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Abstract 
Characterizing regular covers of symmetric graphs is one of the fundamental 
topics in the field of algebraic graph theory, and is often a key step for ap-
proaching general symmetric graphs. Complete graphs, which are typical 
symmetric graphs, naturally appear in the study of many symmetric graphs as 
normal quotient graphs. In this paper, a characterization of edge-transitive 
cyclic covers of complete graphs with prime power order is given by using the 
techniques of finite group theory and the related properties of coset graphs. 
Certain previous results are generalized and some new families of examples 
are founded. 
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1. Introduction 

Throughout the paper, by a graph, we mean a connected, undirected and simple 
graph with a valency of at least three. 

For a graph Γ , denote its vertex set, edge set and arc set by VΓ , EΓ  and 
AΓ  respectively. Then, for an automorphism group X ≤ ΓAut , Γ  is called 

X-vertex-transitive, X-edge-transitive or X-arc-transitive, if X is transitive on 
VΓ , EΓ  or AΓ , respectively; Γ  is called X-locally-primitive if the vertex 
stabilizer { }: | xX x Xα α α= ∈ =  acts primitively on the neighbor set ( )αΓ  
for each Vα ∈ Γ ; and Γ  is called ( ), 2X -arc-transitive if X is transitive on the 
set of 2-arcs (that is, the sequences of three distinct adjacent vertices) of Γ . It is 
known that a locally-primitive graph is edge-transitive, and a 2-arc-transitive 
graph is locally-primitive. 

Let Γ  and Σ  be two graphs. Then Γ  is called a cover (or covering) of Σ  
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with a projection ρ , if ρ  is a surjection from VΓ  to VΣ  such that the re-
striction ( ) ( ) ( ):

α
ρ α α

Γ
Γ → Σ�
�  is a bijection for each Vα ∈ Σ  and preimage 

Vα ∈ Γ�  of α  under ρ . Further, Γ  is called a K-cover (or regular K-cover) 
if there is a semiregular subgroup K ≤ ΓAut  such that Σ  is isomorphic to the 
quotient graph KΓ , say by φ , and the quotient map KΓ → Γ  is the composi-
tion ρφ . For each vertex Vα ∈ Σ , the set of all preimages of α  under ρ  is 
called a fibre. An automorphism of Γ  is called fibre-preserving if it maps each 
fibre to a fibre. The group, consisting of all fibre-preserving automorphisms of 
Γ , is called the fibre-preserving group. Then the fibre set forms an invariant 
partition of the fibre-preserving group on VΓ , and the fibre-preserving group 
has a natural induced action on the fibre set. The kernel of this action is called 
the covering transformation group. 

A typical method for studying transitive graphs is taking normal quotient 
graphs. It is well known that each edge-transitive graph is a cover or multi-cover 
of a “basic” graph: a vertex quasiprimitive or vertex biquasiprimitive graph, and 
in particular, each vertex-transitive locally-primitive graph is a cover of a basic 
graph (see [1]). This suggests a two-step strategy for characterizing transitive 
graphs: step 1 is to obtain basic graphs, and step 2 is to find covers of the ob-
tained basic graphs. 

Therefore, characterizing transitive covers of given graphs is often a key step 
for approaching general transitive graphs. Numerous relative results have been 
obtained in the literature, see [2] [3] [4] [5] and reference therein for edge- or 
arc-transitive cyclic or abelian covers of graphs with small order. As typical 
symmetric graphs, complete graphs often naturally appear (as normal quotient 
graphs) in the studying of many families of graphs, characterize their covers has 
been receiving much attention. For example, [4] classifies arc-transitive cyclic 
and elementary abelian covers of 4K , [2] classifies arc-transitive abelian covers 
of 4K , and [6] classifies arc-transitive cyclic covers of 5 6,K K  and 7K . In par-
ticular, 2-arc-transitive cyclic, 2

p - and 3
p -covers with p a prime of complete 

graphs are determined in [7] [8]. It is a next interesting topic to characterize 
covers of complete graphs with a “weak” symmetry. The main purpose of this 
paper is to characterize edge-transitive cyclic covers of complete graphs with 
prime power order. 

The terminologies and notations used in this paper are standard. For example, 
for a positive integer n, denote by n  the cyclic group of order n; given two 
groups N and H, denote by N H×  the direct product of N and H, by .N H  an 
extension of N by H, and if such an extension is split, then we write :N H  in-
stead of .N H ; also, a group G is called a central product of two subgroups S 
and T, denoted by G S T= � , if G ST= , the commutator subgroup [ ], 1S T = , 
and S T∩  is contained in the center of G, see ([9]: p. 141). 

