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Abstract 
In this paper, a new auxiliary equation method is proposed. Combined with 
the mapping method, abundant periodic wave solutions for generalized 
Klein-Gordon equation and Benjamin equation are obtained. They are new 
types of periodic wave solutions which are rarely found in previous studies. 
As m → 0 and m → 1, some new types of trigonometric solutions and solitary 
solutions are also obtained correspondingly. This method is promising for 
constructing abundant periodic wave solutions and solitary solutions of non-
linear evolution equations (NLEEs) in mathematical physics. 
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1. Introduction 

NLEEs are widely used to describe complex phenomena in natural and social 
sciences. Many well-known models have been developed to illustrate the dy-
namics of nonlinear waves in the field of modern science and engineering, such 
as the Kortewegde Vries (KdV) [1] equation, KDV Burgers equation [2] [3], 
modified KDV (mKdV) equation [4], modified KDV Kadomtsev Petviashvili 
(mKdVKP) equation [5], and so on. More and more attention is focused on these 
nonlinear problems, and much nonlinear identification research can eventually 
be classified as NLEEs. Therefore, how to obtain their exact solutions is very 
important for the related nonlinear science research, and this has always been an 
important issue in the research of mathematics and physics [6]-[11]. Significant 
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advancement has been produced in recent years and many strong and effective 
methods have been developed to obtain accurate solutions of NLEEs. For exam-
ple, homogeneous balance method [12], algebraic method [13], the sine-cosine 
method [14], tanh-sech method and the extended tanh-coth method [15] [16], 
F-expansion method [17] [18], Exp-function method [19], Jacobi elliptic func-
tion expansion method [20] [21], the modified extended mapping method [22] 
[23] [24], auxiliary equation method [25] [26] [27], and so on. Based on previous 
original methods, the auxiliary equation method constructs the exact solution of 
ELEEs by introducing auxiliary equations. The application of good auxiliary eq-
uations can obtain a large number of new exact solutions of ELEEs. Therefore, 
finding appropriate auxiliary equations is of great significance to enrich the so-
lution of NLEEs. In this paper, a new auxiliary equation is developed to con-
struct new types of periodic wave solutions of NLEEs, which has not been pro-
posed in previous work. With the cooperation of the previous extended mapping 
method, many new results are obtained. 

2. Method 

The following (1 + 1)-dimensional NLEE is considered 

( ), , , , ,, 0t x tt xt xxN u u u u u u =�                       (1)  

Suppose Equation (1) has the following traveling wave solution 

( ) ( ),u x t u ξ= , x tξ ω= −                       (2)  

where ω is a pending wave parameter. Substitute Equation (2) into Equation (1), 
and Equation (1) becomes the following ordinary differential equation  

( ), , , 0N u u u′ ′′ =�                           (3)  

where u' means du/dξ. Suppose Equation (3) has the following formal solution 

( ) ( )
( )

0
2

i
n i

ia f
u

f
ξ

ξ
ξ ν

==
+

∑                         (4) 

where ai and ν are constants to be determined later. The positive integer n can be 
obtained by controlling the homogeneous balance between the governing nonli-
near term and the highest order derivative of u(ξ) in Equation (3). f (ξ) is deter-
mined by the following auxiliary equation:  

( ) ( ) ( )4 2f pf qf rξ ξ ξ′ = + +                    (5)  

where p, q, r are parameters to be selected. In order to construct different types 
of periodic wave solutions, different p, q, r are selected to determine the different 
Jacobi elliptic function solutions of Equation (5). Furthermore, these solutions 
include hyperbolic function solutions when m → 1 and trigonometric function 
solutions when m → 0. By using the mapping in Ref. [25], Equation (5) has the 
Jacobi elliptic function solutions as Table 1. 

Where 2 1i = − . Substituting Equation (4) and Equation (5) into (3), and set-
ting the coefficients of ( ) ( )if fξ ξ′  to zero yields a set of algebraic equations  
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Table 1. The mapping of Jacobi elliptic function for Equation (5). 

