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Abstract 
We applied n-variable conserving nonlinear differential equations (n-CNDEs) 
to the population data of the 10-year cycles of Canadian lynx (1821-2016) and 
the snowshoe hare (1845-1921). Modeling external effects as perturbations to 
population dynamics, recovering and restorations from disintegrations (or 
extinctions), stability and survival strategies are discussed in terms of the 
conservation law inherent to dynamical interactions among species. The 
2-variable conserving nonlinear interaction (2CNIs) is extended to 3, 4, ... 
n-variable conserving nonlinear interactions (n-CNIs) of species by adjusting 
minimum unknown parameters. The population cycle of species is a manife-
station of conservation laws existing in complicated ecosystems, which is 
suggested from the CNDE analysis as a standard rhythm of interactions. The 
ecosystem is a consequence of the long history of nonlinear interactions and 
evolutions among life-beings and the natural environment, and the popula-
tion dynamics of an ecosystem are observed as approximate CNIs. Physical 
analyses of the conserving quantity in nonlinear interactions would help us 
understand why and how they have developed. The standard rhythm found 
in nonlinear interactions should be considered as a manifestation of the sur-
vival strategy and the survival of the fittest to the balance of biological sys-
tems. The CNDEs and nonlinear differential equations with time-dependent 
coefficients would help find useful physical information on the survival of the 
fittest and symbiosis in an ecosystem. 
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Nonlinear Interactions of Species 

 

1. Introduction 

Ecology is a field of study on complex many-body interactions among organisms, 
living beings and natural environment. The conservation status of a group of 
living animals is measured in many countries, whether certain species still exist 
or how likely to become extinct in the near future. In reality, human activities 
from political, social and cultural conduct to agricultural, engineering proce-
dures caused serious problems for the conservation of species, protection of bi-
ological diversity in the scale of the earth. The development of human societies 
means to thrive against the severe natural environment by utilizing natural re-
sources for wellness of human beings and society, but environmental pollutions 
and contaminations caused by disposed chemical substances affect living beings. 
The food chain among life is extremely complex that human activities affect the 
food chain, natural environment and biodiversity. It is important to understand 
interactions of vast fields of physical world among chemical substances, natural 
environment and ecology in terms of biodiversity of plants and animals, dynam-
ics among microbes, pathogens and viruses. The carbon, nitrogen and water 
cycles on the level of global environment are essential, and the balance of cycles 
will comprise healthy environment to sustain life on the earth. 

The Convention on International Trade in Endangered Species of Wild Fauna 
and Flora (CITES, 2021) [1] is a multilateral international treaty to protect en-
dangered species, which has goals for conservation of biodiversity, environment 
and natural resources, including protection and management of living habitat. 
In order to understand the importance of biodiversity and ecology, it is essential 
to collect specific population data and the natural habitat of endangered species. 
Any population data would reveal interactions of species and natural environ-
ment, and nonlinear differential equations have been applied to population 
changes among 2 - 4-variable factors of microbes, food chains and interacting 
species [2] [3] [4]. Though population changes can be reasonably expressed by 
nonlinear differential equations with data accumulations and computer simula-
tions, it is imperative for us to extract physical reasons and dynamics of nonli-
near interactions in ecological systems. 

Nonlinear differential equations provide us with a possible account for com-
plex change of populations by adjusting coupling constants, but they do not ex-
plain physical principles and reasons why such nonlinear interactions and 
coupling constants are physically chosen by nature, and in this sense, dynamical 
change of ecological system is not simply solved by computer simulations and 
big-data accumulations. Hence, we have proposed nonlinear conserving equa-
tions for n-body interactions [5] [6] [7] and applied them to population data of 
species and microbes in order to understand and extract useful information of 
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what the population growth and survival of species would signify. The popula-
tion cycles in ecosystems and those found in self-organization of biological sys-
tems have similar periodic oscillations, and we found a characteristic dynamical 
rhythm [6] [7] expressed by conserving nonlinear interactions (CNIs). Useful 
concepts such as the survival of the fittest and relations to conservation laws ma-
nifest in nonlinear interactions are gradually recognized when a rhythm of big da-
ta is analyzed by the model of conserving nonlinear differential equations (CNDEs). 

The conserving nonlinear equation is applied dynamical interactions of spe-
cies such as the population regulation in Canadian lynx and snowshoe hare [8] 
[9] [10] [11], the food-web of Microbes in Okanagan Lake [12]. Characteristic 
changes in population data, the relations between initial conditions and nonli-
near interactions are observed in CNDEs, which restricts physically meaningful 
nonlinear forms of interactions. One should notice that the physically meaning-
less nonlinear interactions known as atto-fox problems [13] [14] [15] [16] [17] 
are strictly restricted in the conserving nonlinear equations. The CNDE denotes 
the strenuous correlation between an initial condition and a conservation law, 
which may designate symbiosis and the survival of the fittest of a group of spe-
cies. A dynamical mechanism of biome on the earth demands knowledge of vast 
fields of science and ecology, such as microbiological dynamics through cycles of 
organic chemical substances [18] [19] [20], the food chain [21] [22], environ-
mental changes and natural resources such as air, water and soil, resulting in in-
creasing cooperative studies of intersecting fields [23] [24] [25] [26]. The inte-
ractions of research in many fields would develop and enhance our understand-
ings of concepts of life, diversity and ecology. 

Problems of population dynamics such as termination, extinction [27] [28] or 
restoration of species are important for human society to thrive on the earth. 
Though interactions among species could be expressed by nonlinear differential 
equations, scientific and physical meanings must be yet investigated. The func-
tional form of nonlinearity is generally discussed in [5] [6] [7], and in the cur-
rent analysis, the nonlinear polynomial of degree two is applied with the varia-
tional method (Noether’s theorem) and conservation law to examine dynamics 
from big-data. There are two types of nonlinear differential equations: noncon-
serving, dissipative nonlinear equations, and conserving nonlinear equations 
which have the conserved quantity, CNIs and equations are discussed, and sym-
biosis, the food-chain and the patterns of interaction, the survival of the fittest of 
consisting species are discussed as much as possible by comparing conserving 
nonlinear equations with conventional nonlinear differential equations. 

The Canadian lynx is a lynx species native to North America, inhabiting from 
Canada to Alaska and the northern United States. The Canadian lynx is reported 
to be dependent heavily on snowshoe hares for food, which has been studied by 
many researchers for more than 200 years. These hares comprise 35% - 97% of 
lynx food, but the diet varies by abundance of hares and the season. Lynxes con-
sume other animals, such as ducks, grouse, ptarmigan, red squirrels, voles and 
moles, young sheep, mule deer and reindeer, but snowshoe hares are still the 
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primary chief component, 600 g - 1200 g of food every day [29]. The pray-predator 
cycles, rises and falls of lynx populations are strongly correlated o those of hare 
population cycles, consequently known as the 10-year cycle of population densi-
ty of Canadian lynx and snowshoe hare; a period of hare scarcity occurs every 8 
to 11 years [30]. The abundance of lynx has been estimated from the data of 
Canada lynx fur-trades return of the Hudson’s Bay Company, since the 1730s 
[31] [32]. A cycle of its abundance is characterized by huge rises and falls of lynx 
populations with the peaks typically ten times higher than the troughs, resulting 
in population changes in other related species. We examined the lynx-hare data 
for about 200 years for 1821-2016 supplied by courtesy of Government of North-
west Territories [33], which is numerically simulated and analyzed by the model 
of conserving nonlinear differential equations. 

