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Abstract

Characterizing regular covers of symmetric graphs is one of the fundamental
topics in the field of algebraic graph theory, and is often a key step for ap-
proaching general symmetric graphs. Complete graphs, which are typical
symmetric graphs, naturally appear in the study of many symmetric graphs as
normal quotient graphs. In this paper, a characterization of edge-transitive
cyclic covers of complete graphs with prime power order is given by using the
techniques of finite group theory and the related properties of coset graphs.
Certain previous results are generalized and some new families of examples
are founded.
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1. Introduction

Throughout the paper, by a graph, we mean a connected, undirected and simple
graph with a valency of at least three.

For a graph T, denote its vertex set, edge set and arc set by VI', ET" and
AT respectively. Then, for an automorphism group X <Autl', T is called
X-vertex-transitive, X-edge-transitive or X-arc-transitive, if X is transitive on
VI, ET or AL, respectively; I' is called X-locally-primitive if the vertex
stabilizer X, :={X€ X|a* =a} acts primitively on the neighbor set I'(a)
foreach @ eVI;and I iscalled (X,2) -arc-transitiveif Xis transitive on the
set of 2-arcs (that is, the sequences of three distinct adjacent vertices) of I'. It is
known that a locally-primitive graph is edge-transitive, and a 2-arc-transitive
graph is locally-primitive.

Let ' and ¥ be two graphs. Then I' is called a cover (or covering) of X
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with a projection p,if p isa surjection from VI to VX such that the re-
striction p|r(d) :T'(@)—>Z(a) is a bijection for each @ €VI and preimage
aeVD of a under p.Further, T is called a K-cover (or regular K-cover)
if there is a semiregular subgroup K < Autl" such that X isisomorphic to the
quotient graph T’ , say by ¢, and the quotient map I' > I', is the composi-
tion p¢ . For each vertex a €VZX, the set of all preimages of @ under p is
called a fibre. An automorphism of I' is called fibre-preserving if it maps each
fibre to a fibre. The group, consisting of all fibre-preserving automorphisms of
I', is called the fibre-preserving group. Then the fibre set forms an invariant
partition of the fibre-preserving group on VI', and the fibre-preserving group
has a natural induced action on the fibre set. The kernel of this action is called
the covering transformation group.

A typical method for studying transitive graphs is taking normal quotient
graphs. It is well known that each edge-transitive graph is a cover or multi-cover
of a “basic” graph: a vertex quasiprimitive or vertex biquasiprimitive graph, and
in particular, each vertex-transitive locally-primitive graph is a cover of a basic
graph (see [1]). This suggests a two-step strategy for characterizing transitive
graphs: step 1 is to obtain basic graphs, and step 2 is to find covers of the ob-
tained basic graphs.

Therefore, characterizing transitive covers of given graphs is often a key step
for approaching general transitive graphs. Numerous relative results have been
obtained in the literature, see [2] [3] [4] [5] and reference therein for edge- or
arc-transitive cyclic or abelian covers of graphs with small order. As typical
symmetric graphs, complete graphs often naturally appear (as normal quotient
graphs) in the studying of many families of graphs, characterize their covers has
been receiving much attention. For example, [4] classifies arc-transitive cyclic
and elementary abelian covers of K,, [2] classifies arc-transitive abelian covers
of K,, and [6] classifies arc-transitive cyclic covers of K;,K, and K,.In par-
ticular, 2-arc-transitive cyclic, Zf) - and Z?;) -covers with p a prime of complete
graphs are determined in [7] [8]. It is a next interesting topic to characterize
covers of complete graphs with a “weak” symmetry. The main purpose of this
paper is to characterize edge-transitive cyclic covers of complete graphs with
prime power order.

The terminologies and notations used in this paper are standard. For example,
for a positive integer 1, denote by Z, the cyclic group of order n; given two
groups Nand H, denote by NxH the direct product of Nand Z, by N.H an
extension of N'by A, and if such an extension is split, then we write N:H in-
stead of N.H ; also, a group G is called a central product of two subgroups §
and 7, denoted by G =SoT,if G=ST, the commutator subgroup [S,T]=1,

and ST is contained in the center of G, see ([9]: p. 141).
Theorem 1.1. Let T' be an edge-transitive Z, -cover of the complete graph

=K o with p a prime. Then one of the following holds.