Theorem 1.1. Let Γ  be an edge-transitive m -cover of the complete graph 

np
Σ ≅ K  with p a prime. Then one of the following holds. 

1) Γ  is 2-arc-transitive, and either  
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i) 2m =  and 2,n n
n

p p
pΓ ≅ −K K ; or  

ii) 4m = , 
2nΣ ≅ K  with 2 1 7n − ≥  a prime, and ( )1 4, 2 1nXΓ ≅ − , as in 

Example 3.4.  
2) 

2nΣ ≅ K  with 2 1 7n − ≥  a prime, and either  
i) | 2 2nm −  and { }1Γ ≅   (as in Example 3.5) is ( )PSL 2, 2 1n

m × − -locally- 
primitive; or  

ii) 1| 2 4nm + −  is even and { }2Γ ≅   (as in Example 3.7) is  
( )PSL 2,2 1n

m −� -locally-primitive.  
3) Γ  is ( )PSL ,m d q× -arc-transitive with vertex stabilizer isomorphic to a 

maximal parabolic subgroup of ( )PSL ,d q , where ( )| 2 1, 1m d q− − , 3d ≥  is  

a prime and 1d q −  such that 1
1

d
nq p

q
−

=
−

. 

4) Γ  is a normal edge-transitive Cayley graph. 
For given , ,m d q , graphs in part (3) may be determined (for example, a sim-

ple way is using computer software MAGMA or GAP), and graphs in part (4) 
have a nice construction and can be well understood (see [10]: Section 2). How-
ever, it seems hard to give a specific classification of these graphs. 

In locally-primitive cyclic cover case, we have the following nice version. 
Theorem 1.2. Let Γ  be a locally-primitive m -cover of the complete graph 

np
Σ = K  with p a prime. Then one of the following is true. 

1) Γ  is 2-arc-transitive, and either  
i) 2m =  and 2,n n

n
p p

pΓ ≅ −K K ; or  

ii) 4m = , 
2nΣ ≅ K  with 2 1 7n − ≥  a prime, and ( )1 4, 2 1nXΓ ≅ − .  

2) 
2nΣ ≅ K , and one of the following holds: 

i) 2 1 7n − ≥  is a prime, | 2 2nm − , and { }1Γ ≅  .  
ii) 2 1 7n − ≥  is a prime, 1| 2 4nm + − , and { }2Γ ≅  .  
iii) 2dm = , and Γ  is a normal locally-primitive Cayley graph of a 2-group 

isomorphic to 22
.d

n  .  
Theorem 1.2 has the following interesting consequences. 
Corollary 1.3. A locally-primitive cyclic cover of a complete graph np

K  with 

p an odd prime is isomorphic to 2,n n
n

p p
p−K K .  

Corollary 1.4. Let Γ  be a locally-primitive m -cover of the complete graph 
2p

K  with p a prime. Then one of the following holds.  
1) 2m =  and 2 2

2
2,p p

pΓ = −K K ;  

2) 2p = , 4m =  and ( )8,3PΓ =  is the generalized Peterson graph.  
This paper is organized as follows. After this introduction, some preliminary 

results are given in Section 2. By giving some technical lemmas and introducing 
examples appearing in Theorem 1.1 in Section 3, we present the proofs of Theo-
rems 1.1 and 1.2 in Section 4. 

2. Preliminaries 

The following proposition classifies nonabelian simple groups with a subgroup 
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of prime power index. 
Proposition 2.1. ([11]) Let T be a nonabelian simple group which has a sub-

group H with index a prime power np . Then the tuple ( ),T H  satisfies one of 
the following.  

1) A np
T ≅ , and 1A np

H −≅ ; 

2) ( )PSL ,T d q≅ , and H is a maximal parabolic subgroup of T such that 

1
1

d
nq p

q
−

=
−

; 

3) ( )2PSL 11T ≅  and 5AH ≅ ; 
4) 11T ≅M  and 10H ≅M ; 
5) 23T ≅M  and 22H ≅M ; 
6) ( )PSU 4,2T ≅  and 4

2 5: AH ≅  .  
Let a and d be positive integers. A prime r is called a primitive prime divisor 

of 1da −  if r divides 1da −  but does not divide 1ia −  for all 1 i d≤ ≤ . The 
following is a well-known result of Zsigmondy. 

Theorem 2.2. ([12]: p. 508) For any positive integers a and d, either 1da −  
has a primitive prime divisor, or ( ) ( ), 6, 2d a =  or ( )2,2 1m − , where 2m ≥ .  