The CNI generated a characteristic stable population cycle, and we termed it 
as the standard rhythm, which is a consequence of conservation laws maintained 
by interacting species. The standard rhythm may be related to the concept of the 
survival of the fittest and symbiosis among species, which should be investigated 
with big data in the various fields of ecology. The conserving nonlinear model 
suggests that biomechanical and microbiophysical systems show symbiosis 
among cells and organisms, characteristic stability and balance [34] [35] and 
restoration phenomena. The standard and stable rhythm of population density 
could be interpreted as a manifestation of the survival of the fittest to the balance 
of nonlinear dynamical interactions. The conservation laws and their physical 
meanings are neither clearly understood nor investigated yet in many fields of 
macro- and micro-biophysics. 

The basic property of 2-variable conserving dynamical interactions, Noeth-
er’s theorem and the conserved quantity, Ψ-function, is reviewed in Section 2 
and properties of Ψ-function are explained in detail in Section 3. Sections 2 
and 3 are brief reviews to understand conserving differential equations. The 
new approach based on conserving nonlinear interactions and extensions to (n 
+ m)-variable interactions are discussed in Section 4. The indications and in-
ferences of CNIs for 10-year population cycles in 200 years (1821-2016 years) of 
Canadian Lynx-Snowshoe hare are discussed in Section 5. We applied the CNI 
method to Lynx-Hare data supplied from the Environment and Natural Re-
sources 2017 Tundra Ecological Research Station Small Mammal Database. The 
difference between Ψ-function and Hamiltonian interpretation, the relation be-
tween Noether’s theorem and Lyapunov function are discussed in Section 6. 
Hence, the new results and approaches, applications to Lynx-Hare survival 
strategies are discussed from Section 4 to Section 6 in detail. The erroneous no-
tion of the atto-fox problems is strictly criticized and debunked. Comments on 
the survival of the fittest and symbiosis based on conserving approximations are 
concluded in Section 7. The conserving nonlinear interactions compared with 
nonconserving interactions would help understand a fundamental concept of 
survivals and evolutions of ecological systems. 
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2. The 2-Variable CNIs, Restoration from External  
Perturbations 

Nonlinear equations are classified into non-conserving dissipative equations suit-
able for transient behaviors and phenomena short in time and conserving non-
linear equations suitable for life living-long and surviving against external de-
structive perturbations, which corresponds to irreversible dissipative phenome-
na and thermomechanical equilibrium [36]. Though life-involving phenomena 
are very different from those of physical materials and particles, viruses and cells, 
plants and animals are not against physical laws and principles; in other words, 
they are making good use of natural laws for their existence. 

The Lotka-Volterra types of nonlinear differential equations [37] [38] are 
primitive nonlinear equations and have been applied to study competitive and 
predator-pray interactions, mathematical models of disease spreading among 
species, pest-control, evolving ecosystem networks, population and epidemiolo-
gy and so forth [39] [40] [41]. The Lotka-Volterra types of nonlinear differential 
equations are easy to use, but they have intrinsic blunder known as the atto-fox 
problem, which is prevented in the conserving nonlinear equations [5] [6] [7]. 
Since the Lynx-hare cycle is an approximate nonlinear conserving phenomena, it 
has a conserved quantity, Ψ-function which restricts unphysical atto-fox prob-
lem. 

The 2n-variable conserving nonlinear differential equations give the following 
useful results. 

1) The form of differential equations and coefficients of nonlinear interactions 
are strictly confined with initial conditions when a population of species is stable 
for a long period of time, designating a conservation law.  

2) The conserved quantity Ψ-function produces a Lyapunov function usually 
employed to study solutions to nonlinear differential equations, which is helpful 
to study non-conserving dissipative interactions.  

3) A complex interacting system can be approximately decomposed into an 
assembly of binary-coupled forms (BCF).  

4) The binary coupled system with the conservation law indicates an addition 
law interpreted as the restoration or rehabilitation phenomena, such as a small 
damaged device replaced by a new one.  

5) The conservation law is also useful to check accuracy of numerical solu-
tions to conserving nonlinear differential equations. 

The purpose of conserving or dissipative nonlinear analyses among species is 
to study stability and restoration, prosperity and degeneration mechanism of 
ecological systems, effects on natural or artificial environmental changes in dy-
namics of ecology. It should help superintend proper procedures and methods to 
sustain natural and ecological systems in the future based on data in the past. 

2.1. A Brief Review of Noether’s Theorem and Conserved  
Quantities 

The necessary condition for extrema in Lagrangian formulation,  
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( ) ( )( ), ,k kt x t x t� , is given by  

 ( ) ( )( ) ( ), , d 0 1, , ,k kJ t x t x t t k nδ δ= = =∫ � �           (2.1) 

and all functions, ( ) ( ) ( )( )1 , , nx t x t x t= � , [ ],t a b∈ , belong to [ ]2 ,C a b , 
which denotes the set of all continuous functions on the interval [ ],a b  and the 
second derivatives of all functions are continuous. If ( )x t  is a relative mini-
mum of the functional J, the condition (2.1) generates,  

 d 0.
dk k k

LE
tx x

∂ ∂ ≡ − = ∂ ∂ �
                      (2.2) 

This is the Euler-Lagrange equation which determines the equations of motion 
of a system. 

Noether’s theorem describes that the Lagrangian with Euler-Lagrange equa-
tion is invariant under certain space-time transformations, and invariance of 
Lagrangian generates respective conservation laws [42] [43]. For example, the 
time-translation invariance of Lagrangian corresponds to the conservation of 
energy of a system. Let us consider r-parameter transformations in general that 
will be regarded as transformations of configuration space, ( )1, , , nt x x� -space, 
depending upon r real, independent parameters 1, , rε ε� . The transformations 
are defined by  

 
( ) ( )

( ) ( )
, ,

, ,

s
s

k k k s
s

t t t x o

x x t x o

τ ε ε

ξ ε ε

= + +

= + +
                  (2.3) 

where s ranges over 1, , r� , and ( )o ε  denotes the terms which go to zero 
faster than ε , ( )0lim 0oε ε ε→ = . The functions ( ),s t xτ  and ( ),k

s t xξ  for 
linear parts of t  and kx  with respect to ε  are commonly called the infini-
tesimal generators of the transformations. Classical theorem of Emmy Noether 
on invariant variational problems can be obtained under the hypotheses of ex-
trema (2.1), and transformation (2.3). The result is the r identities produced by 
the transformation (2.3),  

 ( ) d ,
d

k k k k
k s s s s sk kE x x

t x x
ξ τ τ ξ ∂ ∂  − − = − + −Φ  ∂ ∂  

� �
� �
 

         (2.4) 

where 1, ,k n= �  is summed, and sΦ  is an arbitrary function defined as a 
gauge function of the transformation. Note that the arbitrary choice of a gauge 
function will not change equations of motion of a system, which can be usually 
used for a convenient expression of conservation laws. If the fundamental 
integral (2.1) is divergence-invariant under the r parameter group of transfor-
mation (2.3), and if 0kE =  for 1, ,k n= � , then following r expressions are 
obtained:  

 constant.k k
s s s sk kx

x x
τ ξ∂ ∂ Ψ ≡ − + −Φ = ∂ ∂ 

�
� �
 

          (2.5) 

This defines the conserved quantities of a system. Since the expressions Ψ de-
fined in (2.5) are constant with the condition: ( )0 1, ,kE k n= = � , they are the 
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first integrals of the differential equations of motion. In physical applications, 
the first integral (2.5) is interpreted as the energy of the system, whose governing 
equations are 0kE = . In general, the function Ψ is constant with respect to time. 
By employing the formalism, the conservation law and symmetry of nonlinear 
differential equations for coupled conserving systems are discussed. 

