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Abstract 
This work mainly focuses on the numerical solution of the Poisson equation 
with the Dirichlet boundary conditions. Compared to the traditional 5-point 
finite difference method, the Chebyshev spectral method is applied. The nu-
merical results show the Chebyshev spectral method has high accuracy and 
fast convergence; the more Chebyshev points are selected, the better the ac-
curacy is. Finally, the error of two numerical results also verifies that the al-
gorithm has high precision. 
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1. Introduction 

The Laplace equation 0u∇ =  can be dated back to 1782 when the French ma-
thematician P.S. Laplace discussed the problem of the gravitational field [1] [2]. 
About thirty years later, S.D. Poisson pointed out that if the density of gravita-
tional field is considered, the Laplace equation should have a new form i.e. 

u f∇ = , which we called Poisson equation. Now Poisson equation has been ap-
plied to modelling the temperature distribution of stable temperature field with a 
stable heat source or without internal heat source, the stable non-rotating flow of 
incompressible fluid in hydrodynamics, etc. In recent several years, some re-
searchers find that the 2-dimensional Poisson equation with Dirichlet boundary 
condition is a good tool to cope with seamless image composite problems [3] [4] 
[5] [6] [7]. 

In the following part, we will focus on Poisson equation with the Dirichlet 
boundary condition [8]. 
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The above Equation (1) is the 2-dimensional Poisson equation, where  
2 2

2 2

u uu
x y
∂ ∂

∇ = +
∂ ∂

, ( ),g x y  is the boundary condition. 

In general, the Poisson equation is hard to get the analytical solution, only a 
few can find the exact solution. Therefore, the numerical algorithm is a good way 
to deal with this problem. For the second-order parabolic type differential equa-
tion, the finite difference method is a popular discretization method. The preci-
sion of the traditional 5-point difference method is not good enough. In order to 
improve the accuracy, some scholars proposed a new method based on 5-point 
difference scheme, such as 9-point difference scheme. The error of the 9-point 
difference scheme is fourth-order. But if we want to continue to improve the 
accuracy of the algorithm based on the 9-point difference method, it will be very 
difficult. Compared to the finite difference method the spectral method has high 
accuracy and less computation. Especially for multidimensional problems, such 
as 2-dimensional or 3-dimensional Poisson equation if we use the finite differ-
ence method, we need to calculate so many nodes the amount of calculation is 
very large. In addition to the finite difference method and spectral method, the 
finite element method is also an effective method to deal with differential equa-
tions. For the in-depth discussion of these methods, we can refer to [8]-[23]. 

The spectral method is a well-developed algorithm, which has infinite order 
accuracy and exponential order convergence speed in theory [17] [18] [19]. In 
this work, we will use Chebyshev spectral method to find the numerical solution 
of 2-dimensional Poisson equation. 

2. Preliminaries 

Some basic contents including Chebyshev polynomials and Chebyshev points 
will be introduced in this part. The Chebyshev points will be used to construct 
the differentiation matrices, which is the key point to obtain high-precision so-
lutions. 

Definition 1. In the interval [ ]1,1− , with the weight ( )
2

1

1
x

x
ω =

−
, the 

polynomials with the following relations are called Chebyshev polynomials [20].  
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T x xT x T x n+ −

=
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=
 = − ≥

                  (2) 

where ( ) , 0nT x n ≥  are the Chebyshev polynomials.  
A big difference between Chebyshev polynomials and other polynomials is that 

Chebyshev polynomials have an explicit relation, i.e. ( ) ( )( )cos arccosnT x n x= ⋅ .  

The zeros of Chebyshev polynomials cos , 0,1, ,k
kx n n
n

= =
π

�  are called Che-  

byshev points. These Chebyshev points are highly clustered on both sides of the 
interval. This feature of the Chebyshev points can help one overcome Runge 
phenomenon in interpolation. The Chebyshev polynomials satisfy the following  
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orthogonal properties with weight 
2

1

1 x−
 

Property 1  

 ( ) ( )1

1 2

0, ,
1 d , 0,

21
, 0.

m n

m n

T x T x x m n
x

m n
−

π
≠

= = =
−

= ≠π



∫               (3) 

First-order derivative of Chebyshev polynomials ( )nT x′  and the original 
Chebyshev polynomials ( )nT x  satisfy the following relations. 