A graph Γ  is called a Cayley graph of a group G if there is a subset { }\ 1S G⊆ , 
with { }1 1: |S S g g S− −= = ∈ , such that V GΓ = , and two vertices g and h are 
adjacent if and only if 1hg S− ∈ . This Cayley graph is denoted by ( ),G SCay . 
In particular, if ( ),G SΓ = Cay  is X-edge-transitive or X-locally-primitive and 
the right regular representation Ĝ X ≤ Γ� Aut , then Γ  is called X-normal 
edge-transitive or X-normal locally-primitive Cayley graph respectively. Normal 
edge-transitive Cayley graphs have some nice properties, see [10]. 

Lemma 2.3. Let ( ),G SΓ = Cay  be an X-normal locally-primitive Cayley 
graph of an abelian group G. Then G is an elementary abelian 2-group.  

For an X-vertex-transitive graph Γ  with X ≤ ΓAut , if X has an intransitive 
normal subgroup N, denote by NVΓ  the set of all N-orbits on VΓ . The nor-
mal quotient graph of Γ  induced by N, denoted by NΓ , is defined with vertex 
set NVΓ  and two vertices , NB C V∈ Γ  are adjacent if and only if some vertex 
in B is adjacent in Γ  to some vertex in C. In particular, if for each adjacent ver-
tices , NB C V∈ Γ , the induced subgraph [ ] 2,B C k≅ K  where k B C= = , then 
Γ  is a N-cover of NΓ . 

The following theorem plays an important role for the studying of local-
ly-primitive graphs, which is first proved by Praeger ([1]: Theorem 4.1) for 
2-arc-transitive case and slightly generalized to locally-primitive case by ([13]: 
Lemma 2.5). 

Theorem 2.4. Let Γ  be an X-vertex-transitive locally-primitive graph, and let 
N X�  have at least three orbits on VΓ . Then the following statements hold.  

1) N is semiregular on VΓ , NX N ≤ ΓAut , NΓ  is X/N-locally-primitive, 
and Γ  is a N-cover of NΓ ;  

2) Γ  is ( ),X s -arc-transitive if and only if NΓ  is ( ),X N s -arc-transitive, 
where 1 5s≤ ≤  or 7s = ;  
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3) ( )X X Nα δ
≅ , where Vα ∈ Γ  and NVδ ∈ Γ .  

Let G be a group, H a core-free subgroup of G (that is, H contains no nontrivial 
normal subgroup of G), and \g G H∈ . The coset digraph ( ), ,G H HgHCos  
is defined with vertex set [ ]:G H  such that  

1 .Hx Hy yx HgH−⇔ ∈  

The following properties of coset digraphs are known, refer to [14] or [15]. 
Lemma 2.5. Using notations as above, and let ( ), ,G H HgHΓ = Cos . Then  
1) Γ  is undirected if and only if 2g H∈ . In this case, Γ  is 

G-arc-transitive with valency : gH H H∩ ; 
2) Γ  is connected if and only if ,H g G= ;  
Conversely, each G-arc-transitive graph is isomorphic to ( ), ,G G G fGα α αCos , 

where f is a 2-element of G such that 2f Gα∈  and ,G f Gα = .  
Let .G N H=  be an extension. If N is in the center of G, then the extension is 

called a central extension. A group G is said to be perfect if G G′= , the com-
mutator subgroup of G. For a given group H, if N is the largest abelian group 
such that : .G N H=  is perfect and the extension is a central extension, then N 
is called the Schur Multiplier of H, denoted by ( )HMult . The following lemma 
is known. 

Lemma 2.6. Assume that .G N T= , where N is a cyclic group and T is a non- 
abelian simple group. Then .G N T=  is a central extension. Further, G NG′=  
and .G M T′ =  is a perfect group, where ( )M N H≤ ∩Mult .  

The Schur multipliers of nonabelian simple groups are known, refer to ([16]: 
pp. 302-303). 

Lemma 2.7. Let ( )PSL ,T d q= . Then ( ) ( ), 1d qT −≅ Mult  with the only ex-
ceptions in the following Table. 

 
( ),d q  ( )2,4  ( )2,9  ( )3,2  ( )3,4  ( )4,2  

( )TMult  2  2 3×   2  2
3 4×   2  

3. Technical Lemmas and Example 

In this section, we prove certain technical lemmas and introduce examples ap-
pearing in Theorem 1.1. 

3.1. Lemmas 

Lemma 3.1. Suppose 1
1

d
nq p

q
−

=
−

, where q is a prime power and p is a prime. 