The meaning of a conservation law in biological complex systems may be very 
different from conservation laws in physics described by way of a Lagrangian or 
a Hamiltonian. It is difficult to directly use mechanical concepts and analogies 
such as potential and kinetic energy, but it should be useful to employ the con-
cept of conservation law and symmetry in terms of Noether’s theorem in order 
to investigate conservation laws corresponding to dynamics of biodiversity. 

2.2. Nonlinear Conserving 2-Variable Interactions 

It may seem natural to assume that a nonlinear system eventually dissipates 
energy and arrives at an equilibrium state, and the equilibrium state would be 
considered as a maximum entropy state. If the state is to be activated, it needs 
some external inputs of energy, designating external inputs or perturbations. 
They are not usually included in the analysis of Lotka-Volterra and Kolmogorov 
type nonlinear equations. There are numerous examples of stable nonlinear dy-
namical systems from microbiological systems such as DNA and RNA, amino 
acids and proteins, cells and organs, to macroscopic systems such as the 10-year 
cycle of Canadian lynx and snowshoe hare, wolves and caribous, creatures in 
marine coral reefs. The stability suggests that some conservation laws and sym-
metries be inherent from complex microbiological systems to macroscopic eco-
logical systems. Hence, it could be possible to investigate conservation laws cor-
responding to biological stability based on Noether’s theorem in dynamical sys-
tems [5] [6] [42] [43] [44] [45] [46]. The 2-variable CNI is briefly reviewed in 
order to extend and construct solutions to higher-variable conserving nonlinear 
interactions. 

The Lagrangian of 2-variable CNI with external perturbations is described as 
[6]:  

 
( )2

1 1 2 2 1 2 3 1 4 5 1 2

2 2 2
6 2 7 1 2 8 1 2 2 1 1 2 .

x x x x x x x

x x x x x c x c x

α α α α α

α α α

= + + + +

+ + + + +

� �
             (2.6) 

From (2.6), we get the following nonlinear differential equation,  

 ( ){ }2 1
1 4 5 1 6 2 8 1 2 7 1

21 21

1 2 2 ,
cx x x x x x

d d
α α α α α= + + + + +�        (2.7) 

( ){ }2 2
2 3 1 4 5 2 7 1 2 8 2

12 12

1 2 2 ,
cx x x x x x

d d
α α α α α= + + + + +�        (2.8) 

and the 2-variable conserving nonlinear model has the following constant func-
tion in time, calculated by (2.5):  

 ( ) ( )2 2 2 2
1 2 3 1 4 5 1 2 6 2 7 1 2 8 1 2 2 1 1 2, .x x x x x x x x x x c x c xα α α α α αΨ = + + + + + + +  (2.9) 
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The parameter 21d  is given by 21 2 1 12d dα α= − = − . The Ψ-function does not 
have any velocity (time-derivative) terms, and it looks like potential energy 
terms. The interpretation of the function is an open question, depending on 
nonlinear systems. 

2.3. Exponential Types of 2 Variable Coupled LV System 

The Lyapunov function discussed in nonlinear problems can be obtained by 
Ψ-function derivation, which is shown in a simple example. The classical type of 
LV equation is defined as:  

 1 11 1 12 1 2

2 21 2 22 1 2

,
,

x a x a x x
x a x a x x
= +
= +

�
�

                      (2.10) 

and the Equation (2.10) can be reproduced by the following Lagrangian,  

 { }{ }1 1 2 2 3 1 4 2 5 1 2exp .x x x x x xα α α α α= + + +� �            (2.11) 

Conventionally, the Lotka-Volterra equations are usually written in the form,  

 
{ }

{ }

1 5 2 1 2 1
12

2 5 1 1 2 2
21

1 ,

1 ,

x x x x
d

x x x x
d

α α

α α

= +

= +

�

�
                   (2.12) 

where 12 1 4 2 3 21d dα α α α= − = − . The conserved quantity Ψ of (2.12) is given by  

 { }5 1 1 2 2 1 2exp .x x x xα α αΨ ≡ +                   (2.13) 

The logarithm of (2.13) is similar to a well known Lyapunov function ( )1 2,V x x  
which has the property ( )1 2d , d 0V x x t = . It proves that the time derivative of 
conserved quantity vanishes, d d 0tΨ = , and therefore, Lyapunov function can 
be derived from Noether’s theorem. The result will be helpful to understand a 
system of nonlinear differential equations in physical terms. There are two main 
types of Lyapunov functions that are strict Lyapunov and non-strict Lyapunov 
functions [47]. Our conserved quantity would correspond to the strict Lyapunov 
function, due to the global property of Lagrangian approach. The proof of equi-
valence would relate stability and dynamics with the conservation law of a sys-
tem. 

The solutions 1x  and 2x  are rapidly changing in time shown in Figure 1(a), 
whose parameters and initial starting values are explained in [5] [6]. One should 
be careful that solutions are sensitive to nonlinear coupling constants and initial 
starting values, which should be chosen carefully for numerical simulations with 
external perturbations. The closed line in the phase space solutions shows a de-
finite periodic time. Though solutions ( 1 2,x x ) are rapidly changing in time, but 
the conserved function, Ψ, is constant in time. The Ψ-function diverges or can-
not be constant with arbitrary parameters. The eight interaction terms on the 
right-hand sides of (2.7) and (2.8) require eight independent parameters ( 12d  
and 21d  are common factors and irrelevant). Since one can regard ( 4 5α α+ ) as 
one parameter, we have only five independent parameters in the beginning in  
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(a) 

 
(b) 

 
(c) 

Figure 1. The 2-variable conserving solution and the constant function in time,  

( ) ( )( )1 2,x t x tΨ . (a) The solution to the 2-variable conserving nonlinear system. Solid 

and dashed lines represent 1x  (prey) and 2x  (predator), respectively. (b) Phase-space 

of the 2-variable conserving solution. (c) The conservation law, ( ) ( )( )1 2,x t x tΨ , of the 

2-variable conserving solution. It is constant with respect to time.  
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order to solve (2.7) and (2.8), which is helpful for numerical simulations of con-
serving nonlinear differential equations. 

2.4. The 3-Variable Conserving Nonlinear Interactions 

The conserving nonlinear interaction of 3-variable system will be produced by 
the Lagrangian of the following type:  

 

2
1 1 2 2 2 3 3 3 1 4 1 2 5 1 3 6 2 3 7 1

2 2 2 2 2 2
8 2 9 3 10 1 2 11 1 2 12 1 3 13 1 3

2 2
14 2 3 15 2 3 3 1 1 2 1 3 ,

x x x x x x x x x x x x x

x x x x x x x x x x

x x x x c x c x c x

α α α α α α α

α α α α α α

α α

= + + + + + +

+ + + + + +

+ + + + +

� � �

     (2.14) 

and the conserved quantity of (2.14) is given by  

 
2 2 2 2 2

4 1 2 5 1 3 6 2 3 7 1 8 2 9 3 10 1 2 11 1 2
2 2 2 2

12 1 3 13 1 3 14 2 3 15 2 3 3 1 1 2 1 3.

x x x x x x x x x x x x x

x x x x x x x x c x c x c x

α α α α α α α α

α α α α

Ψ = + + + + + + +

+ + + + + + +
 (2.15) 

The Lagrangian (2.14) produces the following coupled nonlinear differential eq-
uations:  

2 2
1 2 3 3 7 1 4 2 5 3 10 1 2 11 2 12 1 3 13 3 3

2 2
2 3 1 1 4 1 8 2 6 3 11 1 2 14 2 3 10 1 15 3 1

2 2
3 1 2 2 5 1 6 2 9 3 12 1 13 1 3 14 2 15 2 3 2

2 2 2 ,

2 2 2 ,

2 2 2 .