1) T' is2-arc-transitive, and either
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i) m=2 and l";Kpn pn—p"Kz;or

ii) m=4, = K, with 2" -1>7 a prime, and T = X, (4,2n —1) , as in
Example 3.4.

2) L=K, with 2"-1>7 aprime, and either

i) m|2"-2 and T = gt (as in Example 3.5) is Z,, % PSL(Z, 2" —1) -locally-
primitive, or

ii) m|2"™ -4 jsevenand T = G (as in Example 3.7) is
Z, oPSL(2,2" ~1) -locally-primitive.

3) T is Z,x PSL(d , q) -arc-transitive with vertex stabilizer isomorphic to a
maximal parabolic subgroup of PSL(d,q), where m|2(d-1,q-1), d>3 is

d
q_l_n
1 P

aprime and d1q-1 such that

4) T isanormal edge-transitive Cayley graph.

For given m,d,q, graphs in part (3) may be determined (for example, a sim-
ple way is using computer software MAGMA or GAP), and graphs in part (4)
have a nice construction and can be well understood (see [10]: Section 2). How-
ever, it seems hard to give a specific classification of these graphs.

In locally-primitive cyclic cover case, we have the following nice version.

Theorem 1.2. Let T' be a locally-primitive 7, -cover of the complete graph

Y =K o with p a prime. Then one of the following is true.

1) ' is2-arc-transitive, and either

i) m=2 and l“;Kpn’pn - p"K,; or

i) m=4, L=K, with 2"-1>7 aprime and T = x1(4, 2" —1) .

2) =K, , and one of the following holds:

i) 2"-1>7 isaprime, m|2"—2,and T =G".

ii) 2"-1>7 isaprime, m|2"" -4, and T = g{z} .

iii) m=2°, and T is a normal locally-primitive Cayley graph of a 2-group
isomorphicto 7, Z;.

Theorem 1.2 has the following interesting consequences.

Corollary 1.3. A locally-primitive cyclic cover of a complete graph Kp,, with

p an odd prime is isomorphic to K o g p"K, .

Corollary 1.4. Let T be a locally-primitive 7., -cover of the complete graph
sz with p a prime. Then one of the following holds.
1) m=2 and F:szpz—pZKz;

2) p=2, m=4 and T =P(8,3) is the generalized Peterson graph.

This paper is organized as follows. After this introduction, some preliminary
results are given in Section 2. By giving some technical lemmas and introducing
examples appearing in Theorem 1.1 in Section 3, we present the proofs of Theo-

rems 1.1 and 1.2 in Section 4.

2. Preliminaries

The following proposition classifies nonabelian simple groups with a subgroup
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of prime power index.

Proposition 2.1. ([11]) Let T be a nonabelian simple group which has a sub-
group H with index a prime power p". Then the tuple (T,H) satisfies one of
the following.

nT ;Apn ,and H = Apn—l;

2) T=PSL(d,q), and H is a maximal parabolic subgroup of 7 such that

3) T=PSL,(11) and H=A;

4) T=M; and H=M,;

5) T=M,, and H=M,,;

6) T=PSU(4,2) and H=Z;:A,.

Let a and d be positive integers. A prime ris called a primitive prime divisor
of a’~1 if r divides a’ -1 but does not divide a' -1 for all 1<i<d. The
following is a well-known result of Zsigmondy.

Theorem 2.2. ([12]: p. 508) For any positive integers a and d, either a’ -1
has a primitive prime divisor, or (d , a) = (6, 2) or (2, 2" —l) , where m>2.

Agraph T is called a Cayley graph of a group Gif thereis a subset S < G\{1},
with S=8":= {g’l |ge S} , such that VI'=G, and two vertices g and 4 are
adjacent if and only if hg™ S . This Cayley graph is denoted by Cay(G,S).
In particular, if I'=Cay(G,S) is X-edge-transitive or X-locally-primitive and
the right regular representation G< X <AutT', then I is called X-normal
edge-transitive or X-normal locally-primitive Cayley graph respectively. Normal
edge-transitive Cayley graphs have some nice properties, see [10].

Lemma 2.3. Let I'=Cay(G,S) be an X-normal locally-primitive Cayley
graph of an abelian group G. Then G is an elementary abelian 2-group.

