϕ′ = + + +                  (10) 

where , ,r p q  and s are arbitrary constants, the solutions of Equation (10) given 
by reference [23] with 0s ≠ . 

3.2. The New Extended Auxiliary Equation Approach 

We suppose the solution of Equation (8) as follow:  

 ( ) ( )
2

0

N
i

i
i

u a Fξ ξ
=

= ∑                         (11) 

where ( )0,1, , 2ia i N= �  are constants and the positive integer N can be de-
termined by balancing the highest order derivative and the nonlinear term in 
Equation (8). ( )F ξ  satisfies the following equation:  

 ( ) ( ) ( ) ( ) ( )2 2 4 6
0 2 4 6F c c F c F c Fξ ξ ξ ξ′ = + + +            (12) 

where ( )0,2,4,6jc j =  are constants and 6 0c ≠ . Equation (12) has the fol-
lowing solutions:  

 ( ) ( )( )
1
2

4

6

1 1
2 i

cF f
c

ξ ξ
 −

= ± 
 

                  (13) 

where the function ( )( )1,2, ,12if iξ = �  is the Jacobi elliptic function ( )sn ξ , 
( )cn ξ , ( )dn ξ , while 0 1m< <  is the modulus of the Jacobi elliptic functions. 

When 1m →  or 0m → , the Jacobi elliptic function solutions degenerate to 
hyperbolic functions and trigonometric functions [24] [25].  

4. Applications  

We substitute Equation (7) into Equation (1), which deduce the nonlinear ordi-
nary differential equation:  

 ( )2 3 22 0u ukhl k h kl u
u u

′′ ′′′′ ′′    ′′− − =   
   

             (14) 

We integrate Equation (14) twice, then we have  

 ( )2 2 32 0kh l u klu uκ β′′− − − =                  (15) 

where the prime denotes the derivative with respect to ξ , the second constant 
of integration is zero. Balancing the highest order derivative term u′′  and the 
highest order nonlinear term 3u , we get 2 3N N+ = , hence 1N = . 

4.1. Application of the New Mapping Approach 

We assume that the solution of Equation (9) as follow:  

https://doi.org/10.4236/jamp.2022.102026


Z. Y. Zeng et al. 
 

 

DOI: 10.4236/jamp.2022.102026 337 Journal of Applied Mathematics and Physics 
 

 ( ) ( ) ( )2
0 1 2u a a aξ ϕ ξ ϕ ξ= + +                    (16) 

where 0 1 2, ,a a a  are constants. 
Substituting Equation (16) and its derivatives and Equation (10) into Equation 

(15), yields a system of equations of ( )iϕ ξ , then setting the coefficients of 
( )( )0,1,2,i iϕ ξ = �  to zero, we can deduce the following set of algebraic poly-

nomials with the respect 0 1 2, ,a a a :  

 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 2 2 3
2 0 0

1 2 2 2
1 0 1 1

2 2 2 2
2 0 1 0 2 2

3 2 2 2
1 1 1 0 2

: 2 2 0

: 6 0

: 4 6 0

: 2 6 0

rkh l k a kla a

pkh l k a kla a a

pkh l k a kla a a a a

qkh l k a kla a a a

ϕ ξ β

ϕ ξ β

ϕ ξ β

ϕ ξ

− − − =

− − − =

− − + − =

− − + =

 

( ) ( ) ( )
( ) ( )
( ) ( )

4 2 2 2
2 2 1 0 2

5 2 2 2
1 1 2

6 2 2 3
2 2

: 3 6 0

: 6 0

8: 2 0
3

qkh l a kla a a a

skh l a kla a

skh l a kla

ϕ ξ κ

ϕ ξ κ

ϕ ξ κ

− − + =

− − =

− − =

             (17) 

Solving the above algebraic equations, we obtain the following two results: 

Type 1. Substituting 
23 , 0

16
qs r

p
= =  into Equation (17), we have  

( )
( )

2 2

0 1 2 2 2
, 0, , ,

2 2 2

qkh l k
a a a p q q

kl kl kh l k
β β β

β

−
= ± − = = ± − = − =

−
 (18) 

Substituting Equation (18) and the solutions in reference [23] into Equation (16), 
we get  

 ( ) ( )1 2 2
2 tanh

2 2
u

kl kh l k
β βξ ε ξ

  
  = ± − + −
  −  

           (19) 

( ) ( )2 2 2
2 coth

2 2
u

kl kh l k
β βξ ε ξ

  
  = ± − + −
  −  

           (20) 

where 1, 0, 0, 0h kε β= ± > > < . 
Type 2. Substituting 0r =  into Equation (17), we have  