Then d is a prime. In particular, if 2q = , then 1n = .  

Proof. Suppose on the contrary, d is not a prime. Let r be a prime divisor of d. 
Since 62 1 63− =  is not a prime power, ( ) ( ), 6, 2d q ≠ . It then follows from 
Theorem 2.2 that 1dq −  has a primitive prime divisor, say t. Thus t divides  

1
1

d
nq p

q
−

=
−

, implying t p= . However, as 1
1

rq
q
−
−

 divides 1
1

dq
q
−
−

, we have  
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1
1

rq
q
−
−

 is also a power of p, and hence t p=  divides 1rq − , which is a contra-

diction. 
Now, suppose 2q = . Then p is odd. If n is even, then  

( )2 1 2 4d np= + ≡ mod , yielding a contradiction. Thus n is odd. Since  
1| 1np p+ + , 1 2sp + =  for some 2 s d≤ ≤ , so 2 1s p− =  divides 2 1n dp = − . 

It follows ( ) ( ),2 1 2 1,2 1 2 1s ds s d− = − − = − , implying s d=  as 2s ≥  and d is 
a prime. Hence 2 1 2 1s d np p= − = − =  and 1n = .                       

Lemma 3.2. Suppose ( )SymG NH= ≤ Ω , where N G�  and H G≤ . Then 
.G N oα α= , where α ∈Ω  and ( )o H H N≤ ∩ . In particular, if N is transitive 

on Ω , then ( )o H H N≅ ∩ .  
Proof. Since N G� , N Gα α� . As  

( ) ( )G N G N G NG N G N NH N H H Nα α α α α= ≅ ≤ = ≅∩ ∩ , we have  
( ):o G N H H Nα α= ≤ ∩ . Particularly, if N is transitive on Ω , then NG Gα =  

and hence ( )o H N H≅ ∩ .                                          
The next lemma is possibly known. As the authors find no proper references, 

a proof is given. 
Lemma 3.3. Let Γ  be an X-vertex-transitive K-cover of Σ  with X ≤ ΓAut . 

Then ( )X X Kα δ
≅ , where Vα ∈ Γ  and Vδ ∈ Σ .  

Proof. By assumption, K X�  is semiregular on VΓ  and X K ≤ ΣAut  is 
transitive on VΣ , so the vertex stabilizers of X/K on VΣ  are conjugate. Thus, 
without loss of generality, we may assume K Vδ α= ∈ Σ . Then  

( )X X K K X Kα α δ
≅ ≤ . On the other hand, as  

( ): : ,X X V K V K X K X Kα δ= Γ = Σ =  

we have ( )X X Kα δ
= . Hence ( )X X Kα δ

≅ .                         

3.2. Examples 

Clearly, the complete bipartite graph deleting one factor , 2n n n−K K  is a 2 - 
cover of nK . 

The next family of examples is a subfamily of the graphs ( )1 4,X q , which is 
first obtained in [7], arising from voltage graphs. 

Let Σ  be a graph and K a finite group. A voltage assignment (or K-voltage 
assignment) of the graph Σ  is a function :f A KΣ →  such that  
( ) ( ) 1, ,f fα β β α −=  for each ( ), Aα β ∈ Σ . Then the derived voltage graph 

f KΣ×  from the voltage assignment f is defined with vertex set V KΣ×  (Car-
tesian product), and ( ), gα  is adjacent to ( ),hβ  if and only if ( ), Aα β ∈ Σ  
and ( )1 ,hg f α β− = . 

Example 3.4. ([7]) Let ( )3 4q ≡ mod  be a prime power and *
qF  the multip-

licative group of the q-elements field qF . Let ( )S q  be the set of all squares in 
*

qF  and ( )N q  the set of all non-squares in *
qF . Let 1q+Σ = K , with the vertex 

set being identified with the projective line ( ) { }1, qPG q F= ∞∪ . 
Define the graph ( )1 4,X q  be the voltage graph f KΣ× , where 4K ≅   
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and the voltage assignment :f A KΣ →  is given as following: 

( )
{ }

( )
( )

0 if ,
, 1 if

3 if

x y
f x y y x S q

y x N q

∞∈
= − ∈
 − ∈

 

The following two families of examples are arising from coset graphs, giving 
rise to examples as in part (2) of Theorem 1.1. 

Example 3.5. Suppose that 2 1 7n − ≥  is a prime and 2km m′=  with 1k ≤  
and 1| 2 1nm −′ − . Let mK a= ≅  , ( )PSL 2,2 1nT = −  and G K T= × , and let 

12 1 2 1
: :n nb c −− −

≅    be a maximal parabolic subgroup of T. Then the nor-
malizer ( ) 2 2nTN c D

−
≅ . Let ( )Tg N c∈  be an involution. 

