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Abstract

In this paper, we study the long-time behavior of a class of generalized nonli-
near Kichhoff equation under the condition of n dimension. Firstly, the Lip-
schitz property and squeezing property of the nonlinear semigroup related to
the initial-boundary value problem are proved, and then the existence of its
exponential attractor is obtained. By extending the space E, to E,,afamily
of the exponential attractors of the initial-boundary value problem is ob-
tained. In the second part, we consider the long-time behavior for a system of
generalized Kirchhoff type with strong damping terms. Using the Hadamard
graph transformation method, we obtain the existence of a family of the iner-
tial manifolds while such equations satisfy the spectrum interval condition.

Keywords

A Family of the Exponential Attractors, Inertial Fractal Set, Squeezing
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1. Introduction

Exponential attractor is a compact positive invariant set with finite fractal
dimension and exponentially attracts every orbit, which is an important feature
to describe the long-term behavior of nonlinear partial differential equations. In
reference [1], since Foias and others put forward this concept in 1994, many
mathematicians have made in-depth research on exponential attractors. Inertial
manifold refers to the positive invariant Lipschitz manifold of finite dimension,
which includes the global attractor attracting all solution orbits at exponential
speed, and it is an important bridge between infinite dimensional dynamical

system and finite dimensional dynamical system.
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In reference [2], the author studied the exponential attractors of the following
nonlinear wave equations by using operator decomposition and finite covering

methods.
U, +au —Au+g(u)=f(x),(x,t)e QxR",
u =0,(X,t)68§2>< R,
u(x,0)=uy(x),u; (x,0)=uy(x).

Contrary to the global attractor, the exponential attractor has a uniform
exponential convergence rate on the invariant absorption set of its solution.
Because of this, the exponential attractor has deeper and more practical properties,
and under the perturbation and numerical approximation, the exponential attractor
is more robust than the whole attractor.

In reference [3], Perikles G. Papadopoulos, Nikos M. Stavrakakis studied the

global existence and blow-up of the following equations
U, —¢5(x)||Vu(t)||2 Au+6u, =u["u,xeR",t>0

Initial condition u(x,0)=u,(x),u,(x,0)=u,(x).
Li et al [4]. studied the global existence and blow-up of solutions for the

following high-order Kirchhoff type equations with nonlinear dissipation terms

q
Uy +U|Vu|2 dxj (-A)"u+u fu | =]u)’uxet>0;
Q

uj, =0,i=1---,m-1t>0;

oQ

u(x,0)=u,(x),u (x,0)=u,(x),xeQ.

where Q< R"(N >1) isabounded open region with smooth boundary, v is
an outward normal vector, m>1 is a positive integer and p,q,r>0 is a
normal number. In this paper, using the concavity method, it is obtained that
the solution has global existence when p<r, but when p> max{r,Zq} , for
any initial value with negative initial energy, the solution explodes in a finite
time with the norm in L"*?. Salim [5] not only improves the results in reference
[4] by modifying the proof method, but also proves that when the positive initial
energy has an upper bound, the solution explodes in a finite time. Inspired by
reference [4] [5], Ye et al [6] studied the following hyperbolic equations of

Kirchhoff type with damping term and source term:

1 |9

U+ AZu|  Au+alu | u =bjuf T uxeQt>0;
o'u .

ul,=0—| =0/i=1--m-1t>0;

oQ avl o

u(x,0)=uy(x),u (x,0)=u,(x),xeQ.

where A:(—A)m , m>1 is a positive integer, Q c R" is a bounded region
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with smooth boundary, v is an outward normal vector, and a,b,p>0 and
g,r >2 are normal numbers. The author not only obtains the global existence
of the solution by constructing a stable set in H,', but also proves the estimation
of energy attenuation by using Komornik lemma.

For more research on exponential attractors and inertial manifolds, we can
read the literature [7]-[16].