x x x x x x x x x x x c

x x x x x x x x x x x c

x x x x x x x x x x x c

α α α α α α α α α

α α α α α α α α α

α α α α α α α α α

− = + + + + + + +

− = + + + + + + +

− = + + + + + + +

� �

� �

� �

(2.16) 

The coupled nonlinear Equation (2.16) can be solved for 3x , resulting in,  

 

( ) ( ){ ( )
( )} ( )
( ) ( )
( ) ( )

2
2 13 3 15 3 1 15 3 14 2 1 13 2 12 1

1 9 2 5 3 6 3 1 5 2 7 3 4 1

2
1 6 2 4 3 8 2 1 12 3 10 1

2
3 11 2 10 1 2 1 14 2 11 2 3 1 1 2 2 3

2 2 2 2

2 2

2

2 2 0.

x x x

x x

x x

x x x c c c

α α α α α α α α α α α α

α α α α α α α α α α α α

α α α α α α α α α α

α α α α α α α α α α α

+ + + + +

+ + + + + +

+ + + + +

+ + + + + + + =

 (2.17) 

This is another time-independent relation of the 3-variable CNI, but the time- 
independent relation is obtained from the structure of nonlinear differential 
equations, not from the Ψ-conservation law. There are two types of time-inde- 
pendent relations, determined by Lagrangian or Noether’s theorem and derived 
from a particular structure of nonlinear differential equations. The order of non-
linearity, nonlinear coupling terms and coupling strength are usually chosen to 
agree with global empirical behavior such as exponential decrease or logistic-type 
convergence which seem reasonable because of dissipative properties in natural 
world. 

Nonlinear problems without classifications of conserving and nonconserving, 
dissipative phenomena would lead to physically incorrect and ambiguous results, 
such as the atto-fox problem, interactions among negative values of populations. 
Some researchers tend to think nonlinear equations have intrinsic drawbacks, 
which is not true in the nonlinear differential equation with conserving laws. 
The coupling constants and initial values are strictly restricted to generate phys-
ically meaningful solutions, and if conservation laws are neglected, it is easy to 
generate numerical solutions. Symmetries, conservation laws of nonlinear inte-
ractions are important to understand mechanism in microbiological and ecolog-
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ical systems. 

3. The Conservation Law and Properties of  
( )x x1 2, ,Ψ � -Function 

The Ψ-function may have similar physical meanings as Hamiltonian of a system 
of materials and particles. However, the Hamiltonian has definite meanings as 
the total energy of a system is a constant in time (the energy conservation law). 
The energy is convertible to heat, light, electric energy, other kind of work, and 
has the dimension of force × displacement [42] [43]. The conserved quantity Ψ 
is constant in time, but it is constructed from variations of populations or densi-
ty of populations of 2n species, not from the force, kinetic energy and potential 
energy. The meaning of a conservation law in biological complex systems may 
be very different from conservation laws in physics, whereas the Ψ-function 
could be the conserved quantity corresponding to biodiversity. 

A nonlinear system demands certain density-independent or density-dependent 
external perturbations which are not included in Lotka-Volterra and Kolmogo-
rov type nonlinear Equations (6.1) and (6.2). The 2-variable conserving nonli-
near differential Equations (2.6)-(2.9) produce generalized nonlinear equations 
of Lotka-Volterra, Kolmogorov, and Lyapunov function type nonlinear equa-
tions, and so, the conserved Ψ-function is related to stability, control and prop-
erties of a nonlinear system. The concept of stability is studied in terms of an 
addition law of Ψ-function [5] [6] [7]. The Ψ-function could be applied to re-
covery or restoration phenomena caused on a system, which is important for 
microbiological and ecological systems. The 10-year cycle of Canadian lynx and 
snowshoe hare is studied as an example of the standard rhythm for recovery or 
restoration. The standard rhythm would be a consequence of symbiosis [18] [19], 
living together to survive in severe nature. 

3.1. The Classification of Restorations and Disintegrations  
(Extinctions) in Terms of Ψ-Function 

It is essential for nonlinear theoretical and mathematical analyses to have relia-
ble predictions on an ecological system if it thrives or extincts over a given pe-
riod of time. Let us suppose that a binary-coupled n-variable nonlinear system 
with ( )1 2, , nx xΨ �  and another 2-variable interacting system written by ( )1n +
-variable ( )2 1 2 2,n nx x+ +Ψ  interact with each other, resulting in constructing a new, 
stable and conserving coupled system. The addition property of ( )1 2, ,x xΨ �  
function in the form:  

 ( ) ( ) ( )1 2 2 1 2 2 1 2 2, , , , , .n n n nx x x x x x+ + +Ψ +Ψ →Ψ� �            (3.1) 

may be interpreted as an approximation to the restoration or rehabilitation 
phenomena known in a large system of biological systems, neural networks, cells 
of organs, or computer networks replacing a small broken device with a normal 
device. 
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The recovery and degeneration in the current study are classified as: 1) Com-
plete Recovery (CR), 2) Partial Recovery (PR), 3) Non-Recovery (NR), Degene-
ration or Extinction. 

1) Complete Recovery (CR) 
As shown in Figure 1, when a system maintains the form of ( )1 2, ,x xΨ �

-function, the interacting system is completely stable. The addition property of 
Ψ-function means that a defect or negative perturbations will be recovered when 
a form of binary coupled form is maintained [5]; in other word, a form of CNI to 
maintain the constant Ψ-function is regained. 

2) Partial Recovery (PR) 
The partial recovery is not a complete recovery, but a transition to a reasona-

bly stable, approximate state which maintains a conserving stable solution. The 
Ψ-function changes to a different constant value (see for example, Figure 2). 

3) Non-Recovery (NR) 
Negative external perturbations or defects of an interacting system eventually 

lead to the degeneration of an entire interacting system or the extinction, and 
the Ψ-function becomes negative and is not constant or diverges (see for exam-
ple, Figure 3 and Figure 4).  

There are characteristic combinations of variables, coupling constants to be 
conservative or dissipative until it reaches an ecological equilibrium. The extinc-
tion of species appears as population number zero or negative. The concept of 
extinction should be categorized as the acute extinction (AEX) and the chronic 
extinction (CEX). The concept of AEX is well explained with poisons that cause 
death, which can be specifically determined. On the other hand, the chronic ex-
tinction (CEX) is regenerating extinction caused by multi-factored problems, 
whose causes and effects are difficult to determine. The conserving coupled sys-
tem and addition law of Ψ-function can help us understand a stable complex 
system and the concept of recoveries, which is an important result for the con-
servation of nature and sustainability. 

3.2. Recovering, Degeneration and Extinction of Species from  
External Perturbations 

The dynamical interactions of species are affected by climate changes, temporal 
temperature fluctuations and changes of natural environment by human activi-
ties. These factors are mathematically introduced as external perturbations and 
expressed by piecewise continuous constants, 1c  and 2c , by using θ-functions 
such that  

 ( ) ( ){ } ( ), 1, 2 ,i i start endc f t t t t iθ θ= − − − =             (3.2) 

where ( )t tθ ′−  represents a step function:  

 ( ) ( )
( )

1, ,
0, ,

t t
t t

t t
θ

′ ≥′− =  ′<
                    (3.3) 

and the strength of perturbation ( )1,2if i =  is positive or negative constants, a 
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free parameter to express external perturbations, adjusted optimally to produce 
numerical data. 