 
( )

( )
( )2 2 2 2 22

0
0 0 1 2 22 2

0 0

3
, 0, , , ,

2 16

qh l k q h l kla
a a a a p q q s

la lah l k

− −
= = = = = =

−
 (21) 

Substituting Equation (21) and the solutions in reference [23] into Equation (16), 
we have  

 ( )
( )

( )

2
2 0

2 2

3 0 2
2
0

2 2

sech

1
11 1 tanh
4

la
h l k

u a
la

h l k

ξ

ξ

ε ξ

  
  
  −  = −    − +  −   

           (22) 
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( )
( )

( )

2
2 0

2 2

4 0 2
2
0

2 2

csch

1
11 1 coth
4

la
h l k

u a
la

h l k

ξ

ξ

ε ξ

  
  
  −  = +    − +  −   

           (23) 

 ( )
( )

( )

2
2 0

2 2

5 0 2
0

2 2

sech

1

1 tanh

la
h l k

u a
la

h l k

ξ

ξ

ε ξ

  
  
  −  = −
 
 +

− 
 

                  (24) 

( )
( )

( )

2
2 0

2 2

6 0 2
0

2 2

csch

1

1 coth

la
h l k

u a
la

h l k

ξ

ξ

ε ξ

  
  
  −  = +
 
 +

− 
 

                  (25) 

where 1, 0, 0, tl h kx hy l
α

ε ξ
α

= ± > > = + − . 

4.2. Application of the New Extended Auxiliary Equation Approach  

We assume the solution of Equation (11) as follow:  

 ( ) ( ) ( )2
0 1 2u a a F a Fξ ξ ξ= + +                   (26) 

where 0 1 2, ,a a a  are constants. 
Substituting Equation (26) and its derivatives and Equation (12) into Equation 

(15), yields a system of equations of ( )iF ξ , then setting the coefficients of 
( )( )0,1,2,iF iξ = �  to zero, we can deduce the following set of algebraic poly-

nomials with the respect 0 1 2, ,a a a :  

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 2 2 3
0 2 0 0

1 2 2 2
2 1 0 1 1

2 2 2 2
2 2 0 1 0 2 2

3 2 2 2
4 1 1 1 0 2

: 2 2 0

: 6 0

: 4 6 0

: 2 2 6 0

F c kh l k a kla a

F c kh l k a kla a a

F c kh l k a kla a a a a

F c kh l k a kla a a a

ξ β

ξ β

ξ β

ξ

− − − =

− − − =

− − + − =

− − + =

 

( ) ( ) ( )
( ) ( )
( ) ( )

4 2 2 2
4 2 2 1 0 2

5 2 2 2
6 1 1 2

6 2 2 3
6 2 2

: 6 6 0

: 3 6 0

: 8 2 0

F c kh l k a kla a a a

F c kh l k a kla a

F c kh l k a kla

ξ

ξ

ξ

− − + =

− − =

− − =

             (27) 

Solving the above algebraic equations, we obtain the following results:  

 

( ) ( ) ( ) ( )

0 0 1 2 2
3 2 2
0 0 0 0 2 2

0 2 4 62 2 2 2 2 2 2 2
2

, 0,

2 6
, , ,

2 4 4

a a a a a

kla a kla la a lac c c c
kh l k a kh l k h l k h l k

β β

= = =

+ +
= = = =

− − − −
 (28) 
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Substituting Equation (28) into (13), we have  

 ( ) ( )( )
1
2

0

2

41 1
2 i

a
F f

a
ξ ξ

 
= − ± 

 
                   (29) 

Substituting Equation (28) and (29) into (26), we get the solution  

 ( ) ( )0 iu a fξ ξ= ∓                        (30) 

where ( )( )1,2, ,12if iξ = �  given by reference [24]. Insetting them into Equa-
tion (30), we obtain the following Jacobi elliptic function solutions of Equation 
(1): 

1) If 
( ) ( )3 2 2 2

4 4
0 2 62 2 2

6 6

1 5 1
, , 0

32 16

c m c m
c c c

c m c m

− −
= = > , then  

 ( ) ( )
2
0

1 0 2 2 2
,

la
u a sn m

m h l k
ξ ξ

 
 =
 − 

∓               (31) 

( )

( )

0
2

2
0

2 2 2
,

a
u

lamsn m
m h l k

ξ

ξ

=
 
 
 − 

∓
               (32) 

where 
( )
2

2 2
0 1
m tkx hy

ka m

αβξ
α

= + +
+

. 