Set  

( ) ( )
{ } ( )( )

1 2

1 1 1 1

1, , , ,

, , , .

k

m

H b a c

G H H a g H′

 =

 = Cos

 

Lemma 3.6. Using notations as in Example 3.5. Then { }1  is a G-arc-transitive 

m -cover of 
2nK .  

Proof. Since ,b c  is maximal in T and ,g b c∉ , , ,b c g T= . Let  

( )1, ,mX H a g′= . Since T is nonabelian simple, we have  

 
( ) ( ) ( ) ( )

[ ]( ) [ ]( ) { } { }

21, , , , , , , |

1, , , 1, , | 1 1 ,

k xxm m

t t

X b a g a c a g x X

b g c g t T T T

′ ′  ′ = ∈    

′⊇ ∈ = × = ×
 

where X ′  and T ′  denote the commutator subgroups of X and T, respectively. 
In particular, ( )11, g −  and ( )11,c−  are in X, so ( ),1ma ′  and ( )2 ,1

k
a  are in X. 

It then easily follows X G= , so { }1  is connected. Also, as 1
1

2 1 2 1
:n nH −− −

≅   , 
{ }1 1: 2nV G H m= = , and as ( )Tg N c∈ , ( )( )

1

,1 1
2 1

m

n

a g
H H

′

− −
≅∩  . By 

Lemma 2.5, { }1  is a G-arc-transitive graph of order 2n m  and primes valency 
2 1n − . 

Set { }1N K= × . Clearly m N G≅ � . Noting that each element 1x H∈  has 
a form ( )2 ,

k i j ix a b c= . If x N∈ , then 1j ib c = , so 1j ib c= = , implying  
12 1|n i− −  and 2 1

k ia = . Hence 1x = , that is, 1 1N H =∩ . Now, N is semiregu-
lar and has 2n  orbits on { }1V . By Theorem 2.4, { }1  is a m -cover of { }1

N . 
Since { }1

N  is of order 2n  and valency 2 1n − , { }1
2nN ≅ K .                 

Example 3.7. Suppose that 2 1 7n − ≥  is a prime and 2km m′= , where  
1 2k≤ ≤  and 1| 2 1nm −′ − . Let mK a= ≅ � , ( )SL 2,2 1nS = −  and  
G K S= �  is a central product of K and S such that 2K S ≅∩  . Then there exist 
,b c S∈  and an involution ( )Sg N c∈  such that 12 1 2 1

: :n nb c −− −
≅   , and 

, ,b c g S= . 
Set  

 
{ } ( )( )

2 2

2 2 2 2

, ,

, , .

k

m

H b a c

G H H a g H′

 =

 = Cos
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Lemma 3.8. Using notations as in Example 3.7. Then { }2  is a G-arc-transitive 

m -cover of 
2nK .  

Proof. With similar discussion as in the proof of Lemma 3.6, one may show 
that 1K H =∩  and { }2  is a G-arc-transitive graph with order 2n m  and prime 
valency 2 1n − . Since K G�  has 2n  orbits on VΓ , by Theorem 2.4, Γ  is an 
arc-transitive m -cover of KΓ . Since KΓ  is of order 2n  and valency 2 1n − , 

2nKΓ ≅ K .                                                         
We remark that, in Lemmas 3.6 and 3.8, the groups isomorphic to 12 1 2 1

:n n−− −
   

are conjugate in ( )PSL 2, 2 1n −  and ( )SL 2,2 1n − , it is then easy to see that 
the graphs { }1  and { }2  are independent (up to isomorphism) of the choices 
of ,a b . 

4. Proofs of Theorems 1.1 and 1.2 

In this section, we will prove Theorems 1.1 and 1.2. 
Proof of Theorem 1.1. Let X be the fibre-preserving group and K the cover-

ing transformation group. Then X acts edge-transitively on Γ , : mK a= ≅ �  
is normal in X, and :Y X K=  acts edge-transitively on Σ . 

If Y is 3-transitive on VΣ , then Σ  is ( ), 2Y -arc-transitive, and so Γ  is a 
2-arc-transitive m -cover of np

K . By ([17]: Theorem 1.1), either 2m =  and 

2,n n
n

p p
pΓ ≅ −K K , as in part (1)(i) of Theorem 1.1; or 4m =  and  

( )1 4,X qΓ ≅  with ( )1 3 4nq p= − ≡ mod , so 2p = , and by Lemma 3.1,  
2 1 7nq = − ≥  is a prime, as in part (1)(ii) of Theorem 1.1. 