Inspired by the above research, this paper will discuss a family of the existence
of exponential attractors and inertial manifolds of a generalized Kirchhoff equation

with damping term:

Uy +M (|Vmu

:)(—A)Zm u+B(=A)"u, +ul” (u +u) = f(x),

u(xt)=0,2Y 20,i=1,2,,2m-Lx e 8.t >0, )
ov'

u(x,0)=u,(x),u (x,0)=u,(x),xe Q= R",
where meN*, Q< R"(n>1) is a bounded domain with smooth boundary

oQ, f(X) is an external force term, M(|Vmu

p
) is the stress term of
p

Kirchhoff equation, £>0, B (—A)zm U is a strong dissipative term,

|u|p (ut + u) is a nonlinear source term.

p
v™u ) and
p
nonlinear terms |u|”(u,+u). In order to overcome the difficulties, certain

In this paper, our main difficulty is the handling of M (|

assumptions are needed to solve them. The algorithm of proof process has been
used by predecessors. The previous algorithms are combined and extended to
solve the difficulty of nonlinear term in the paper. This paper is organized as
follows. Section 2 is some basic assumptions. Section 3 proves the existence a
family of exponential attractors. Section 4 proves the existence of a family of the

inertial manifolds by using the Hadamard graph transformation method.

2. Preliminaries

For brevity, we used the follow abbreviation:

H=1(Q)s [l =M, H"(@)=H"(QNH (),
H™(Q)=H*™  (Q)NH;(Q), E =H{™*(Q)xHg(Q),(k=0,12,---,2m)
and C;(i=0,1,2,---) denotes positive constant, 4, is the first eigenvalue of
—A with homogeneous Dirichlet boundary conditionon Q.

The notation (,),|||| for the H inner product and norm,that is

(u,v) = Ju(x)v(x)dx, (u,u) =|ulf-

(H1) &ssume that Kirchhoff type stress term M (s)e c? ([0, +o0], R) satisfies:

d 2
/.Io,a"vzmu > 0,
I<pg SM(S)< gy, u= d
2
,ui,—"Vzmu <0.
dt
where u isa constant.
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(H2) p£8—m.
n

3. Exponential Attractors

We denote the inner product and normin E, as following:

VU, =(u,v;) e E.(i=12),

we have

(Ulruz)Ek :(V2m+ku1,V2m+ku2)+<Vkvl,vkvz)’ (1)
Ve =), =Vl + v )

Setting VU =(u,v)" € E,,v=U, +&u, then Equation (1.1) can be converted

into the following first-order evolution equation

U +H(U)=F(), (3)
where
gu—v
H(U)= ) o 2 @)
—ev+eu+ B(-A) T v+(1-Be)(-A) U
0
(5)

v™u

|l ) oo

In order to accomplish the proof, we need to construct a map. Let Ej,E, are

two Hilbert spaces with E, - E;, is dense and continuous injection, and
E, — E, is compact. Let S(t) is a solution semigroup generated by Equation
(3.3).

In the following definitions, k=1,2,---,2m.

Definition 3.1 [17] A compact set M, c E, is called an exponential
attractor for (S(t),B,) if A cM, B, and

1) S(t)M, =M, ,vt>0,

2) M, has finite fractal dimension, d. (M v ) <400,

3) There exist universal constans C,,C, such that

dist(S(t)B,, M, ) <Cpe ™, vt >0, (6)

where dist; (A ,B,)=sup inf ||X—y||E , B, is a positively invariant set for
. xe Ay yeBy k
S(t) in E,.

Definition 3.2 [17] If for every 5e(0,%j, there exist a time t >0, an

integer N, 21, and an orthogonal projection B, of rank equal to N, such

that for every Uand Vin By, either

Is(t)u-s(t)v . <oVl 7)
or
o, (s(t)u-s(t')v) _<[Pu(se)u-s(c)v)]_ . (8)
DOI: 10.4236/jamp.2022.101013 175 Journal of Applied Mathematics and Physics
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then we call S(t) issqueezingin B, where Qy, =1-F,-
Theorem 3.1 [1] Assume that
1) S(t) possessesa family of (E,,E,)-compactattractors A,
2) S(t) exists a positive invariant compact set B, < E,
3) S(t) isa Lipschitz continuous map with a Lipschitz continuous function