If 1m → , then ( ) ( )tanhsn ξ ξ→ , we get the hyperbolic function solutions:  

 ( ) ( )
2
0

1 0 2 2
tanh

la
u a

h l k
ξ ξ

 
 ′ =
 − 

∓                (33) 

( ) ( )
2
0

2 0 2 2
coth

la
u a

h l k
ξ ξ

 
 ′ =
 − 

∓                (34) 

where 2
02

tkx hy
ka

αβξ
α

= + + . 

2) If 
( ) ( )3 2 2 2

4 4
0 2 62

66

1 5
, , 0

1632

c m c m
c c c

cc

− −
= = > , then  

 ( ) ( )
2
0

3 0 2 2
,

la
u a msn m

h l k
ξ ξ

 
 =
 − 

∓                 (35) 

( )

( )

0
4

2
0

2 2
,

a
u

lasn m
h l k

ξ

ξ

=
 
 
 − 

∓
                  (36) 

where sn  is elliptic sine, 
( )2 2

0 1
tkx hy

ka m

αβξ
α

= + +
+

. 

If 1m → , then we get the same solutions with Equation (33)-(34). 
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If 0m → , then ( ) ( )sinsn ξ ξ→ , we get the periodic function solution:  

 ( ) ( )
2
0

4 0 2 2
csc

la
u a

h l k
ξ ξ

 
 ′ =
 − 

∓                 (37) 

where 2
0

tkx hy
a

αβξ
ακ

= + + . 

3) If 
( )2 23

44
0 2 62 2 2

6 6

4 1
, , 0

32 16

c mcc c c
c m c m

+
= = < , then  

 ( ) ( )
2
0

5 0 2 2 2
,

la
u a cn m

m h l k
ξ ξ

 − =
 − 

∓               (38) 

( )
( )

( )

2
2 0

0 2 2 2

6
2
0

2 2 2

1 ,

,

laa m sn m
m h l k

u
ladn m

m h l k

ξ

ξ

ξ

 − −
 − =

 − 
 − 

∓

           (39) 

where 
( )
2

2 2
0 1 2
m tkx hy

ka m

αβξ
α

= + −
−

. 

If 1m → , then ( ) ( )sechcn ξ ξ→ , we get the hyperbolic function solution:  

 ( ) ( )
2
0

5 0 2 2
sech

la
u a

h l k
ξ ξ

 − ′ =
 − 

∓                (40) 

where 2
0

tkx hy
ka

αβξ
α

= + + . 

4) If 
( )

( )
( )

2 23 2
44

0 2 62 2 2
6 6

5 4
, , 0

32 1 16 1

c mc mc c c
c m c m

−
= = <

− −
, then  

 ( )
( )( )

2
0

0 2 2 2

7 2

,
1

1

laa dn m
h l k m

u
m

ξ

ξ

 − 
 − − =

−

∓

           (41) 

( )

( )( )

0
8

2
0

2 2 2
,

1

a
u

ladn m
h l k m

ξ

ξ

=
 − 
 − − 

∓
              (42) 

where 
( )

( )
2

2 2
0

1

2

m t
kx hy

ka m

αβ
ξ

α

−
= + −

−
. 

If 0m → , then ( ) 1dn ξ → , we get the solutions:  

 ( ) ( )7 8 0u u aξ ξ′ ′= = ∓                       (43) 

where 2
02

tkx hy
ka

αβξ
α

= + + . 
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5) If 
( )

( )
( )

2 23
44

0 2 62 2 2
6 6

4 5
, , 0

32 1 16 1

c mcc c c
c m c m

−
= = >

− −
, then  

 ( )

( )( )

0
9

2
0

2 2 2
,

1

a
u

lacn m
h l k m

ξ

ξ

=
 
 
 − − 

∓
               (44) 

( )
( )( )

( )( )

2
0

0 2 2 2

10
2

2 0
2 2 2

,
1

1 ,
1

laa dn m
h l k m

u
lam sn m

h l k m

ξ

ξ

ξ

 
 
 − − =
 
 −
 − − 

∓

            (45) 

where 
( )

( )
2

2 2
0

1

1 2

m t
kx hy

ka m

αβ
ξ

α

−
= + −

−
. 

If 0m → , then ( ) ( )coscn ξ ξ→ , ( ) ( )sinsn ξ ξ→ , ( ) 1dn ξ → , we get the 
periodic function solutions:  

 ( ) ( )
2
0

9 0 2 2
sec

la
u a

h l k
ξ

 
 ′ =
 − 

∓                  (46) 

( ) ( )
2
0

10 0 2 2
csc

la
u a

h l k
ξ

 
 ′ =
 − 

∓                 (47) 

where 2
0

tkx hy
ka

αβξ
α

= + + . 