Property 2  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 1

1 2

1 1

,
1 ,
4

1 1 , 2.
2 1 2 1n n n

T x T x

T x T x

T x T x T x n
n n+ −

′=

 ′=



′ ′ = − ≥
+ −

           (4) 

There are some other polynomials such as Legendre polynomials, Jacobi po-
lynomials, etc. For a more detailed discussion about the properties of Chebyshev 
and other polynomials, one can refer to [17] [19]. 

3. Numerical Algorithms for 2-Dimensional Poisson  
Equation 

In this part, we will show two different schemes to solve the 2-dimensional 
Poisson equation. The finite difference method with five points will be applied 
first, then the Chebyshev spectral method will be considered. The 2-dimensional 
Poisson equation we will discuss is as follows,  
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           (5) 

1) 5-point finite difference method 
First, we will give a discretization in x and y directions. In x direction we  

choose 1 1N +  points and give an equidistant discretization, that is 1
1

b ah
N
−

= .  

Then the points in the interval [ ],a b  can be expressed as 1ix a ih= + , where 

10,1, 2, ,i N= � . Similarly, in y direction, the points in [ ],c d  can be expressed  

as 2 2, 0,1, 2, ,jy a jh j N= + = � , where 2
2

d ch
N
−

= . 

Both in x and y directions we use the central difference method respectively, 
as shown in Figure 1, we have  
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Figure 1. 5-point finite difference method. 
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If we choose the same step size, i.e. 1 2h h h= = , then for the problem we have 
the following algorithm,  

 1, 1, , 1 , 1 ,
,2

4
,i j i j i j i j i j

i j

u u u u u
f

h
+ − + −+ + + −

− =               (8) 

where the corresponding truncation error is ( )2 2
1 2O h h+ , if 1 2h h h= = , the 

truncation error can be written as ( )2O h . 
The size of the nodes on grids is ( ) ( )1 21 1N N+ × + . Considering that the boun-

dary values are known, we arrange the remaining nodes in columns to form a new 
column vector. Let’s ( )1 1 2

T

1,1 2,1 1,1 1, 1, , , , ,N N NU u u u u− − −= � � , the 2-dimensional 
Poisson equation can be written in a matrix form AU F= , where 

1 21, 1N NA − −  is 
the coefficient matrix, F is a matrix on the right-hand side of the relation (8). 
The detailed expression of the coefficient matrix A is as follows,  

 2 ,

B I
I B I

A h
I B I

I B

−

− 
 − − 
 =
 

− − 
 − 

� � �                  (9) 

where 
1 11, 1N NB − −  has the following expression,  

 

4 1
1 4 1

.
1 4 1

1 4

B

− 
 − − 
 =
 

− − 
 − 

� � �                   (10) 
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2) Chebyshev spectral method 

The Chebyshev points are cos , 0,1, ,k
kx n n
n

= − =
π

� . Obviously, all the  

Chebyshev points are in the interval [ ]1,1− . Before we use the Chebyshev spec-
tral method, we should map the interval [ ]1,1−  into the interval [ ],a b  with 
the following transformation,  

 .
2 2 k

b a b ax x+ −
= +                       (11) 

Similarly, for [ ],y c d∈ , if we use the transformation  

 ,
2 2 k

d c d cy x+ −
= +                       (12) 

the interval [ ]1,1−  can also be mapped into [ ],c d . The differentiation matric-
es 1D  for the interval [ ]1,1−  can be derived directly from the explicit expres-
sion of Chebyshev polynomials. But the expression of the first-order differentiation  

matrices is slightly different, i.e. [ ]
1 1

, 2a b
b aD D−

= , [ ]
1 1

, 2c d
d cD D−

= . For more 

detailed proofs or properties, one can refer to [17]. 
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c
D i j i j N

c x x

+

 +
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
− = = −

 −

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−

�
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            (13) 

where  

 
2, 0,
1,otherwise.i

i i N
c

= =
= 


                     (14) 