I(t) on B,, such that "S(t)u—S(t)v"E SI('[)"U—V”Ek , and satisfied the
k
discrete squeezing property on B, .
Then S(t) has a family of (E,E,)-compact exponential attractors M,
and

M= U S(t)M, ©)

ostst”

where
M;:&U(DOS(t*)j(E(i))]. (10)

Moreover, the fractal dimension of M, satisfies dp(M,)<1+cN,, where
N, is the smallest N which make the discrete squeezing property established,
k=1,2,---,2m

Proposition 3.1 [1] There exist t,(D,) such that

B.= U S(t)D,.

0<t<ty(Dy)

is the positive invariant set of S(t) in E;, and B, attracts all bounded
subsets of E,, where B, isa closed bounded absorbing set for S(t) in E,.
Proposition 3.2 [1] Let By, B, respectively are closed bounded absorbing set
of Equation (3.3) in EyE,, then S(t) possesses a family of (E, E,)
-compact attractors A .
Under of the appropriate hypothesized, the initial boundary value problem
Equation (1.1) exists unique smooth. This solution possesses the following

properties:
I, =V I <c(R) an
W =zl +|vf <c(R,). (12

We denote the solution in Theorem 3.1 by S(t)(U,)=U, the S(t) is a

continuous semigroup in E;, There exist the balls:
D, ={U eE,:|U[}, <C(R))}, (13)
D ={U eE Ul <C(R,)}. (14)

respectively is a absorbing setof S(t) in E, and E,.
Lemma 3.1 For VU = (u,v)T € E,, when we can obtain

(HUW), 2kl +k[vey. (15)

DOI: 10.4236/jamp.2022.101013

176 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.101013

G. G. Lin, X. M. Liu

Proof. By (3.1), (3.4) we get
(H(U),U )Ek
_ (8(V2m+ku)_v2m+kV’V2m+ku)

+(—gV"v+gZV"u+ﬁ(— )Zmz v+(1-Be) (- )Zmzu \Y vj (16)

2 2 2
=g||V2"”ku —g”Vkv" +32(Vku,v"v)+ﬂ”V2m+kv|

_ ﬂS(V2m+kU, V2m+kv)l

By employing Holder’s inequality, Young’s inequality and Poincaré’s inequality,

we process the terms in (3.16), we have

e L e e e L e o L

22m

_ﬂg(VZerku,VZerkv) > _%”VZerku”Z _%"VZWKV |2 _ (18)

By the value of ¢ ,and substituting (3.17)-(3.18), we have

2

(H (U ),U )Ek > [6‘ - Zj,lzm _%j"verkU"Z

2m 2 (19)
{&_g_g_Juvkvuz{ﬁﬁjuvzwvr.
2 2 2 2
because of 0<£<min{Zﬂfm—ﬂﬂfm,\/1+ﬂﬂfm —1,1}, $0 8—222 —% ;
PR 8o P_Pey
2 2 2 2
Let k1=min{g—g—z—ﬁ,m—g—g—2}, k2=£—£,wecanget
24" 2 2 2 2 2
(HU)U), 2kl +k, [vems|f
The proof is completed.
Let S(t)U,=U(t)= ( (t),v(t))", where v(t)=ut(t)+gu(t),
S(t)V, =V (t)=(T(t), V(1)) , where V(t)=T,(t)+eT(t),
Next set ¢( )= () S(t)V U(t) () (W(t),Z(t))T,where
Z(t):wt (t)+8W( ),then ¢(t) satisfies:
¢ (t)+HU)-H(V)+F(V)-F(U)=0, (20)
¢ (0)=U, -V, (21)

In order to certify Equation (1.1) exists a family of exponential attractors,we
first show the semigroup S(t) of system (1.1) is Lipschitz continuous on B, .
Lemma 3.2 (Lipschitz property) For YUV, € B, , where UV, is the initial

values of problem (1.1), and t >0, we have

DOI: 10.4236/jamp.2022.101013 177 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.101013