The reaction and the recovery of a nonlinear interacting system from an ex-
ternal perturbation are shown in Figures 2(a)-(c). In Figure 2, an external per-
turbation starts at 700t =  (Sp. 1), and the external strength of perturbation, 1c , 
with coefficient 1f  equals to −1260.0, and 2c  is set to zero. The black arrow is 
the starting point of perturbation, and the gray arrow exhibits the end of the ex-
ternal perturbation (Ep. 1). The nonlinear coefficients are listed in Table 1 
(Condition 1). The solutions ( )1 2,x x  are deformed by the perturbation but, the 
system does not disintegrate and finds a new stable phase-space and a conserved 
relation. The perturbation ends at 1200t =  (Ep. 1), and the system recovers to, 
more or less, the original state ( )1 2,x x . This is an example of the complete re-
covery (CR). 

 

 
(a) 

 
(b) 
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(c) 

Figure 2. An external negative perturbation and a recovery. (a) The 2-variable CNIs with 
a negative perturbation on prey 1x . The perturbation is introduced from 700t =  to 

1200t = , which is represented as gray background. (b) The ( )1 2,x x  phase-space transi-

tion with the negative perturbation as in (a). Solid line (St. 1) is initial state, and St. 2 is 
the recovered state after Ep. 1. Dashed line is phase-space during Sp. 1 - Ep. 1. (c) The 
conservation law Ψ of 2-variable ND with one perturbation. The negative perturbation 
changed Ψ from �60000 to �30000. It recovers after Ep. 1.  

 
It is necessary to distinguish maxima and minima driven by internal (endo-

genous) and external (exogenous) perturbations. The external perturbations are 
known in practice as pre-emergent or post-emergent pesticides, herbicides, fun-
gicides and insecticides. It is important to understand the cause of the spray in-
efficiency or maximum yields of crops for better ecological control of species. 
The conservation of nature and biodiversity on Earth by protecting species and 
their habitats from excessive rates of extinction and human activities are one of 
the essential purposes for theoretical and numerical nonlinear analyses [48]. 

In Figure 3, the response of a strong negative perturbation to prey after the 
peak of endogenous maximum is shown. The values of coefficients are listed in 
Table 1 (Condition 1). The starting point of this perturbation is at 800t =  and 
the end point of the perturbation is at 950t = . The value of negative perturba-
tion to 1x , is 1 3175.3879f = − . The prey, 1x , rapidly declines with the negative 
perturbation, and ( )1 2,x x  converges to zero for 1000t  . The computer si-
mulations are compatible with the known empirical results, for example, in pest 
control. A pest control is not so effective if it is performed in the time when 
harmful insects are in peak and active, because species are energetic enough to 
find food and mates to thrive. It is effective when a pest control is performed 
during the time when harmful insects are not so active after endogenous maxi-
mum. The acute and strong negative perturbation leads to an acute extinction 
(AEX) as shown in Figure 3. 
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Table 1. The list of nonlinear coefficients.  

 1α  2α  3α  4α  5α  6α  7α  8α  

Condition 1 1.0 401.0 −0.35 1.5 10.5 −0.01 −0.006 −0.011 

Condition 2 1.0 401.0 −0.35 1.5 10.5 −0.51 −0.006 −0.011 

 

 
(a) 

 
(b) 

Figure 3. A critical negative-perturbation leading to extinction. (a) The 2-variable CNIs 
with a critical negative perturbation on prey, 1x . Solutions converge to zero after the 
perturbation. (b) The conservation law Ψ with a critical negative-perturbation. Ψ con-
verges to zero after the critical negative-perturbation.  

 
In the nonlinear interacting system, positive perturbations which will increase 

1x  or 2x  do not always mean a positive effect on stability of the system. There 
is a limit to the value of a positive perturbation, because an increase of 1x  may 
lead to a decrease of 2x  in the stable system ( )1 2,x x , which indicates that a 

https://doi.org/10.4236/jamp.2021.911181


H. Uechi et al. 
 

 

DOI: 10.4236/jamp.2021.911181 2822 Journal of Applied Mathematics and Physics 
 

system has internally allowed maximum and minimum populations, and so, the 
existence of critical point is important. The behaviors of ( )1 2,x x  at normal and 
critical values of positive perturbations, 1c  for 1x  are shown in Figure 4(a), 
resulting in the extinction of 1x . Figure 4(a) and Figure 4(b) show that the 
system cannot maintain a stable, interacting system when the positive perturba-
tion surpasses a critical value. The unstable solutions branch out at 1100t �  
when the value of perturbation changes, for example, from 1 1160.0f =  to 

1 1599.9f =  in the current numerical simulation. 
The solutions of ( )1 2,x x  are restricted to be positive integers, 0ix >  be-

cause a negative solution means the extinction. In Figure 3 and Figure 4(a), so-
lutions 1x  and 2x  are positive and when they are less than zero, 1x  and 2x  

 

 
(a) 

 
(b) 

Figure 4. Critical perturbations and extinction of species. (a) The 2-variable conserving 
interaction with a critical perturbation. The species, 1x  and 2x , converge to zero after a 
critical perturbation. (b) The conservation law of the 2-variable conserving interaction 
with a critical perturbation. The Ψ converges to zero after a critical perturbation.  
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are considered extinct. It should be noted that if a dynamical prey-predator sys-
tem is active, the rhythm of maxima and minima of interacting species is clearly 
maintained, which is well known behavior in real prey-predator systems. How-
ever, if an external perturbation (exogenous interaction) exceeds a certain criti-
cal value of a competitive system, the rhythm of maxima and minima will dis-
appear and then after a time, the system will diverge (disintegrate) as shown in 
Figure 4. The rhythm of wild-life exhibits stable and dynamical interactions 
among species, which could be used as a measure for natural environment or wil-
derness. Wilderness would be defined, for example, by preserves, estates, farms, 
conservation preserves, ranches, national forests and national parks. When the 
rhythm of change of species disappears or does not come back, it may indicate 
that interacting species are in danger of extinction and affected or harmed by 
some factors usually caused by human activities. 

It is possible to save species from extinction by changing the value of pertur-
bations. Figure 5(a) is the result of a positive perturbation to save species 
( )1 2,x x  in danger of extinction in Figure 4(a). A positive perturbation is exerted 
after Sp. 1 - Ep. 1 in Figure 5, starting at 1000t =  (Sp. 2) and ends at 1300t =  
(Ep. 2); the strengths of 1c  and 2c  changed to 1 200f = , 2 1000f = − . Figure 
5 shows that species are in danger of extinction; however, if external perturba-
tions are properly inserted, the system will come back to life again. The execu-
tions of appropriate perturbations can save endangered species from extinction, 
but it is difficult to determine what appropriate positive perturbations for real 
ecosystems are. 

4. The 4-Variable and (n + m)-Variable CNIs 

The model of 2n-variable CNIs has exhibited important relations among the 
conservation law, stability, extinction and restoration phenomena. Although 
nonlinear interactions have many parameters, values of parameters are not free 
to adjust because they are primarily constrained by the conservation law and 
stability. In reality, it is difficult to know even with accumulated big data what 
kind of stability and the conservation law are linked to initial values, external 
perturbations and human activities. The concepts of stability, conservation 
law are fundamental for natural phenomena in physical, biological systems, 
engineering technologies to realize clean and sustainable energies [49]-[56]. 
Nonlinearity exists in complicated interacting systems, such as the ecosystems 
of mammals [10] [11], microbes [12], systems of cells and organs [3]. These 
systems are highly evolved, interacting systems. We specifically discuss a 
practical technique for 4-variable and higher variable CNIs in the following 
discussions. 