The second-order derivative can be computed easily by ( )22 1D D= . If we ar-

range the matrix u in a column vector, 
2

2

u
x
∂
∂

 can be writen in the matrix form 

( )2D I u⊗ , and 
2

2

u
y
∂
∂

 can be written in the matrix form ( )2I D u⊗ . Let’s L  

denote ( )2 2D I I D⊗ + ⊗ , where ⊗  is the Kronecker product. Then for the 
2-dimensional Poisson equation, the Chebyshev spectral algorithm can be given 
as follows,  

.LU F− =                            (15) 

where U and F are similar as given in 5-point difference method. The numerical 
results can be computed directly. Jie et al. have proved the error estimate for the 
Chebyshev spectral method with Dirichlet boundary conditions [17]. 

4. Numerical Examples 

In this part, the proposed algorithm will be employed to solve 2-dimensional 
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Poisson equation with Dirichlet boundary conditions. 
Example 1. Consider the following 2-dimensional Poisson equation  

 

( ) ( ) [ ] [ ]

( )
( )
( )
( )

2 2
2 2

2 2 e , , 0,1 0,1 ,

,0 1, 0 1
,1 e , 0 1

0, 1, 0 1
1, e , 0 1

xy

x

y

u u x y x y
x y

u x x
u x x
u y y
u y y

−

−

  ∂ ∂
− + = − + ∈ ×  

∂ ∂ 
 = ≤ ≤


= ≤ ≤
 = ≤ ≤


= ≤ ≤

       (16) 

where the exact solution is ( ), e xyu x y −= .  
Figure 2 shows the numerical solution of Example 1 with five points finite 

difference method. Figure 3 shows the absolute error at different points in the 
interval [ ] [ ]0,1 0,1× . The biggest error is about 8.5 × 10−6. Table 1 is the de-
tailed error when x and y take different values. 

Table 2 shows the absolute error when x and y take different values. The big-
gest absolute error is 3.7 × 10−8. From the absolute error tables obtained by the 
two methods, we find that the accuracy of the spectral method is better than that 
of the finite difference method. The more the Chebyshev points we use, the 
higher accuracy of the numerical results we get. Theoretically, if we use enough 
Chebyshev points, we can obtain the numerical solutions with arbitrary accura-
cy. 

Figure 4 is the numerical solution that we get with the Chebyshev spectral 
method. Figure 4 is very similar to Figure 2, but from the above two error tables, 
we find that the solution obtained by the spectral method is more consistent 
with the exact solution. 

 

 
Figure 2. The numerical solution with finite difference method. 
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Figure 3. The absolute error with finite difference method. 

 
Table 1. The errors of Example 1 with finite difference method. 

 0.1x =  0.3x =  0.5x =  0.7x =  0.9x =  

0.05y =  1.73E−07 4.73E−07 6.99E−07 8.53E−07 6.77E−07 

0.10y =  3.50E−07 9.46E−07 1.37E−06 1.60E−06 1.15E−06 

0.15y =  5.34E−07 1.43E−06 2.02E−06 2.27E−06 1.51E−06 

0.20y =  7.30E−07 1.92E−06 2.66E−06 2.88E−06 1.80E−06 

0.25y =  9.43E−07 2.43E−06 3.30E−06 3.45E−06 2.04E−06 

0.30y =  1.18E−06 2.98E−06 3.94E−06 3.99E−06 2.26E−06 

0.35y =  1.44E−06 3.55E−06 4.60E−06 4.53E−06 2.47E−06 

0.40y =  1.73E−06 4.16E−06 5.27E−06 5.06E−06 2.68E−06 

0.45y =  2.06E−06 4.81E−06 5.94E−06 5.59E−06 2.90E−06 

0.50y =  2.42E−06 5.47E−06 6.61E−06 6.11E−06 3.11E−06 

 
Table 2. The errors of Example 1 with spectral method. 