For an X-vertex-transitive graph ' with X < Autl", if X has an intransitive
normal subgroup N, denote by VI', the set of all N-orbits on VI'. The nor-
mal quotient graph of T induced by N, denoted by I'y, is defined with vertex
set VI', and two vertices B,C eVI', are adjacent if and only if some vertex
in Bis adjacentin " to some vertex in C. In particular, if for each adjacent ver-
tices B,C VT, the induced subgraph [B,C]=kK, where k =|B|=|C|, then

I' isa N-coverof T'.

The following theorem plays an important role for the studying of local-
ly-primitive graphs, which is first proved by Praeger ([1]: Theorem 4.1) for
2-arc-transitive case and slightly generalized to locally-primitive case by ([13]:
Lemma 2.5).

Theorem 2.4. Let ' be an X-vertex-transitive locally-primitive graph, and let
N <« X have at least three orbits on VI . Then the following statements hold.

1) N is semiregular on VT, X/N <Autl'y, Ty is X/ N-locally-primitive,
and T' isaN-coverof T',;

2) T is (X,s) -arc-transitive if and only if T is (X/N,s)-arc-transitive,
where 1<s<5 or s=7;
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3) X, =(X/N),, where a eVT and §eVTy.

Let Gbe a group, H a core-free subgroup of G (that is, A contains no nontrivial
normal subgroup of G), and g € G\H . The coset digraph Cos (G, H,HgH)
is defined with vertex set [G:H] such that

Hx ~ Hy < yx € HgH.

The following properties of coset digraphs are known, refer to [14] or [15].

Lemma 2.5. Using notations as above, and let T = Cos(G,H,HgH ). Then

1) T is undirected if and only if 9°e€H . In this case, T s
G-arc-transitive with valency |H HNH® |;

2) T isconnected if and only if (H , g> =G;

Conversely, each G-arc-transitive graph is isomorphic to Cos(G,G,,G, fG,),
where fis a2-element of G such that > G, and <Ga f > =G.

Let G=N.H be an extension. If Nis in the center of G, then the extension is
called a central extension. A group G is said to be perfectif G =G’, the com-
mutator subgroup of G. For a given group H, if N is the largest abelian group
such that G:=N.H is perfect and the extension is a central extension, then &
is called the Schur Multiplier of H, denoted by Mult(H ). The following lemma
is known.

Lemma 2.6. Assume that G = N.T , where N is a cyclic group and T is a non-
abelian simple group. Then G =NT is a central extension. Further, G = NG’
and G'=MT isaperfect group, where M <N Mult(H).

The Schur multipliers of nonabelian simple groups are known, refer to ([16]:
pp. 302-303).

Lemma 2.7. Let T=PSL(d,q). Then Mult(T)=Z
ceptions in the following Table.

(d.a-1) with the only ex-

(d.a) (24) (29) (32) (3.4) (42)
Mult(T) Z, Z, %7, Z, RV Z,

3. Technical Lemmas and Example

In this section, we prove certain technical lemmas and introduce examples ap-

pearing in Theorem 1.1.

3.1. Lemmas

_1 n . . . .
1 =P, where q 1s a prime power c’lﬂdp 1§ a prime.

Lemma 3.1. Suppose

Then d is a prime. In particular, if =2, then n=1.
Proof. Suppose on the contrary, dis not a prime. Let rbe a prime divisor of d.
Since 2°-1=63 is not a prime power, (d,q)#(6,2). It then follows from

Theorem 2.2 that q° —1 has a primitive prime divisor, say ¢ Thus ¢ divides

qd _1 ql’ _1 d _
= p", implying t=p.However, as divides , we have
q-1 q-1 q-1
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r

q -1

is also a power of p, and hence t=p divides q" —1, which is a contra-

diction.

Now, suppose (=2.Then pis odd. If nis even, then

2% = p"+1=2(mod 4), yielding a contradiction. Thus n is odd. Since
p+1|p"+1, p+1=2° forsome 2<s<d,so 2°—1=p divides p"=2"-1.
It follows 2°-1= (2S -1,2° —1) =209 _1, implying s=d as $>2 and dis
a prime. Hence p=2°"-1=2°-1=p" and n=1. O

Lemma 3.2. Suppose G =NH <Sym(Q), where N <G and H <G. Then
G,=N,.0, where 0 €Q and 0< H/(H NN). In particular, if N is transitive
on Q,then 0o=H/(HNN).