G. G. Lin, X. M. Liu

IS (U =S (0., <€ IUs Ve, - (22)

Proof. Taking the inner product of the Equation (3.20) with ¢(t) in E,, we
have

LWL +HW)-H)0), (a7 T wra()]
+(|v| ( z)(—A)”“*z u-M ( z)(—A)Z"‘*z vz (t )] (23)

+(V* (ul” (u o) -l (@ ). Vo2 (1)) =0,

Next, we deal with the following items one by one. Similar to Lemma 3.1, we

v™u

easily obtain
(HU)-HV)6(0), =(HE0)60), >k O, k|7 20 .o

=|vV"O

For convenience, let’s call s= "Vmu”Z S E, then by (H1) and using

the mean value theorem, Young’s inequality, we have
(M( z)(_A)”“zu M( ")(_A)Zm*zuvz(t)]
(Mmoo uva()

v

< +
(25)
< ﬂ|V2m+kW|2 +ﬂ|V2m+kZ 2 +C2|V2m+kw||V2m+kZ
2 2
< H +C2 |v2m-¢-kw|2 + H +C2 ||V2m+kZ 2
2 2

For the last term, we apply the mean value theorem, by (H2), we have
( (T +T)—|u]” (u, +u)) sz(t))

<C I(|u|p |u|p)dx|V W||V z|+C I(|u|p |u]® dx|V w||V z|
Q

. ( [llv w[ ¥ Z|| ]
3 )
o ( j[llV of v ]
) () 2 2

By the interpolation inequality
[l <c|

IA

o’

+|[u

|P

01 ey U0,

L (@)

iy
4m
)

vang

In the same way with

4 2m %
||u||wsCG|V u

m
where p < 8—
n
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Therefore
(V" (" (v +u) [} (& +)). V"2 (1))

<c, ["Vz"‘u

+C8{|
+C, U

o
am |l 2mglam "V Wt"

o ) (26)
i

el
<[

Integrating (3.24) - (3.26) into (3.23), we have

pn
— 2
v2my|em +|v2mU vkz||

on
am 4

V2"u

|v2mU

pn
VZmu am 4 VZmU V2m+kW

£ 2
v2ny|am +|V2mU vkz|| .

1d c )
55"4”0)"; +k o0 +(k2 - “l; 2 _1]||V2m P
< [%CZ'F 2mC9 [| VZmu % + Vsz ‘/;;‘J +1J||V2m+kw|2

(27)

gl 2
+Cg[||v2"“u||4m+|V2mU vy

on
4m

<Culo (0,

where
Cy, = Max {%Cz+ A"C, ["Vz”‘u in 4 VAT f:*J -1,C, U V¥ i +|V2"‘U ff:j} :
By using Gronwall’s inequality, we have
(o), <€ o (o), =¢" o O], 28)
where T =2C,,, 5o we have
s (H)Uy - (t)Vo ; <e" U, Vo, - (29)

The proved is completed.

Now,we introduce the operator —A, Obviously, —A is an unbounded
self-adjoin positive operator and (—-A )71 is compact. So, there is an orthonormal
basis {W} " of Hconsisting of eigenvectors w, of —A such that
(—A)Wj =AW, , 0<A4 <4 <--<A —>+0 . VN denote by P=R; the
projector, P, isan orthogonal projection, Q=Q, =1-PR,.

As follows,we will need
“(—A)Zm u

Lemma 3.3 For VU,,V, € B, , where U,,V, Is the initial values of problem

> 227 Jull.u € Qq (H2" (Q)NHE (Q)),
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(1.1). Let

Qry (1) = Qn, (U (6) =V (1)) = Qr, (#(1)) = (W, (1), 2, (1))

then we have

2

¢, (0], - (30)

2 C AZm
t <| o2t 197N+ ot
¢n0 ( )||Ek [e * 2k1 +r ¢ J

Proof. Applying Q, to (3.20), we have
e (1)+Q, (H(U)-H(V))+Q, (F(V)-F(U))=0. (31)
Taking the inner product of (3.31) with Q, (t) in E, ,we have
<o, O +kl, O +k (v 2, )
{aymem, @592, 0|
) (32)
+[Qn0 gl J-aymia v, (t)]
+(Vk (Qu (4l (1 +u)-[af” (@ +1))) V"2, (t)) -0,
Next, we deal with the following items one by one