( )f ξ  p q r 

,sn cd cn dnξ ξ ξ ξ=  2m  ( )21 m− +  1 

cnξ  2m−  21 2m− +  21 m−  

dnξ  −1 22 m−  21 m− +  

1 ,ns
sn

ξ
ξ

=  

dc dn cnξ ξ ξ=  
1 ( )21 m− +  2m  

1nc cnξ ξ=  21 m−  21 2m− +  2m−  

1nd dnξ ξ=  21 m− +  22 m−  −1 

cs cn snξ ξ ξ=  1 22 m−  21 m−  

sc sn cnξ ξ ξ=  21 m−  22 m−  1 

sd sn dnξ ξ ξ=  ( )2 21m m− +  21 2m− +  1 

ds dn snξ ξ ξ=  1 21 2m− +  ( )2 21m m− +  

mcn dnξ ξ±  −1/4 ( )21 2m+  ( )221 4m− −  

,ns csξ ξ±  

( )21cn m sn dnξ ξ ξ− ±  

,msn idnξ ξ±  
( )1sn cnξ ξ±  

1/4 ( )21 2 2m−  1/4 

( ), 1nc sc cn snξ ξ ξ ξ± ±  ( )21 4m−  ( )21 2m+  ( )21 4m−  

ns dsξ ξ±  1/4 ( )22 2m− +  4 4m  

,sn icnξ ξ±  

( )2 1dn m sn cnξ ξ ξ− ±  
2 4m  ( )22 2m− +  2 4m  

2

2

1mdn cn
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ξ ξ
 −

±  
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2

1
4m

 ( )21 2 2m−  2 4m  

( )1sn dnξ ξ±  4 4m  ( )22 2m− +  1/4 

( )1dn msnξ ξ±  ( )21 4m− +  ( )21 2m+  ( )21 4m− +  

( )sn cn dnξ ξ ξ±  ( )221 4m−  ( )21 2m+  1/4 

( )21cn m dnξ ξ− ±  4 4m  ( )22 2m− +  1/4 

 
for ai and ν. Solving the algebraic equations, ai and ν can be obtained expressed 
by p, q, r. Substituting these solutions into Equation (4) and using the mapping 
in Table 1, the new type of periodic wave solutions of Equation (3) can be ob-
tained. 

3. Application of the Method 
3.1. The Generalized Klein-Gordon Equation  

The following generalized Klein-Gordon equation [28] is considered 
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3 0tt xxu u u uα β γ+ + + =                      (6)  

where α, β, γ are constants. Substituting the traveling wave solution Equation (2) 
into Equation (6) yields  

( )2 3 0u u uω α β γ′′+ + + =                     (7)  

By controlling the homogeneous balance between u'' and u3 in Equation (7), 
1n =  can be obtained. So the solution of Equation (7) can be expressed as 

( ) ( )
( )

0 1
2

a a f
u

f
ξ

ξ
ξ ν

+
=

+
                       (8) 

Substituting Equation (8) into Equation (7) and use Equation (5) to yield a set 
of algebraic equations for a0, a1, and ν. Solving the algebraic equations, a0, a1, and 
ν can be obtained as follows 

( )( )

( )
( )

2 2

0 1

2

2

2 2 6 2
0, ,

6
,

r q p
a a

r

q prq

βν ν ν ω α

γ

ω α βν ω α
ω α β

− − − + +
= = ±

+
= = ± − +

− ±+ +

         (9) 

By selecting different values of p, q and r, the new type of periodic solutions of 
generalized Klein-Gordon equation can be obtained, and these solutions are 
rarely reported in other documents. Such as, if 2p m= , ( )21q m= − +  and 

1r = , ( )f snξ ξ=  and ( )f cdξ ξ= , the generalized Klein-Gordon equation 
has the following formal periodic solutions 

( )

( )( )( )2 2 2 2

11 2

2 2 6 1 2m m
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u
sn

βν ν ν ω α
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− − + + + +
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2 2 2 2
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= ±
+

− − + + + +
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    (11) 

where 
( )

( )( )
2

2 2

6

1 m

ω α
ν

ω α β

+
=
− + + +

, x tξ ω= − , 21 m m
βω α= ± − +

+ ±
. As 

0m → , it has the following new type of trigonometric solutions  

( )

( )( )2

12 2

2 2 6
sin

sin
u

βν ν ω α
ξ

γ
ξ

ξ ν

− − + +

= ±
+

            (12) 