 0.1x =  0.3x =  0.5x =  0.7x =  0.9x =  

0.05y =  1.44E−12 6.49E−12 1.13E−12 1.6E−12 1.28E−11 

0.10y =  3.61E−12 9.50E−11 1.64E−10 6.79E−10 1.63E−09 

0.15y =  1.32E−11 3.81E−10 1.56E−10 8.99E−10 1.51E−09 

0.20y =  3.85E−11 1.14E−09 1.65E−10 1.62E−09 1.74E−09 

0.25y =  9.51E−11 3.02E−09 2.29E−09 1.07E−08 2.21E−08 

0.30y =  1.93E−10 6.04E−09 3.48E−09 1.72E−08 3.24E−08 

0.35y =  3.44E−10 1.02E−08 2.70E−10 9.20E−09 2.58E−09 
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Continued 

0.40y =  5.87E−10 1.76E−08 3.04E−09 2.44E−08 2.81E−08 

0.45y =  9.33E−10 2.79E−08 4.19E−09 3.55E−08 3.71E−08 

0.50y =  1.40E−09 4.12E−08 1.72E−13 3.05E−08 9.86E−10 

 

 
Figure 4. The numerical solution with Chebyshev spectral method. 

 
Figure 5 is the error of the solution obtained by the Chebyshev spectral me-

thod. From this figure, we can see that the overall error of the solution obtained 
by the Chebyshev spectrum method is relatively small compared with the dif-
ference method. 

Example 2. Consider the following 2-dimensional Laplace equation,  

 

( ) [ ] [ ]

( )
( )
( )
( )

2 2

2 2 0, , 0,1 0,1 ,

,0 sin , 0 1
,1 e sin , 0 1

0, 0, 0 1
1, 0, 0 1

x

u u x y
x y

u x x x
u x x x
u y y
u y y

−

∂ ∂
+ = ∈ ×∂ ∂

 = ≤ ≤
 = ≤ ≤

π
π

 = ≤ ≤


= ≤ ≤

             (17) 

where the exact solution is ( ), e sinyu x y xπ− π= .  
Figure 6 and Figure 7 show the absolute error of example 2 with finite dif-

ference method and Chebyshev spectral method respectively. When we choose 
the nodes 51x yn n= =  in x and y directions, for the finite difference method 
the maximum error is 1.16 × 10−4 as shown in Figure 6. For the same example, if 
we use spectral method with 51 × 51 Chebyshev points in the interval [ ] [ ]0,1 0,1× , 
the maximum error is 2.33 × 10−7 as shown in Figure 7. From the absolute error 
of example 2, we find that the accuracy of spectral method is much higher than 
that of finite difference method. 
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Figure 5. The absolute error of Chebyshev spectral method. 

 

 
Figure 6. The absolute error with finite difference method. 

 
The second example is the Laplace equation which is a special case of Poisson 

equation. Table 3 shows the absolute error of example with finite difference 
method and Chebyshev spectral method. fError  represents the maximum ab-
solute error with finite difference method and sError  represents the maximum 
absolute error with Chebyshev spectral method. We select the same number of 
nodes, i.e. 10,30,50,70,90x yn n= = , and then compare the absolute errors  
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Figure 7. The absolute error with Chebyshev spectral method. 
 
Table 3. The errors of Example 2. 

x yn n=  10 30 50 70 90 

fError  2.88E−3 3.24E−4 1.16E−4 5.95E−5 3.59E−5 

sError  1.37E−4 1.64E−6 2.33E−7 6.50E−8 2.49E−08 

 
of the two methods. From Table 3, we can clearly find that the accuracy of spec-
tral method is better than that of finite difference method. 

5. Conclusion  

In this work, we study the 2-dimensional Poisson equation with Dirichlet boun-
dary conditions. We use the five-point difference method and Chebyshev spec-
tral method to solve the corresponding two-dimensional Poisson equation. For 
each method, we give the corresponding numerical algorithm. Finally, we give 
the numerical solution of the corresponding algorithm through a numerical case. 
We also obtain the absolute error respectively. The absolute error of two me-
thods reveals that the accuracy of the spectral method is better than that of the 
difference method. 
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