(o, (vl ™ -l Js ) v, )
- ({5, )", M (s, )4, 52, 0

2

Ey

k

p)(—A)ZerEU—M(

p

v™u v

vV™u

(33)

V2m+kZ

No

2 + ( #+Cyy j|
2
For the last term, we apply the mean value theorem, by (H2), we have

(v (@ (" (@ +)) - (u+u)) 42, (1))
- (Vk ( g (urlot +U, ))'szno (t))

2m+k
vz,
0

2
<t +C,, [V¥™kw
2 11 no

2m+k
VW,
0

< [ﬂl -;Cu j”VkaWnO

2+ﬂ|
2

2
2m+k
vz,

o .

u

Ny

u

Ny

P —
(un(,t + Uno )—

|ka ’ ||sz ’
<Cp, | [, +u, | ol L
ol () i) 2 2
B ”VkWn ? "V"zn ’
Cu | [lT +([u L+ 2
+ 13 no ny
() *(Q) 2 2
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By the interpolation inequality

on
4m
’

l,ln0

P
<C |
Y 14

2m—
Vo,

In the same way with

yl
4m

Up,

r 2m
<
" <Cg|vimu,

where p < 8—m
n

Therefore

(v (@ (1 (@ +)) ol (u +u)}. 2, (1)

pn
< C16 [| 4m )

Ln
o [P oo, 7,

Pl
i

s(mqg (l v,

+Cy, [|

Integrating (3.33) - (3.34) into (3.32), we have

-2 P (t)"2 +(k2 _%Cll—ljnvzmkz% 2

2 dt
pn
4m]+1j|

s{%cﬂwsiacm (I

+Cp U

2m
< C19ﬂ'N +1

pn
— _ 2
vy, |f4m +||V2"‘un Viw,
0 0 0

on 2
4m+

2m
V&l

(34)

2
A

o

on
4m 2m+k
m "V Wy

£ 2
[,
0 0

Ln
am +||V2”‘LTn
0

2m
Vo,

iy 2
4m+

2m
v,

Ln
am 4

2m
v,

i, O, +4

£ 2
am 4 V2m+kwn0 ||

2m
v,

2m—
v,

o 2
4m +|

2m
Vol

Ln
v [
0 0

2
4, (O
where

Ln
4m V2

o
4m
0

2m o
2ﬂ’N +1

p p Cyr [”Vzmuno

+C, +2 2 2

C,, = max (—’ul U= 1Cp, [”VZ"‘UHO 4m yIv2mg |l4m B o
N+1

Using Gronwall’s inequality, we have

2 C /'LZIT\
t <| e 2kt 197N+ o1t
b0, <[ e s S

The proved is completed.

2

i (O, (36)
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Lemma 3.4 (squeezing property) For VUO,V € Bk , i

P, (S(t')U, - ” PYo-s(EM), - 67
k
then we have
s (t")us _s(t")vOHEk g%"uo Vol - (38)
P (S(t)Us=S(t)Vs) . g”(l P, )(S()U, =S (1Y) _ > then
[s(t)uo -s(t)ve .
<[P, (S(t")us-s(t')ve) ; +“(| P )(S(t)Us -5 (t')Ve) ;
. . (39)
£2”(I =P )(S(t)Us -5 (t Vo) ;
2 Cio/is o
2 S oy
Let t* belarge enough
okt” 1
g2kt Sﬁ' (40)
Alsolet n, belarge enough
ClQ/II%ITl rl <_— l (41)
2k +r 256
Subsituting (3.39) - (3.41) into (3.38), we have
“S(t*)uo—s(t*) ; S%||U0—Vo||5k- (42)

The proved is completed.
Theorem 3.2 Under the above assumptions, U,<€E, , k=12,---,2m,

f € H .Then the initial boundary value problem (1.1) the solution semigroup

has a family of (E,E,) -compact exponential attractors M, on B,

= U S(t)[Ak U[UUS('[*)j (E(i))n , and the fractal dimension is
ostst” j=ti=1

satisfied di (M, )<1+cN,.