Thus, from now on, suppose that Y is not 3-transitive on VΓ . Since Y acts 
edge-transitively on np

K , Y is 2-homogeneous (so primitive) on VΓ  of degree 
np . Hence, either Y is affine or almost simple. Let Vα ∈ Γ  and Vδ ∈ Σ . 
Suppose first Y is almost simple with socle T. Then T is transitive on VΣ , so 
: nT T pδ = . Hence the tuple ( ),T Tδ  (as ( ),T H  there) satisfies Proposition 

2.1. Noting that, if T satisfies parts (i, iv, v), then T is s-transitive with 3s ≥ , which 
is not the case; if ( )PSU 4,2T =  as in part (vi), then ( ) ( ) 2PSU 4, 2 .Y T≤ = �Aut  
is not 2-homogeneous, also not the case. So ( ),T Tδ  satisfies parts (ii) and (iii) 
of Proposition 2.1. In both cases, T is 2-transitive on VΣ  and so is arc-transitive 
on Σ , hence : .G K T X= �  is arc-transitive on Γ . By Lemma 2.6, .G K T=  
is a central extension, and by Lemma 3.3, G Tα δ≅ . 

Assume ( ) ( )( )5, PSL 2,11 ,AT Tδ = . Then 11Σ = K , ( ).PSL 2,11G K=  and 

5AGα ≅ . As the Schur multiplier ( )( ) 2PSL 2,11 ≅ Mult , by Lemma 2.6,  
( )PSL 2,11G′ ≅ , or ( )SL 2,11  with m even. Since G G′� , 5AG Gα α′ ≅� , im-

plying 1Gα′ =  or 5A . If 1Gα′ = , Lemma 3.3 implies ( )5A G K K Gα ′≅ ≤ ∩ , 
which is a contradiction. So 5AGα′ ≅ , and hence ( )SL 2,11G′ ≅/  as ( )SL 2, r  
with 5r ≥  an odd prime has a unique involution by ([18]: Lemma 7.4). Thus 

( )PSL 2,11G′ ≅ , G K G′= × , and G′  has exactly K m=  orbits on VΓ . If 
3m ≥ , then G′Γ  is G/M-arc-transitive of order K , where M G′⊃  is the 

kernel of G acting on the set of G′ -orbits on VΓ , which is a contradiction as 
( )G M K K M≅ ∩  is cyclic. Thus 2m =  and G′  has exactly two orbits on 

VΓ , by ([17]: Lemma 2.4), 11,11 211Γ ≅ −K K  is the standard double cover of 
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11Σ = K , as in part (1)(i) of Theorem 1.1. 

Assume now ( )PSL ,T d q=  with 
1

1

d
n qp

q
−

=
−

, as in part (ii) of Proposition 

2.1. By Lemma 3.1, d is a prime. We divided our discussion into three cases. 
Case (i). Suppose ( ) ( ), 1d qT −≅ Mult  and | 1d q − . 
In this case, ( )11 0n dp q q d−= + + + ≡� mod , so d p=  and 1q pt= +  for 

some 1t ≥ . It follows  

 

( )
( ) ( ) ( )

( )

1

22

2 2 1

1 1

1
1 1

2
1

1 ,
2

pn

p

p p

p t pt

p p
p t pt pt

p p
p t t p t

+

− −

= + −

−
= + + + + −

− 
= + + + 

 

�

�

 

so 
( )1 2 11

1
2

n p pp p
p t p t− − −−

= + + +� , implying 2p = . Now, 2 1n q− =  is a  

prime power, by Lemma 3.1, we further have that 7q ≥  is a prime. Hence, 

( )PSL 2,2 1nT = − , 
2nΣ = K  is of prime valency 2 1n − , and so is G-locally- 

primitive. As .G K T=  is a central extension and ( ) 2T ≅ Mult , by Lemma 
2.6, ( )PSL 2, 2 1nG′ ≅ −  or ( )SL 2,2 1n − . Since 12 1 2 1

:n nG G Tα α δ −− −
′ ≅ ≅�   , 

a parabolic maximal subgroup of T, either 1Gα′ =  or 
2 1

:n lGα −
′ ≅    for some 

1| 2 1nl − − . If 1Gα′ = , Lemma 3.2 implies that ( )G K K Gα ′≤ ∩  is cyclic, 
which is contradicts. Thus 

2 1
:n lGα −

′ ≅   . 
Assume ( )PSL 2, 2 1nG′ ≅ − . Then G K G′= × . Since 2nV mΓ =  and  

( )
( )

( )1PSL 2,2 1 2 2 1

2 1

n n n
G

n ll
α

−
′

− −
= =

−
, G′  has 12 1n

ml
− −

 orbits on VΓ . If  

1 3
2 1n

ml
− ≥
−

, by Theorem 2.4, G′Γ  is G G′ -locally-primitive of valency 2 1n − , 

which is a contradiction as G G′  is abelian. Thus 1 2
2 1n

ml
− ≤
−

 and | 2 2nm − .  