6) If 
( )2 23 2

44
0 2 62

66

4
, , 0

1632

c mc mc c c
cc

+
= = < , then 

( ) ( )
2
0

11 0 2 2
,

la
u a dn m

h l k
ξ ξ

 − =
 − 

∓                (48) 

( )

( )

2
0

12
2
0

2 2

1

,

a m
u

ladn m
h l k

ξ

ξ

−
=

 − 
 − 

∓
                (49) 

where 
( )2 2

0 2
tkx hy

ka m

αβξ
α

= + +
−

. 

If 0m → , then ( ) 1dn ξ → , we have the same solutions with Equation (43). 
If 1m → , then ( ) ( )sechdn ξ ξ→ , we get the hyperbolic function solutions:  

 ( ) ( )
2
0

11 0 2 2
sech

la
u a

h l k
ξ ξ

 − ′ =
 − 

∓               (50) 

where 2
0

tkx hy
ka

αβξ
α

= + + . 
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4.3. Dynamical Behaviors 

In this section, we analyze the dynamic behaviors of the solutions in (2 + 
1)-dimensional time-fractional Zoomeron equation. 

Figure 1 and Figure 2 are the 3D and 2D graphs of the solutions (19) and (20), 
(22) and (23), where the solutions are kink and anti-kink soliton solutions with-
in the interval 10 , 10x y− ≤ ≤  with the values of parameters  

0 1a t h q yε= = = = = = , 8β = , 1
2

α = , 2l = , 1k = − . And we only give 

graphs of the solutions with the parameter 0 1a t h q yε= = = = = = , 8β = , 
1
2

α = , 2l = , 1k = − . 

Figure 3 is the 3D and 2D graphs of the solution (31), where the solution is 
Jacobi elliptic function solution within the interval 5 , 5x y− ≤ ≤  with the values  

of parameters 0 1a t h y= = = = , 1
2

mα = = , 2l = , 1k = − , 8β = . While 2D 

graph of the solution (31) is in the interval 10 10x− ≤ ≤ . 
 

 
(a)                                  (b) 

 
(c)                                  (d) 

Figure 1. (a), (b) are the 3D and 2D graphs of the solutions (19); (c), (d) are the 3D and 

2D graphs of the solutions (20) with the values of parameters 
1
2

α = , 2l = , 1k = − , 

1t h q yε= = = = = , 8β = . (a) 3D graph; (b) 2D graph; (c) 3D graph; (d) 2D graph. 
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Figure 4 is the 3D and 2D graphs of the solutions (46) and (47), where the 
solutions are the periodic function solutions within the interval 5 , 5x y− ≤ ≤   

with the values of parameters 0 1a t h y= = = = , 1
2

α = , 2l = , 1k = − , 8β = . 

While 2D graphs of the solutions (46) and (47) are in the interval 10 10x− ≤ ≤ . 
 

 
Figure 2. (a), (b) are the 3D and 2D graphs of the solutions (22); (c), (d) are the 3D and 

2D graphs of the solutions (23) with the values of parameters 
1
2

α = , 2l = , 1k = − , 

0 1a t h q yε= = = = = = , 8β = . (a) 3D graph; (b) 2D graph; (c) 3D graph; (d) 2D graph. 

 

 
Figure 3. The 3D and 2D graphs of the solution (31) with the values of parameters 

1
2

mα = = , 2l = , 1k = − , 0 1a t h y= = = = , 8β = . (a) 3D graph; (b) 2D graph. 
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Figure 4. (a), (b) are the 3D and 2D graphs of the solutions (46); (c), (d) are the 3D and 

2D graphs of the solutions (47) with the values of parameters 
1
2

α = , 2l = , 1k = − , 

0 1a t h y= = = = , 8β = . (a) 3D graph; (b) 2D graph; (c) 3D graph; (d) 2D graph. 

5. Conclusion 

In conclusion, (2 + 1)-dimensional time-fractional Zoomeron equation has been 
investigated by the new mapping approach and the new extended auxiliary equ-
ation approach. Singular soliton solutions, kink and anti-kink soliton solutions, 
periodic function soliton solutions, Jacobi elliptic function solutions and hyper-
bolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equa-
tion have been obtained, where Jacobi elliptic function solutions are new solu-
tions. When 1m →  or 0m → , the Jacobi elliptic function solutions degene-
rate into the hyperbolic function solutions and the periodic function solutions. 
Consequently, it is obvious that the application of these two methods is effective 
to the time-fractional equations.  
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