Proof. According to Theorem 3.1, Lemma 3.2, Theorem 3.2 is easily proven.

4. A Family of Inertial Manifolds

Next, we will prove the existence of a family of inertial manifolds when N is
large enough by using graph norm transformation method.

Definition 4.1 [18] Ler S(t)= {S (t)}tzo be the solution semigroup on
Banach space E, =H{™™*(Q)xHg (Q)(k=12,--,2m), and there is a subset
< By

1) . isafinite-dimensional Lipschitz manifold;
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2) 4 isthe positive invariant set, thatis S(t)z, < ., Vt>0;
3) u, attracts exponentially all orbits of solutions, that is, there are constants
n>0, C>0, Such that

d(S(t)x u )<Ce™ vt=0,VxeE,;

It is said that 4 is an inertial manifold about S(t)= { S (t)}t>0 .
Definition 4.2 [18] Let the operator A:E, — E, have several eigenvalues of

positive real parts, and its eigenfunction {W i }j>1 expands into the corresponding
orthogonal spacein E,,and F eC,(E, E,) satisfies the Lipschitz condition
IFU)-FV)[, <lu-V], UV eE. (1)

If the point spectrum of the operator can be divided into two parts o, and

0,, where o, is finite,

Ay =sup{Rei|leo,| A, =sup{Rei|iea,}, )
E, =span{w;|jec}i=12. 3)
Then
Agr =Ny >4, (4)
E, =E, ®F,, (5)

hold with continuous orthogonal projection B ,:E, > E,_, B,:E, > E_, So
, Ll ' 2
it is said that the operator A satisfies the spectral interval condition, P is
orthogonal projection.
Lemma 4.1 Let the eigenvalues uj,j>1 is non-decreasing and for every
neN, when N 2n, suchthat py and py,, areconsecutive adjacent values.

Equation (1.1) are equivalent to the following first-order evolution equation:
U +AU =F(U), (6)
with
0 —I
p m m |»
J-ay" p(-ay

p

U=(uv) eE,v=u,A= M(| (7)

V™u

F(U)= 0 (8)
( )'[f(x>—|u|ﬂ<ut+u>}

we consider the graph norm on E, , which induced by the scale product
m. ||P 2m+k 2m+k — —
(UV), :(M (77} )=o) . (-a) y)+(V"g,V"v), ©)

where U =(u,v)T Vv =(y,g)T €E,; V,J represent the conjugation of y,g
respectively; u,v,y,g e H?""(Q). Obviously, the operator A defined in (4.2)

is monotone. Indeed, for U € E,,
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(AULU),, =((—v, M (vl -y ,B(—A)zmv),(u,v)J
=[-m (ol -y v -2y )

(vkvvk( ( )— Y u+ B (-A)" )J

— ﬂ||v2m+kv|| >0.

(10)

Therefore, (AU U )Ek is a non-negative real number.
In order to determine the characteristic value of A, we consider the following

characteristic equation
AU =2U,VU =(u,v)' €E,, (11)

that is
-V =Au,

M(|

Substituting the first Equation of (4.12) into the second equation can be

v™u (12)

")ay"us p-ayv=av.

obtained

/12u+M(vm

u)(-a)"u-pr(-a)"u=0. (13)

Taking the inner product of (—A)k U, on both sides of the Equations of (4.13)

respectively, we acquire

A2 ||V“u||2 +M (|Vmu

’ )||v2m+ku||2 - g = 0. (14)

Regarding (4.14) as a quadratic equation of one variable with respect to A,

for jeN", and let S:|Vmu

E, M =M (s), the corresponding eigenvalues of

Equation (4.11) are as follows:

g e e -am vl )¢
2

/1:

=+

: (15)

2m
where j>1, & is the eigenvalue of (—A)Zm in HZ"(Q), then & =4,j" .