( )

( )( )2
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− − + +
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            (13) 
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where 
( )

( )
2

2

6 ω α
ν

ω α β

+
=
− + +

, x tξ ω= − , ω α β= ± − + . As 1m → , it has the 

following new type of hyperbolic solutions  

( )

( )( )2 2

13 2

2 2 12 2
tanh

tanh
u

βν ν ν ω α
ξ

γ
ξ

ξ ν

− − + + +

= ±
+

         (14) 

where 
( )
( )

2

2

6

2

ω α
ν

ω α β

+
=
− + +

, x tξ ω= − , 
2 1
βω α= ± − +
±

. 

If 2 4p m= , ( )22 2q m= − +  and 1 4r = , ( ) ( )1f sn dnξ ξ ξ= ±  

( )

( ) ( )

( )

2 2 2 2

31 2

2

12 3 2 2
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1

1

m m
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dn
u

sn
dn

βν ν ν ω α
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 − − − − + + + 
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±
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    (15) 

where 
( )

( )( )
2

2 2

3 2

2 2m

ω α
ν

ω α β

+
=

− + + +
, x tξ ω= − ,  

( )22 4m m
βω α= ± − +

− − + ±
. As 0m → , its trigonometric solution is the  

same as Equation (12). As 1m → , it has the following new type of hyperbolic 
solutions  

( )

( )

( )

2 2

32 2

2

12 3 2
tanh2

1 sech
tanh

1 sech

u

βν ν ν ω α
ξ

γ ξ
ξ

ξ ν
ξ

 − − + + + 
 

±
= ±

+
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      (16) 

where 
( )

( )
2

2

3 2

2

ω α
ν

ω α β

+
=
− + +

, x tξ ω= − , 
1 1 4
βω α= ± − +
±

. 

The generalized Klein-Gordon equation still has other forms of solutions ac-
cording to Equations (5), (8) and (9) and Table 1, limited to space, we will not 
give examples one by one. 

3.2. Benjamin Equation  

The following Benjamin equation is considered [29] 

( )2 0tt xxxxx
u u uα β+ + =                       (17) 

where α, β are constants. The traveling wave Equation (2) is substituted into 
Equation (17) and integrated twice, and then the integration constant is set to 
zero to obtain  

2 2 0u u uω α β ′′+ + =                        (18)  

https://doi.org/10.4236/jamp.2021.912206


Y. F. Liu, G. J. Wu 
 

 

DOI: 10.4236/jamp.2021.912206 3160 Journal of Applied Mathematics and Physics 
 

By homogeneous balance, the solutions of Equation (17) can be expressed as 

( ) ( ) ( )
( )

2
0 1 2

2

a a f a f
u

f
ξ ξ

ξ
ξ ν

+ +
=

+
                   (19) 

Substituting Equation (19) into Equation (18) and use (5) to yield a set of al-
gebraic equations for a0, a1, a2 and ν. Solving the algebraic equations, a0, a1, a2 
and ν can be obtained as follows 

( )

( )

( )

4
2 2 2

0 1

4
2 2

2

4
2

1 42 2

32 4 4
16

, 0,
16

4 6
16
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2

16 , 16 48
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a a

p
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a

q pr
q pr
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ωβ ω β β β
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ωβ ω β β

α

ωβ β
ν ω β β

β

 
− + ± − + 

 = =

 
 − + + ± − +
 
 =

± − +
= = ± −

      (20) 

By selecting different values of p, q and r, the new type of periodic solutions of 
Benjamin equation can be obtained, and these solutions are rarely reported in 
other documents. Such as, if 2p m= − , 21 2q m= − +  and ( )21r m= − + ,  
( )f cnξ ξ= , the Benjamin equation has the following formal solutions 

( )

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

422 2 2 2 2 2 2
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2 2 2 2
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αβξ
ωβ β
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ξ
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ωβ β
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  − + − − + − + − + ± − + +    
−=

− + ± − + +
+

 
 − − + + + ± − + +     

−

− + ± − + +
+

(21) 

where x tξ ω= − , ( ) ( )
1 422 2 2 216 1 2 48 1m m mω β β 

= ± − + − +  
. The trigono-

metric solution does not exist in this type of Jacobi elliptic function solution. As 
1m → , it has the following new type of hyperbolic solution as 