4.1. The 4-Variable Model for a Conserving Nonlinear Dynamical  
Interactions 

The 4-variable CNI is derived from the 4-variable dynamical Lagrangian [7], and  

https://doi.org/10.4236/jamp.2021.911181


H. Uechi et al. 
 

 

DOI: 10.4236/jamp.2021.911181 2824 Journal of Applied Mathematics and Physics 
 

 
(a) 

 
(b) 

Figure 5. The critical behavior, restoration and recovering. (a) The 2-variable conserving 
interactions with perturbations to avoid converging to zero after a critical perturbation. 
The species, 1x  and 2x , come back to life after the second perturbation. (b) The con-
servation law Ψ with two perturbations in (a). The Ψ-function recovers from the pertur-
bation after Sp. 2 - Ep. 2.  
 
the numbering of nonlinear coefficients, iα  in the 4-variable Lagrangian is 
shown in order to avoid complications and confusions The nonlinear coeffi-
cients are numbered sequentially in the beginning as: 

2
1 1 2 2 1 2 3 3 4 4 3 4 5 1 6 1 2 7 1 3 8 1 4

2 2
9 3 1 10 3 2 11 3 12 3 4 13 2 1 14 2 15 2 3

2 2 2
16 2 4 17 4 1 18 4 2 19 4 3 20 4 21 1 2 22 1 2

23 1 2 3 24 1 2 4 25 3 4 1

x x x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x

α α α α α α α α

α α α α α α α

α α α α α α α

α α α

= + + + + + + +

+ + + + + + +

+ + + + + + +

+ + +

� � � �

2 2
26 3 4 2 27 3 4 28 3 4

1 2 2 1 3 4 4 3.
x x x x x x x

c x c x c x c x
α α α+ + +

+ + + +

 (4.1) 
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Since the interactions such as 1 2 2 1x x x x= , 1 2 2 1,x x x x= �  are the same in 
macroscopic systems, the above Lagrangian is expressed as:  

 

( ) ( )
( ) ( ) ( )
( )

1 1 2 2 1 2 3 3 4 4 3 4 6 13 1 2 7 9 1 3

8 17 1 4 10 15 2 3 12 19 3 4

2 2 2 2 2 2
16 18 2 4 5 1 11 3 14 2 20 4 21 1 2 22 1 2

2 2
27 3 4 28 3 4 23 1 2 3 24 1 2 4 25 1 3 4 26 2

x x x x x x x x x x x x

x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x

α α α α α α α α

α α α α α α

α α α α α α α α

α α α α α α

= + + + + + + +

+ + + + + +

+ + + + + + + +

+ + + + + +

� � � �

3 4

1 2 2 1 3 4 4 3.
x x

c x c x c x c x+ + + +

 (4.2) 

The above Lagrangian (4.2) is used to derive equations of motion by using 
Euler-Lagrange method. The 4-variable CNI for complex systems is given by:  

 
( ){ ( ) ( )

}

1 6 13 1 14 2 10 15 3 16 18 4
21

2 1
21 1 22 1 2 23 1 3 24 1 4 26 3 4

21

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +

�

     (4.3) 

 
( ){ ( ) ( )

}

2 5 1 6 13 2 7 9 3 8 17 4
12

2 2
21 1 2 22 2 23 2 3 24 2 4 25 3 4

12

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +

�

     (4.4) 

 
( ){ ( ) ( )

}

3 8 17 1 16 18 2 12 19 3 20 4
43

2 3
24 1 2 25 1 3 26 2 3 27 3 28 3 4

43

1 2

2 ,

x x x x x
d

c
x x x x x x x x x

d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +

�

    (4.5) 

 
( ){ ( ) ( )

}

4 7 9 1 10 15 2 11 3 12 19 4
34

2 4
23 1 2 25 1 4 26 2 4 27 3 4 28 4

34

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +

�

     (4.6) 

where coupling constants are, 1 2 28, , ,α α α� , and 12 1 2d α α= − ,  

21 2 1 12d dα α= − = − , and 34 3 4d α α= − , 43 4 3 34d dα α= − = − . The constants, 

1 2, ,c c � , represent strengths of external perturbations or effects, such as tem-
perature changes, reductions of species by huntings or fishings, and so forth. 
The free parameters are 28 α’s and 4 ( 1c  to 4c ) and resulting in 32 nonlinear 
coefficients to adjust. However, the number of adjustable coefficients can be de-
creased, since these parameters are restricted to positivity of variables, initial 
conditions and the conservation law. 

Next, it is necessary for numerical analyses to roughly determine coupling 
constants of linear interactions, assuming coefficients of all nonlinear terms, 2x , 

1 2x x , 2 2x x , 3 1,x x �  to be zero, and then, it is better to slowly turn on coeffi-
cients of nonlinear terms from 0 to 0 ε±  ( ε  is a small number) to simulate 
data and adjust coefficients of linear terms, and numerical simulations are 
shown in the following section. 

The conserved quantity, Ψ, of a 4-variable CNI is constructed according to 
Noethers’ theorem in Section 2 and expressed as:  
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( ) ( ) ( ) ( )
( ) ( )

2
5 1 6 13 1 2 7 9 1 3 8 17 1 4 10 15 2 3

2 2 2 2
11 3 12 19 3 4 14 2 16 18 2 4 20 4 21 1

2
22 1 2 23 1 2 3 24 1 2 4 25 1 3 4 26 2 3 4

2 2
27 3 4 28 3 4 1 2 2 1 3 4 4 3.

x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x c x c x c x c x

α α α α α α α α α

α α α α α α α α

α α α α α

α α

Ψ = + + + + + + + +

+ + + + + + + +

+ + + + +

+ + + + + +

 (4.7) 

The species ( 1 2 3 4, , ,x x x x ) change in time, but the sum of the combination 
given by (4.7) is constant, or precisely speaking, piecewise continuous in time as 
shown in figures from 1 to 5. One should note that the Ψ-function does not have 
any velocity (time-derivative) terms and the coefficients, 1 2 3 4, , ,α α α α , do not 
exist in the Ψ-function (4.7), though the coefficients exist in the corresponding 
Lagrangian (4.2). The interpretation and physical meaning of Ψ-function (4.7) 
would depend on values of coupling constants of nonlinear dynamical interac-
tions, the degree of nonlinearity, time-dependent thermodynamics and irrever-
siblity [36], which will be investigated in the near future. 

The numerical solution to the system of nonlinear differential equations from 
(4.3) to (4.6) and the value of Ψ-function are shown in Figures 6(a)-(c). The 4 
variables ( 1 2 3 4, , ,x x x x ) are time-changing as in Figure 6(a), but Ψ-function is 
constant in time as shown in Figure 6(b), which confirms numerical solutions 
are accurate. The phase spaces of solutions for ( ) ( )( )1 2,x t x t  and ( ) ( )( )3 4,x t x t  
are shown in Figure 6(c) and Figure 6(d), respectively. One can see that the 
phase space of solutions is confined in each volume of phase space in Figure 6(c) 
and Figure 6(d). 

4.2. The Superposition of CNI Solutions 

The superposition means the total sum of interacting species, and in practice, it 
is tacitly assumed that the big data of several interacting species is too big to 
analyze, and the sum of population data would not be of any use for physical 
analyses. The superposition of solutions is mathematically exact only in linear 
differential equations to obtain the general solution. However, we applied it to 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 6. The solutions of 4-variable system and phase-space with respect to time. (a) 
represents solutions and (b) is the conservation law Ψ with respect to time. The (c) and (d) 
are phase-space solutions of 1x  and 2x , 1x  and 4x , respectively. (a) The 4-variable 
CNI solutions. (b) The Ψ-function of the 4-variable CNI. (c) The conservation law of the 
4-variable CNI solutions. (d) The conservation law of the 4-variable CNI solutions.  
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the superposition of solutions to the 4-variable conserving nonlinear differential 
equation, whether it generates any meaningful results or not. Because each solu-
tion of CNI shows explicit maximum and minimum, it made us expect that the 
superposition of solutions:  

 
4

1 2 3 4
1

,i
i

x x x x x
=

= + + +∑                     (4.8) 

could produce a overall characteristic property of population change, and we 
found a physically reasonable result on population analyses that should be 
checked by way of the big data analysis. The superposition of CNI solutions is 
useful to analyze overall dynamical changes of population data. 