P
v™u

i~ ,32

) 4
P , then §j 2—;21, that is all the eigenvalues of A are

positive real numbers, and the corresponding eigenvectors are in the form of

Uji = (uj ,—ﬂjiuj ) . For convenience, we note that for any j>1,

v, | = & 74, =L, - L k=12--2m.(16)

Jé

4M (s
J, N, e N* is Jarge enough, when N >N,,

Theorem 4.1 Assue &; > >

the following inequality holds
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(Gua—40) (AP -4M () -1

S T e o

Then the operator A satisfies the spectral gap condition A, , -A,,; >4l..

o +C "Vz"‘

Proof: It is known that all the eigenvalues of A are positive real numbers,

p=2 m , and the sequence {AT} and {xlf} are monotonically
é:i 1= 1)
increasing.

The following four steps to prove Theorem 4.1.

step 1: Because /Iji is a non-decreasing sequence. According to Lemma 4.1,
given N such that A, and A, are consecutive adjacent eigenvalues, the
eigenvalues of the operator A are decomposed into &, and J,, where 9, is

the finite parts, which are expressed as follows.

8 ={% .4

max {4, 4 <y}, (18)

&, =4 A in{a!, 4 }}. (19)

step 2: Consider the corresponding decomposition of E, .

E, = span{ o ;€ 51}, (20)

E,, = span{U;,Uj+

PRV A (21)

The purpose is to make these two orthogonal subspaces of E, and satisfy the
spectral gap Equation (4.4) is true when A, ,=A;, A,, =4y, . Further
decomposition E, ,then E, =E,_®E

E, =spanU; |4 <4y <A}, (22)

S

E,, =span {U;

PREYIY (23)
and set E, =E, @®E, . Note that E, and E,_ are finite dimensional, that
N C 1 1 C

Ay € B, Ay €Ey, , and that the reason why E, is not orthogonal to E,

is that, while it is orthogonal to E,_ is not orthogonal to E,_

Now we introduce two functions ®:E, — R, ¥Y:E_ — R, defined by
(D(U ,V)Z 2ﬁ (V2m+ku V2m+k )+ zﬁ( —(2m+k) g V2m+k )

N Zﬂ( —(2m+k) V2m+k y) " 4(V—(2m+k)\7, y(2m+k) g) (24)

Y (|vmu p)(vku,vky),
p
2 2m+k 2m+k — 2m+k 2m+k
W(UV) =24 (V2" vy )+ gV I g vt
(25)
+ﬁ( —(2m+k) V V2m+ky)+4(v—(2m+k)g7v—(2m+k)v)’
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with U =(u,v),V=(y,g) , V,J represents the conjugate of y and g
respectively.
For U =(u,v)eE, ,then

CD(U ,U ) _ zﬂz (V2m+k V2m+k )+ zﬁ( —-(2m+k) V2m+k )
+2ﬂ( —(2m+k) V yv2mky )+4(V—(2m+k)v,v—(2m+k)v)
vy (”Vmu"Z)(Vku,VkU)

2

> Zﬂ ||V2m+k Z”V (2m+k),, /7’72”V2m+ku"2 +4HV7(2m+k)v“z

T N
p 2

p 2
oy )l
p

>(a-am (7 I

—-4M ( v"

(26)

= vt - am (fo

For any k, there is B%&, > 4M (&), and according to the initial hypothesis

2
Hy SM(s)< gy < %, thatis ®(U,U)>0, @ is positive definite. Similarly,

for U =(u,v)eE,_,then

T(U,U)Z Zﬂ (V2m+ku V2m+k )+ﬁ( —(2m+k) V V2m+k )

+ﬁ( 2m+k Vszrku)_|_4(V—(2m+k)\7 V—(2m+k)v)
s 25 ||V2m+ku||2+4“v—(2m+k “ g ”Vzm 4“V (2m+k) “2 (27)
= plrf.