Proof Since N <G, N, <G,.As
G,/N,=G,/(NNG,)=NG,/N <G/N =NH/N =H/(HNN), we have
0=G,/N, < H/(H NN ) Particularly, if Nis transitive on Q,then NG, =G
and hence O;H/(NﬂH). O

The next lemma is possibly known. As the authors find no proper references,
a proof is given.

Lemma 3.3. Let " be an X-vertex-transitive K-cover of ¥ with X <Autl’.
Then X, ;(X/K)(s, where a eV and 6e€VX.

Proof. By assumption, K < X is semiregular on VI and X/K <AutX is
transitive on VX, so the vertex stabilizers of XYKXon VX are conjugate. Thus,
without loss of generality, we may assume & =a* eVE . Then
X, = X,K/K <(X/K),.On the other hand, as

X5, | =M= KIVS|= KX K () |
we have |Xa|=|(X/K)b,|.Hence X, =(X/K),. O

3.2. Examples

Clearly, the complete bipartite graph deleting one factor K, —nK, is a Z,-
cover of K.

The next family of examples is a subfamily of the graphs X, (4,q), which is
first obtained in [7], arising from voltage graphs.

Let X be a graph and K a finite group. A voltage assignment (or K-voltage
assignment) of the graph ¥ isafunction f:AYX — K such that
f(a.B)= f(,B,ot)_1 for each (@, )€ AS. Then the derived voltage graph
Zx; K from the voltage assignment fis defined with vertex set VXxK (Car-
tesian product), and («,g) is adjacent to (,h) if and only if (a,)e AS
and hg™ = f(a,p).

Example 3.4. ([7]) Let q= 3(mod 4) be a prime power and Fq* the multip-
licative group of the g-elements field F,.Let S (q) be the set of all squares in
F, and N(q) the set of all non-squares in F,.Let £=K_,,, with the vertex
set being identified with the projective line PG(1,q) = F, U{e}.

Define the graph X,(4,q) be the voltage graph Zx; K, where K=7,
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and the voltage assignment f : AX — K is given as following:
0 ifoce {X, y}

f(x,y)=41 if y-xeS(q)
3 if y-xeN(q)

The following two families of examples are arising from coset graphs, giving
rise to examples as in part (2) of Theorem 1.1.

Example 3.5. Suppose that 2" —1>7 is a prime and m=2"m’ with k <1
and m'| 2" -1. Let K =(a)=Z,, T=PSL(2,2"-1) and G=KxT, and let
<b> : <C> = Zzu :Zzn,li1 be a maximal parabolic subgroup of T. Then the nor-
malizer N; ((C)) =D, ,.Let geN; ((C)) be an involution.

Set
H* =<(1,b),(a2k,c)>,
G4 =COS(G,H1,Hl(am',g)Hl).

Lemma 3.6. Using notations as in Example 3.5. Then GY is a G-arc-transitive
Ly, -cover of K,
Proof. Since ( ) is maximal in 7and ¢ ¢ (b C> (b c, g) =T.Let

X :< ( . Since T'is nonabelian simple, we have

< [(azk,c),(am',g)} |XEX>
<1[b ol ). ])|teT> (T xT' = {1}xT,

where X' and T' denote the commutator subgroups of Xand 7, respectively.
In particular, (1, g’l) and (1,c’1) are in X, so (a”" ,1) and (aZk ,1) arein X.
It then easily follows X =G, so G is connected. Also, as I—m|,1 =Ly L s
‘vg |G H |— 2'm, and as geN,({c)), Hlm(Hl)(a 9 . Ly, - By
Lemma 2.5, G% is a G-arc-transitive graph of order 2"m and primes valency
2" 1.
Set N =Kx{1}.Clearly Z, =N <G . Noting that each element xeH' has
aform x= (azki,bjci .If xeN,then bic'=1,s0 b’ =c' =1, implying
2"t ~1|i and a®' =1. Hence x=1, thatis, N(TH'=1. Now, Nis semiregu-
lar and has 2" orbits on Vg{l}. By Theorem 2.4, g{” is a Z, -cover of Qh{ll}.
Since G\ is of order 2" and valency 2"-1, G = K, O
Example 3.7. Suppose that 2" —1>7 isaprimeand m=2"m’, where
1<k<2 and m'|2""-1.Let K=(a)=Z,, S=SL(2,2"-1) and
G =K oS isacentral product of K and S such that K(\S =Z, . Then there exist

b,ceS and an involution g e Ng ((C)) such that (b) : (C) =22y Lips > and
(b,c,g)=S5
Set

et

g{z} :COS(G, H?. Hz(am’g)HZ).
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Lemma 3.8. Using notations as in Example 3.7. Then G\ isa G-arc-transitive
Ly, -cover of K .