The CNI solutions during the time, 0 300t≤ ≤  is shown in Figure 7(a), 
which would impress an arbitrary population change unable to discern any rhythm 
of ecosystem, but as shown in Figure 7(b), the superposition of 1 2 3 4x x x x+ + +  
seems to show a relative extrema. In order to check if it is a coincidence, the time 
is extended to 0 1000t≤ ≤  to examine changes of extrema in Figure 7(d). One 
can observe that the value and the time of extrema are different and varying ar-
bitrary, but the extrema of the superposition is explicitly emerged as a long-time 
behavior in Figure 7(a). A formal rhythm of extrema can be observed by the 
superposition, 1 2 3 4x x x x+ + + , and the time-scale change from Figures 7(b)-(d).  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7. The behavior of 4-variable CNI solutions ( 1 2 3 4, , ,x x x x ) and the sum of solu-
tions: 1 2 3 4x x x x+ + +  in different time scales. The extrema of population dynamics 
could be seen by changing time scales. (a) A system of 4-variable CNI solutions, which 
would impress an arbitrary change in a time-range: 0 300t≤ ≤ . (b) The behavior of the 
sum of 4-variable solutions: 1 2 3 4x x x x+ + +  (showing about 100 years cycle) in a time 

range: 0 300t≤ ≤ . (c) The Ψ-function for 4-variable CNI solutions in a time-range: 
0 1000t≤ ≤ . (d) The behavior of the sum of 4-variable solutions: 1 2 3 4x x x x+ + +  

(showing about 100 years cycle) in a time range: 0 1000t≤ ≤ .  
 

The emergence of a long-time pattern is a characteristic property in a CNI sys-
tem. The superposition method may help analyze overall behavior and dynamics 
of big data, which is too complicated to comprehend by direct observations in 
short time. 

The superposition of conserving nonlinear solutions seems to roughly display 
the net periodic time, nT , which is about ~ 100nT  in Figure 7(d). The peri-
odic time of component species, iT  ( 1,2,3,4i = ), is respectively less than nT , 
which is not constant like a periodic function, but it looks like fluctuating 
around the constant mean value of a net periodic time. The behavior persists 
when time is extended to a longer period. The amplitude and the net periodic 
time, nT , could be important physical observables to understand ecosystems as 
conserving nonlinear dynamical systems. The important properties derived from 
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the 4-variable CNI are summarized as follows: 
1) The net periodic time nT  defined by the sum of interacting species, ii x∑ , 

is observed and longer than the periodic time of component variables iT : 

i nT T≤ . 
The comparison of nT  and iT  and characteristic extrema could be found in 

computer analyses of big data of several interacting species in a long period of 
time. The property should be checked in big-data computer simulations if it ex-
ists or not. In computer simulations, one should be careful that the known ex-
ternal perturbations such as human activities, global climate changes, volcanic 
eruptions and impact of a large asteroid, � , should be carefully included. It is 
very useful to understand population dynamics if long-term cycles of extrema 
are discovered in marine and land ecosystems. 

2) The 4-variable system becomes more stable than the 2-variable system 
against negative external perturbations. 

The property would be a consequence of many coupling terms of the 
4-variable CNIs, compared to those of the 2-variable CNIs. In other words, if an 
interacting system has many interacting terms with other species, the system 
may not be affected so much by a breakdown of external negative effects, be-
cause other interacting terms could alleviate the breakdown and defects on the 
system, indicating fundamental importance of biodiversity and mutual interac-
tions.  

In general, nonlinear systems have different classes of solutions, such as chaos 
and bifurcation [40] [57] [58]. The property is known that a small change of ini-
tial conditions or coupling constants in one state of nonlinear system can result 
in large differences in a later state. In other words, the underlying patterns and 
the deterministic laws of chaos and bifurcation are sensitive to initial conditions 
or coupling constants. The CNI state is similarly sensitive to initial conditions or 
coupling constants, but it maintains stability of the net system. The results of 
CNI are different from those discussed in dissipative, nonconserving nonlinear 
interactions in many literatures which discuss limit cycles and attractors. The 
conservation law and the stability of CNI system could be a key to understand 
dynamics of complex systems. 

4.3. A method to Construct the 4-Variable and Higher-Variable  
Solutions by Employing 2-Variable Solutions 

The conserving nonlinear n-variable interactions become complicated when the 
CNI system with 3n ≥  is employed. For example, there are 32 nonlinear coef-
ficients for the 4-variable CNI of the type (4.3)-(4.6). If coefficients of the type, 
( 6 13α α+ ), � , and 21 34,d d  can be handled as one parameter, the number of 
independent parameters can be reduced to 22. Though there are still many free 
parameters to adjust, admissible solutions would confine values of parameters 
further when initial starting values and positivity of variables, ( )1 0x t > , 

( )2 0x t > , ( )3 0x t > , ( )4 0x t > , � , are considered in computer simulations. 
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In order to make the 4-variable CNI system useful for numerical simulations, 
a strategy to construct a 4-variable solution is explained by employing the 
2-variable solutions, which makes finding CNI solutions a little easier than find-
ing the 4-variable solutions directly. Let us denote the 4-variable CNI solution 
constructed by the sum of a pair of 2-variable CNI solutions as the (2 + 2)-CNI 
solution. 

1) Let us suppose that a 4-variable interacting system is constructed by a pair 
of 2-variable interaction systems; one system for the interacting species ( 1 2,x x ) 
and another system for ( 3 4,x x ), and the 2-variable interacting systems begin to 
interact. 

2) The 2-variable interacting species, ( 1 2,x x ), are regarded as solutions for (4.3) 
and (4.4) by setting coefficients related to 3x  and 4x  as zero. Specifically, 
coefficients, ( ) ( ) ( ) ( )10 15 16 18 23 24 25 26 7 9 8 17, , , , , , ,α α α α α α α α α α α α+ + + + , are 
set zero in the beginning. Similarly, the other 2-variable interacting species, 
( 3 4,x x ), are also regarded as solutions for (4.5) and (4.6). In other words, it is 
assumed that a 4-variable interaction ( 1 2 3 4, , ,x x x x ) is composed of a 
non-interacting 2-variable ( 1 2,x x ) + 2-variable ( 3 4,x x ) CNIs, in the beginning. 

3) The next step is to weakly couple the set of 2-variable CNI by observing 
coupling terms in the 4-variable solution (4.3)-(4.6). The weak coupling of 
( 1 2,x x ) and ( 3 4,x x ) can be performed by adjusting slowly cross-coupling coeffi-
cients from 0 to 0 ε±  (for instance, ~ 0.01ε ). This is a trial and error ap-
proach; the nonlinear coefficients are numerically restricted within certain small 
values, or solutions do not exist when values are not compatible with initial con-
ditions and the conservation law, ( )1 2 3 4, , ,x x x xΨ .  

The reasonable values of nonlinear parameters would be readily searched in 
numerical simulations by the trial and error. Some numerical values of 2-variable 
conserving approximations are found in papers [5] [6] [7], and then, reasonable 
coupling constants can be found by the perturbation method explained above. 
The strategy can be extended step-by-step to higher variable solutions, for ex-
ample, a 5-variable CNI solution as a (2 + 3)-variable CNI solution, and a 
6-variable CNI solution as a (2 + 2 + 2)-variable CNI solution and so forth. 