that is ‘P(U,U)ZO, Y is positive definite.
Thus ® and ¥ define a scalar product, respectively on E, and E_,

and we can define an equivalent scalar productin E, , by
((U,V»Ek =®(PU,P\V )+ ¥ (RU,RV). (28)
where Py and PB; are projections of E, to E, and E, respectively, for
brief, (4.28) can be abbreviated as the following
((UV)), =@U.V)+¥(UV).
We proved then to show that the subspaces E, and E, defined in (4.20),
(4.21) are orthogonal with respect to the scalar product (4.28). In fact, it is

sufficient to show that EkN is orthogonal to EkC , in turn, this reduces to

showing that

<<u;,u;>>E =®(U7,U7)=0(VU; €E_U; €E, ). (29)
k

Recalling (4.26) and (4.27), VU € E,_,U; €,
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q)(UQ"U;): ﬁ (v2m+ku v2m+k )+2ﬂ( A+V—(Zm+k)ﬁs7v2m+kus)
A
+4( AT I v (Zm*k>us)—4|v| (s)(V*u,. v*T, )

2—2,8(15‘+A;)||u5||2

2m+k

30
V2m+ku ( )

=2p%, —2ﬁ(,1; +1;)+4,1;,155i—4|v| (&)
according to (4.15)
ﬂ‘;+ﬂ’; Zﬂés,ﬂ;lg = M (é:s)és:

thus, (4.30) is equivalent to

DU U] ) =28 -28(% +z;)+4/1;,1;§i—4|\/| (&)=0.

S

step 3: Further, we estimate the Lipschitz constant I of

F(U)=(0.f(x)

YU =(u,v)' €E,U,

T

—[u]” (u, +u)) ,
:(ul’vl) = Pk,1UvU2 :(UZ'VZ)T = Pk,zu!

then

B.u=U, R ,u=u,.

Give U =(u,
[FU)-F V), =|(0far @ +8)-[u" (u+v))

= V(1 8 =Jul” )]+ v (la1 a - o u)]
< Cop (Al +Jul? (V" (3~ )+ v (@-u)])

By the interpolation inequality

v),V :(ﬁ,\7) e E, , we get

a7 <Gy [v2maem

Julf < o2

where p < 8—m
n

Therefore

[FU)-FV,

= (Czojim ( 21| in J-ﬁ-lj("Vzmk
< [{Czoﬁm {CM ”Vzma Z:J+1Jj"u —V||Ek

VZm VZm

u ) +v* - v

4m+C |

Ln
4m +C22|V2mu
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thus

o[ [corr(calvrafcaer ]|

step 4: Now we need to verify that the spectral interval condition A, —A; >4l.
is established. A; =4y and A, =A4,;, we can get

Ay =N =2~y ﬂ(ézNu (\/R \/R(N+l))’ (32)

with R(N)= % —4M (s)&, .

and

lim ((R(N) - JR(N+1) + 76, ~aM (5) (4.0~ &) =0, (33)

N —+0
For formula (4.32). There, 3N, >0, such that for YN >N,
ﬂsz —4M (S)
& (BPa-aM(s))

R(N)=
we can get

\/R(N)—\/R(N +1) + 26— AM () (Eya —&n )

(34)
JFE M @) (G (1 ROD) -6 (1R OD))
1 & 1R

From the condition, it can be determined that N, >0 such that for all
N = N,, and with (4.32)

Az _A]_ Zi,;ﬂ /1 > 2N+ PN §N+l é:N (ﬂ ’ﬂ 51 4M )
a1 C,, ||V2’“

on p (35)
> 4([%23 [Czl ||V2”“G u AmJ +1J] > 4l

under the latter assumption, Theorem 4.1 is proved completely.

Theorem 4.2 In the conclusions of Theorem 4.1, initial boundary value

problems admits an inertial manifold yu, in E, ofthe form
= graph(T') = {¢, +T'(& ) : ¢ € B, |, (36)
where T':E, —E is Lipschitz continuous with the Lipschitz constant

- ,and graph(T") represents the diagram of T".

Proof: According to Theorem 4.1, Lemma 4.1 and Definition 4.1 is easily

proven.
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