Write 2km m′= , where 0 1k≤ ≤  and 1| 2 1nm −′ − . Since ( ), 2 1 1nm − = , each 
element of order 2 1n −  of G has a form ( )1,b  with b G′∈ , and each cyclic 
subgroup of order 12 1n− −  of G has a form ( )2 ,

k ia c  with |i m′  and c G′∈ , 
we thus may suppose ( ) ( )21, : ,

k iG b a cα = . As  

( ) ( ) ( )( )22 , ,1 1
kk o c

io cia c a K Gα= ∈ =∩ , we have ( ) ( )2 |
k io a o c  and hence  

( ) ( )2 1, 2 1
k i no c o a c −= = − . Also, noting that a 2-element of G can be expressed 

as ( ),m ja g′ , where 0 1j≤ ≤  and g G′∈  is a 2-element. By Lemma 2.5, we may 
suppose ( )( ), , ,m jG G G a g Gα α α

′Γ ≅ Cos . Since ( ) 2 1nΓ = −val , ( )Tg N c∈ . 
By the connectedness of Γ , ( ), ,m jG a g Gα

′ = , it follows that , ,b c g G′=  
and 2 ,

k i m ja a a′ = , implying 1i j= =  as 1| 2 1ni − −  and 0 1j≤ ≤ . Hence 
{ }1Γ ≅   as in Example 3.5, and which is really an example by Lemma 3.6. 

Assume now ( )SL 2,2 1nG′ ≅ − . Then m is even and G K G′= �  is a central  

product with 2K G′ ≅∩  . Because 
( )
( )

( )1 1SL 2,2 1 2 2 1

2 1

n n n
G

n ll
α

+ −
′

− −
= =

−
, G′  
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has 
2 2n

ml
−

 orbits on VΓ . If 3
2 2n

ml
≥

−
, Theorem 2.4 implies that G′Γ  is G G′

-locally-primitive, which is impossible because G G′  is abelian. So 2
2 2n

ml
≤

−
 

and 1| 2 4nm + − . Set 2rm m′= , where 1 2r≤ ≤  and 1| 2 1nm −′ − . As each 2- 
element of G can be expressed as m ja g′ , where 0 2j≤ ≤ , and g G′∈  is a 2- 
element. By Lemma 2.5, we may assume ( )( ), , m jG G G a g Gα α α

′Γ ≅ Cos . Now, 
with similar discussion as in the above paragraph, one may prove that 1j =  
and { }2Γ ≅   as in Example 3.7, giving rise to example by Lemma 3.8. 

Case (ii). Suppose ( ) ( ), 1d qT −≅ Mult  and 1d q − . 
Recall that d is a prime, ( ) 1T =Mult . It then follows from Lemma 2.6 that 

G T′ ≅ , and ( )PSL ,mG K G d q′= × ≅ × . 
If 2d = , as 1d q − , q is 2-power, so ( ) ( )PSL 2, PGL 2,Y T q q≥ = =  is 3- 

transitive on VΣ , which contradicts the assumption before. 
Thus 3d ≥ , and  

( ) ( )
1

1 1, 1. .PSL 1, . ,d
q d qG T q d qα δ

−
− − −

 ≅ ≅ −     

a maximal parabolic subgroup of T, where 1dq −    denotes the elementary ab-
elian group of order 1dq − . If G′  has at least three orbits on VΓ , then G′Γ  is 
G/P-arc-transitive, where P is the kernel of G acting on the G′ -orbits in VΓ , 
which is not possible as P G′≥  and G G K′ ≅  is cyclic. So G′  has at most 
two orbits on VΓ . By Lemma 3.2, ( )G G K K G Kα α′ ′≤ =∩  is cyclic, and as 

: :G G G Gα α′ ′=  or 2 :G Gα′ , :G G mα α′ =  or 2m , we conclude that 
( )| 2 1, 1m d q− − , as in part (3) of Theorem 1.1. 