Proof. With similar discussion as in the proof of Lemma 3.6, one may show
that KNH =1 and G'? isa G-arc-transitive graph with order 2"m and prime
valency 2" -1. Since K <G has 2" orbits on VI, by Theorem 2.4, I' is an
arc-transitive Z, -cover of ', .Since T, is of order 2" and valency 2" -1,
Iy =K, . O

We remark that, in Lemmas 3.6 and 3.8, the groups isomorphic to ZZ"—l : Zzn,l_l
are conjugate in PSL(Z,Z” —1) and SL<2,2n —l) , it is then easy to see that
the graphs G"% and G? are independent (up to isomorphism) of the choices
of a,b.

4. Proofs of Theorems 1.1 and 1.2

In this section, we will prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let X be the fibre-preserving group and X the cover-
ing transformation group. Then X acts edge-transitively on I', K= <a> =7,
isnormal in X; and Y := X/K acts edge-transitivelyon X .

If Yis 3-transitive on VX, then X is (Y,Z) -arc-transitive, and so T is a
2-arc-transitive Z,,-cover of Kpn. By ([17]: Theorem 1.1), either m=2 and
=K "o p"K,, as in part (1)(i) of Theorem 1.1;or m=4 and
I'=X,(4,q9) with g=p"-1=3(mod4),so p=2,andbyLemma 3.1,
q=2"-1>7 isaprime, as in part (1)(ii) of Theorem 1.1.

Thus, from now on, suppose that Y is not 3-transitive on VI . Since Y acts
edge-transitively on Kpn , Yis 2-homogeneous (so primitive) on VI' of degree

p" . Hence, either Yis affine or almost simple. Let « eVI' and §eVZ.

Suppose first Yis almost simple with socle 7. Then 7'is transitive on VX, so
|T :T5|= p". Hence the tuple (T,Tg) (as (T,H) there) satisfies Proposition
2.1. Noting that, if 7'satisfies parts (i, iv, v), then T'is s-transitive with S>3, which
is not the case; if T =PSU(4,2) asin part (vi), then Y <Aut(T)=PSU(4,2).Z,
is not 2-homogeneous, also not the case. So (T,TJ) satisfies parts (ii) and (iii)
of Proposition 2.1. In both cases, 7'is 2-transitive on VX and so is arc-transitive
on X, hence G:=KT <X is arc-transitive on I'. By Lemma 2.6, G=K.T
is a central extension, and by Lemma 3.3, G, =T;.

Assume (T,T,)=(PSL(2,11),A;). Then X=K;, G=KPSL(211) and
G, = A, . As the Schur multiplier Mult(PSL(Z,ll)) =7,,by Lemma 2.6,
G'=PSL(2,11), or SL(2,11) with m even. Since G'<G, G, <G, = A;, im-
plying G, =1 or A,. If G, =1, Lemma 3.3 implies A, =G, < K/(K nG’),
which is a contradiction. So G[, = A, and hence G'#SL(2,11) as SL(2,r)
with r>5 an odd prime has a unique involution by ([18]: Lemma 7.4). Thus
G = PSL(Z,ll), G=KxG', and G' has exactly |K|:m orbits on VI'. If
m=>3, then T’y is G/M-arc-transitive of order |K|, where M oG’ is the
kernel of G acting on the set of G’ -orbits on VI, which is a contradiction as
G/M = K/(K (M) is cyclic. Thus m=2 and G’ has exactly two orbits on
VI, by ([17]: Lemma 2.4), ' =K,,,; —11K, is the standard double cover of
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% =K, as in part (1)(i) of Theorem 1.1.
d