( )

( )
( )

( )

4
4 2 2

2 2

2

12 4
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2

4 6 24 4 2 161632 tanh
16 2

2
16tanh
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ωω β ω β βω β β β
β ξ
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− + + ± − +− + ± +
+ −

=

− ±

 
 
 
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− +
+
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 (22) 
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where x tξ ω= − , ( )1 4216 96ω β β= ± − . 
If ( )21 4p m= − + , ( )21 2q m= +  and ( )21 4r m= − + ,  
( ) ( )1f dn msnξ ξ ξ= ± , the Benjamin equation has the following formal solu-

tions 

( )

( ) ( ) ( ) ( )

( )
( )

( )
( ) ( )

( )

( ) ( ) ( )
( )

( )

( )
( )

( ) ( )

22 2 422 2 2 2

2

21 22 2 2 42

2 2

22 2 4
2 2 2
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2
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1 1
8 1 4 1

2 16 16

4 1

2 1 1

2 11

1 1
1 6

2 16 16

2 1

2 1 1

2 11
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m
u

m mdn
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m m
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ωβ ω β β β
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β β ωξ
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ωβ ω β β
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α ξ

β β ωξ
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 + − +  + − + − + ± − +   
 

− +
=

+ ± − − + +
+

− +±

 + − + − + − + ± − + 
  

±
−

+ ± − − + +
+

− +± ( )2

(23) 

where x tξ ω= − , ( ) ( )
1 42 22 2 24 1 3 1m mω β β = ± + − − +  

. The trigonometric  

solution and hyperbolic solution all do not exist in this type of Jacobi elliptic 
function solution. 

If ( )221 4p m= − , ( )21 2q m= +  and 1 4r = , ( ) ( )f sn cn dnξ ξ ξ ξ= ± , 
the Benjamin equation has the following formal solutions 

( )

( ) ( ) ( ) ( )

( )
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( )
( ) ( )

( )

( ) ( )
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( )

( )
( )

( ) ( )
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m
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βξ ξ
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ξ
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−

−±
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 
 
 
 
 

± − + 
  

±
−

+ ± − − +
−

−± ( )2

(24) 

where x tξ ω= − , ( )
1 422 2 216 3 1q mω β β = ± − −  

. The hyperbolic solution  

does not exist in this type of Jacobi elliptic function solution. As 0m → , it has 
the following new type of trigonometric solution as 
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( )

( ) ( ) ( ) ( )
( )

( )
( )

2 42 2 4 2

2

32 2 2 4

2

6 22 4 8 sin
8 cos 1

sin 2
2cos 1

u

β β ωβ ω β β β ω ξ
αβ α ξ

ξ
ξ β β ω

βξ

 − ± − +− + ± − +   −
±

=
± − +

−
±

(25) 

where x tξ ω= − , ( )1 424 3ω β β= ± −  
There are still a large number of new types of periodic wave solutions for 

Benjamin equation, according to Equations (5), (8) and (9) and Table 1. Accor-
dingly, these solutions may also have trigonometric function solutions and 
hyperbolic function solutions under the conditions of 0m →  and 1m → , of 
course, they may not exist. Limited to the scope, we will not give examples one 
by one 

4. Conclusion  

In this paper, with the use of a new auxiliary Equation (4) and the extended 
mapping method (Table 1), abundant new types of Jacobi elliptic function solu-
tions for the generalized Klein-Gordon equation and Benjamin equation are 
constructed. Some new types of periodic wave solutions and solitary wave solu-
tions have been obtained which have not been found in previous work. The ob-
tained periodic wave solutions and solitary solutions imply that the correspond-
ing periodic wave and solitary wave can be generated under certain conditions of 
phase space (x, y) and time t. Our method is only to find new periodic solutions 
and solitary solutions of NLEEs mathematically. The experimental verification 
needs to design experiments in specific fields to verify the physical significance 
of our solutions, which we can’t do in this paper. But, despite all this, this me-
thod is still promising for constructing abundant periodic wave solutions and 
solitary solutions and can serve as a useful guide for a broad class of nonlinear 
problems in the study of mathematics and physics. 
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