Case (iii). Suppose ( ) ( ), 1 d qT −≅/ Mult . 

Since 
1

1

d
nq p

q
−

=
−

 is a prime power, checking the candidates in Lemma 2.7,  

the only possibility is ( ) 2T ≅ Mult , and either ( ) ( ), 2, 4d q =  and 5VΣ = , 
or ( ) ( ), 3, 2d q = , and 7VΣ = . For the former case, ( ) 5PSL 2,4 AT ≅ ≅  is 3- 
transitive on VΣ , so is Y, which contradicts the former assumption. 

Consider the latter case. Then ( ) ( )PSL 3,2 PSL 2,7T ≅ ≅ , 4SG Tα δ≅ ≅  and 
( )PSL 2,7G′ ≅  or ( )SL 2,7  by Lemma 2.6. By Lemma 3.2, we have 1Gα′ ≠ , 

so 2
2 4,AGα′ ≅   or 4S  and hence ( )SL 2,7G′ ≅/  by ([18]: Lemma 7.4). Thus 
( )PSL 2,7G′ ≅  and G K G′= × . Since G G′  is abelian, G′  has at most two 

orbits on VΓ  by Theorem 2.4. If G′  is transitive on VΓ , then  

4S . mG Gα α′≅ =  , so 2m =  and 4AGα′ = , a simple computation by using 
Magma [19] shows that no example exists in this case. If G′  has 2 orbits on 
VΓ , then 

2

. mG Gα α′=   with m even, it follows that either 2m =  and  

4SG Gα α′ = = , or 4m =  and 4AGα′ = . For the former case, by ([17]: Lemma 
2.4), 7,7 27Γ = −K K . For the latter case, no example occurs by Magma [19]. 

Suppose now that Y is affine. Then n
pT =  , and Σ  is a Y-normal edge- 

transitive Cayley graph of T, and in turn, Γ  is an X-normal edge-transitive 
Cayley graph of .K T . This completes the proof of Theorem 1.1.             

Proof of Theorem 1.2. Let X be the fibre-preserving group and let  

https://doi.org/10.4236/jamp.2022.102022


Z. H. Huang, Y. Liu 
 

 

DOI: 10.4236/jamp.2022.102022 299 Journal of Applied Mathematics and Physics 
 

: mK a= ≅   be the covering transformation group. Then K X� , :Y X K=  
acts locally-primitively on Γ  and hence satisfies Theorem 1.1. If Γ  satisfies 
part (3) of Theorem 1.1, then ( )( )PSL ,Y d q≤ Aut  with 3d ≥  acts locally- 
primitively on Σ , so Y is 2-primitive on the set of project points, which is a 
contradiction by ([20]: Lemma 2.5). 

Assume that Γ  satisfies part (4) of Theorem 1.1. Then Y is affine with socle 
n
pT ≅  , and Σ  is a Y-normal locally-primitive Cayley graph of T. By Lemma 2.3, 

2p = . Let ( )XC C K= . Then C K≥ . If C K= , then ( )mY X K= ≤ Aut  
is abelian, which is a contradiction. 

Thus, C K> . Then 1 C K Y≠ � , and so T C K�  as T is the unique mi-
nimal normal subgroup of Y. Let R X�  such that R C⊆  and R K T≅ . Then 

.R K T≅  is a central extension, and Γ  is an X-normal locally-primitive Cayley 
graph of R. Write 2dm m′=  with m′  odd. If 1m′ > , then 2:

d
N a X= � , 

and by Theorem 2.4, NΓ  is an X/N-normal locally-primitive Cayley graph of R/N. 
However, as 2. n

mR N ′≅    is a central extension, we have 2: n
mR N ′≅    is 

abelian, by Lemma 2.3, which is a contradiction. Hence 2dm = , and Γ  satis-
fies part (4) of Theorem 1.2.                                           

Corollary 1.3 follows immediately by Theorem 1.2. We finally prove Corollary 
1.4. 

By assumption, Γ  satisfies part (1)(i) or (2)(iii) of Theorem 1.2 with 2n = . 
For the former, part (1) of Corollary 1.4 holds. For the latter, 4Σ ≅ K , it then 
follows from ([4]: Theorem 6.1) that either 4,4 24Γ ≅ −K K , or ( )8,3PΓ ≅  is 
the generalized Peterson graph as in Corollary 1.4(2).                      

5. Conclusion 

In this paper, a characterization of edge-transitive cyclic covers of complete 
graphs with prime power order is given by using the techniques of finite group 
theory and the related properties of coset graphs. Certain previous results are 
generalized and some new families of examples are founded. 
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