Assume now T =PSL(d,q) with p"= a
q

_11 , as in part (ii) of Proposition

2.1. By Lemma 3.1, dis a prime. We divided our discussion into three cases.
Case (i). Suppose Mult(T)=Z,, and d|g-1.
In this case, p" =1+q+---+q°" EO(mod d), so d=p and q=1+pt for
some t2>1. It follows
p"'t=(1+pt)" -1
p(p —1)(
2

pt)’ +--+(pt)* -1

-1
= pzt(uww-w p"‘zt”‘lJ,

=1+ pit+

-1
) p“=l+¥t+m+ p°’t"*, implying p=2. Now, 2"-1=q is a

prime power, by Lemma 3.1, we further have that q>7 is a prime. Hence,
T= PSL(Z,Z" —1), L =K, is of prime valency 2"-1, and so is G-locally-
primitive. As G=KT is a central extension and Mult(T)=Z,, by Lemma
2.6, G'=PSL(2,2"-1) or SL(2,2"-1). Since G, <G, =T, =2, :Z,, ,
a parabolic maximal subgroup of 7; either G, =1 or G, =Z,  :Z, for some
|2 -1. If G, =1, Lemma 3.2 implies that G, <K/(KNG') is cyclic,
which is contradicts. Thus G, =Z , 7.
Assume G'=z PSL(Z, 2" —l) .Then G =KxG'. Since |VF| =2"m and

PsL(2.2"-1)| 2"(2-1)

|aG'| = , G' has #I orbitson VI'.If
(2"-1)1 | 2 -1
Z”#I—l >3, by Theorem 2.4, I';, is G/G’-locally-primitive of valency 2" -1,

which is a contradiction as G/G’ is abelian. Thus

1£2 and m|2"-2.

2n—1 _

Write m=2“m’, where 0<k<1 and m’|2""—1. Since (m,2n —1) =1, each
element of order 2" -1 of G has a form (1,b) with beG’, and each cyclic
subgroup of order 2" —1 of Ghas a form a?" ,C)> with i|m" and ceG’,
we thus may suppose G, = <(1,b)>: (azki ,C) .As
(azk‘ <) i (azk"’(c),l) e KNG, =1, we have o(azki ) |o(c) and hence
O(C) =0 a2ki .c|=2"1-1. Also, noting that a 2-element of G can be expressed
as (am'j , g) ,where 0< j<1 and geG' isa2-element. By Lemma 2.5, we may
suppose ['= Cos(G,Ga .G, (am'j , g)Ga> . Since VaI(F) =2"-1, ge N; ((C)) .
By the connectedness of T, <Ga,<amlj,g)>:G, it follows that (b,c,g>=G'
and <a2ki,am'j>:<a>, implying i=j=1 as i|2""-1 and 0< j<1. Hence
r=g" asin Example 3.5, and which is really an example by Lemma 3.6.
Assume now G'= SL<2,2n —1). Then misevenand G =K oG’ isa central
sL(2.2 1) 2mi(2-g)

(2”—1)| I ad

product with K(G'=Z,. Because |aG'|:

DOI: 10.4236/jamp.2022.102022

297 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.102022

Z. H.Huang, Y. Liu

has 3 orbitson VI .If anl 5 >3, Theorem 2.4 implies that Iy, is G/G’
-locally-primitive, which is impossible because G/G' is abelian. So Z"LIZ <2

and m|2" -4, Set m=2"m’', where 1<r<2 and m’|2"'-1. As each 2-
element of G can be expressed as a™'g, where 0< j<2, and geG' is a 2-
element. By Lemma 2.5, we may assume [ = Cos(G,Ga,Ga (am/jg)Ga). Now,
with similar discussion as in the above paragraph, one may prove that j=1
and T=G% asin Example 3.7, giving rise to example by Lemma 3.8.

Case (ii). Suppose Mult(T) = Zgqq and dfq-1.

Recall that d'is a prime, Mult(T)=1. It then follows from Lemma 2.6 that
G'=zT,and G=KxG'=z7Z, xPSL(d,q).

If d=2,as d{q-1, gis 2-power, so Y >T =PSL(2,q)=PGL(2,q) is 3-
transitive on VX, which contradicts the assumption before.

Thus d >3, and

G, =Ts= [qd_l]'zq—l'PSL(d _1’q)'Z(d‘1~q‘1)'

a maximal parabolic subgroup of 7, where [qd’lJ denotes the elementary ab-
elian group of order q".If G’ has at least three orbits on VI, then T is
G/ P-arc-transitive, where P is the kernel of G acting on the G’ -orbits in VI,
which is not possible as P>G’' and G/G'= K is cyclic. So G’ has at most
two orbits on VI'. By Lemma 3.2, G,/G, <K/(KNG')=K is cyclic, and as
|G:G,|=|G":G,| or 2|G:G,|, |G,:G.|=m or m/2, we conclude that
m|2(d—-1,0-1), as in part (3) of Theorem 1.1.

Case (iii). Suppose Mult(T)z Zig gy
o

Since =p" is a prime power, checking the candidates in Lemma 2.7,

the only possibility is Mult(T)=Z,, and either (d,q)=(2,4) and |VZ|=5,
or (d,q) = (3,2) , and |V2| =7. For the former case, T = PSL(2,4) = A, is3-
transitive on VX, so is ¥; which contradicts the former assumption.

Consider the latter case. Then T =PSL(3,2)=PSL(2,7), G, =T, =S, and
G' = PSL(2,7) or SL(2,7) by Lemma 2.6. By Lemma 3.2, we have G/ #1,
so G, =Z; A, or S, and hence G'#SL(2,7) by ([18]: Lemma 7.4). Thus
G'=PSL(2,7) and G=KxG'. Since G/G’ is abelian, G' has at most two
orbitson VI' by Theorem 2.4.If G’ is transitiveon VI, then
S,2G,=G.Z,, so m=2 and G, =A,, a simple computation by using
Magma [19] shows that no example exists in this case. If G’ has 2 orbits on
VI',then G, =G, .Z, with meven, it follows that either m=2 and
G,=G,=S,,or m 24 and G, =A,. For the former case, by ([17]: Lemma
2.4), I'=K,; —7K,. For the latter case, no example occurs by Magma [19].

Suppose now that Y is affine. Then T =Zr; ,and ¥ is a Y-normal edge-
transitive Cayley graph of 7, and in turn, I' is an X-normal edge-transitive
Cayley graph of K.T . This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. Let X be the fibre-preserving group and let
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K:= (a) =7, be the covering transformation group. Then K <X, Y =X/K
acts locally-primitively on T" and hence satisfies Theorem 1.1. If T" satisfies
part (3) of Theorem 1.1, then Y < Aut(PSL(d,q)) with d >3 acts locally-
primitively on X, so Y is 2-primitive on the set of project points, which is a
contradiction by ([20]: Lemma 2.5).

Assume that T satisfies part (4) of Theorem 1.1. Then Y'is affine with socle
T=Z,,and ¥ isa Y-normal locally-primitive Cayley graph of 7. By Lemma 2.3,
p=2. Let C=C,(K). Then C>K. If C=K, then Y =X/K <Aut(Z,)
is abelian, which is a contradiction.

Thus, C>K.Then 1#C/K <Y, and so T <C/K as 7Tis the unique mi-
nimal normal subgroup of ¥. Let R < X suchthat RcC and R/K =T. Then
R= KT isa central extension, and I' isan X-normal locally-primitive Cayley
graph of R. Write m=2°m’ with m’ odd. If m'>1, then N:= <a2d > aX,
and by Theorem 2.4, T', is an X/N-normal locally-primitive Cayley graph of R/N.
However, as R/N =Z_,Z) is a central extension, we have R/N=Z  :7Z) is
abelian, by Lemma 2.3, which is a contradiction. Hence m=2°, and T satis-
fies part (4) of Theorem 1.2. O

Corollary 1.3 follows immediately by Theorem 1.2. We finally prove Corollary
1.4.

By assumption, [ satisfies part (1)(i) or (2)(iii) of Theorem 1.2 with n=2.
For the former, part (1) of Corollary 1.4 holds. For the latter, ¥ =K,, it then
follows from ([4]: Theorem 6.1) that either T'=K,,-4K,, or T'=P(8,3) is
the generalized Peterson graph as in Corollary 1.4(2). O

5. Conclusion

In this paper, a characterization of edge-transitive cyclic covers of complete
graphs with prime power order is given by using the techniques of finite group
theory and the related properties of coset graphs. Certain previous results are

generalized and some new families of examples are founded.
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