5. The 10-Year Population Cycles of Lynx and Hare in  
200-Year Data and the Purpose of Nonlinear Analysis on  
Ecology 

The competitive systems described by the 2-variable CNI model with external 
perturbations are applied to population cycles and recovering phenomena of 
systems from microbes to mammals. We find that nonlinear dynamical systems 
with a conservation law are stable and generate a characteristic rhythm (cycle) of 
population density, which we call the standard rhythm of a nonlinear dynamical 
system. The stability, balance and restoration phenomena of dynamical system 
are strongly related to the conservation law Ψ, and the standard rhythm of pop-
ulation density would be considered as a manifestation of the survival of strategy 
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for living beings. The famous 10-year cycle of population density of Canadian 
lynx and snowshoe hare is well known for a prey-predator cycle and numerically 
analyzed by many researchers as one of nonlinear dynamical interactions. The 
recorded data prove that Canada lynxes respond to the cyclic rise-and-fall in 
snowshoe hare populations over the years in Alaska and central Canada. The 
conservation law would help investigate fundamental relations among environ-
mental problems and managing forests occupied with threatened and endan-
gered species [59]. 

5.1. The 2-Variable Conserving Approximation Applied to  
Nonlinear Interactions between Canadian Lynx and  
Snowshoe Hare 

Lynx numbers fluctuate in synchrony with population changes of hares over vast 
areas in Alaska and central Canada, and the lynx numbers generally delay 1 - 2 
years behind the decline in hare numbers. Lynx densities in most central and 
northern populations are reported to change from 3 to 17-fold during an 8-11 
year cycle, tracking the abundance of Snowshoe Hares with 1 - 2 year lag. Field 
studies have documented from 2 - 45 lynx/100 km2 at various times in the cycle 
and in various habitats. Conservation planning for threatened and endangered 
species requires reliable information on distributions of species’ habitat [60]. 

It is reported that there is no evidence to suggest that overall lynx numbers or 
distribution across Canada have declined significantly over the past two decades, 
although loss of habitat through increased urbanization and development and 
forestry is likely affecting lynx populations. Despite the dramatic decrease in 
harvest through the 1990 cyclic peak, there is evidence that lynx populations in 
most of the northern range were cycling normally. It is noticeable that field re-
searches report that there is little evidence to conclude that the harvest during 
the 1980s had a long-term impact on contiguous northern lynx populations [8] 
[30]. It is necessary to have such a field research to understand ecological envi-
ronment as well as impact of activity from human societies. 

The snowshoe hares were the dominant herbivore, and the changes in their 
numbers were correlated with those in numbers of arctic ground squirrel, spruce 
grouse, ptarmigan, lynx, coyote, great horned owl, goshawk, raven and hawk owl. 
The hare numbers were not correlated with numbers of red-backed vole [59] [60] 
[61] [62]. The lynx-hare population change is well examined by computer simu-
lations of the 2-variable conserving CNI model with external perturbations as 
shown in Figure 8, showing that the CNI system keeps stable phase space, 
Ψ-function in 7. 

5.2. The Population Regulation in Canadian Lynx and Snowshoe  
Hare in 200 Years 

It is difficult to identify population regulation mechanism concerning the prey- 
predator patterns of large mammals because large mammals’ life span is rela-
tively long compared with that of microbes. The prey-predator cycle for wolves  
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(a) 

 
(b) 

 
(c) 

Figure 8. Several external perturbations and recoveries. (a) The 2-variable ND solutions 
with three external perturbations. The rhythm of 1x  and 2x  recovers from several per-
turbations. The gray background represents periods of external perturbations. (b) The 
phase-space transitions of ( )1 2,x x . The dashed lines represent solutions, ( )1 2,x x , during 

perturbations. The solid line represents solutions without perturbations. (c) The conser-
vation law Ψ with three perturbations. It recovers from three perturbations (the gray 
background in (a)). 60000Ψ �  in the St. 1 and St. 2.  
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and caribou takes some decades to observe; their interacting relation and beha-
viors were observed with modern technology (GPS-colored animals) [10]. How-
ever, the food web configuration between snowshoe hare and Canadian lynx is a 
well-known prey-predator-type phenomenon, and the ten-year cycle of Cana-
dian lynx was examined from the data of Canadian lynx fur trade returns of the 
Northern Department of the Hudson’s Bay Company [8]. The Canadian lynx 
and snowshoe hare have a synchronous ten-year cycle in population numbers [9] 
[10]. The fundamental mechanism for these cycles is affected by factors, such as 
nutrient, predation, and environmental factors and human social activities [11]. 
The prey-predator and interactions among species are classified as the direct in-
teraction, whereas temperature, climate and environmental changes are as the 
external perturbation. 

The lynx and hare population data were provided by the courtesy of the Ca-
nadian lynx data of the Environment and Natural Resources, Government of the 
NWT, Yellowknife, NT, in 2017. We have applied the 2-variable conserving 
nonlinear equation and obtained compatible results with researchers’ conclu-
sions and remarks on population cycles, but in addition, we obtained different 
perceptions and implications for population dynamics of lynx and hare. The 
nonlinear conserving model suggests that species of a system consequently find a 
strategy or a mechanism to survive for long time periods. In other words, the 
cycle of population density is a manifestation of the strategy or mechanism to 
survive, suggested by the stability of phase space solutions of the system. 

The data of Canadian lynx and snowshoe hare (1800-2018) is shown in Figure 
9(a) and Figure 9(b). The lynx population data is clearly characterized in two 
periods between (1800-1920) and (1920-2018), which would be related to the 
modern world history of human societies, while the hare population is in a stable 
rhythm of the 10-year population cycles. The 2-variable nonlinear conserving 
model is employed to the lynx-hare data with external perturbations, shown in 
the Ψ-function in Figure 10. The Lynx data is reproduced in the 2-variable 
model with external perturbations as in Figure 9(c). The simulation of lynx data 
around 1800-1920 shows large and abrupt change in the Ψ-function, resulted 
from large external perturbations. Although the 10-year cycle of lynx population 
 

 
(a) 

https://doi.org/10.4236/jamp.2021.911181


H. Uechi et al. 
 

 

DOI: 10.4236/jamp.2021.911181 2835 Journal of Applied Mathematics and Physics 
 

 
(b) 

 
(c) 

 
(d) 

Figure 9. The simulation of Canadian lynx and snowshoe hare. (a) The Canadian lynx 
data of the Environment and Natural Resources 2017. Tundra Ecological Research Station 
Small Mammal Database. Government of the NWT, Yellowknife, NT. (b) The snowshoe 
hare data of the Canadian lynx data of the Environment and Natural Resources 2017. 
Tundra Ecological Research Station Small Mammal Database. Government of the NWT, 
Yellowknife, NT. (c) The dashed line represents Canadian lynx population simulated by 
the 2-variable CNI model with external perturbations. (d) The dashed line represents a 
predicted population of snowshoe hare to that of lynx predicted data of (c).  
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Figure 10. The change of Ψ-function with external perturbations necessary for simula-
tions of Canadian lynx and snowshoe hare (1800-2018).  
 
has not been disappeared, the value of the Ψ-function has gradually decreased, 
readily observed by comparing 1821-1921 and 1960-2018 data. 

It indicates that human activities affected the lynx population changes, which 
should be clearly observed, for instance, from the data of Canada lynx fur-trades 
return of the Hudson’s Bay Company [31]. However, the value of Ψ-function 
becomes small but changes slowly during 1920-2018, which may indicate an 
outset of environmental conservation of natural species and resources. The 
number of lynx is very slowly decreasing, but it is clearly responding to the hare 
population cycle. In Figure 9(d), it is shown how the hare population can be af-
fected by the lynx population cycle and suggests the hare population is not 
quantitatively affected by the lynx population cycle, which may express the hares’ 
vitality and multiple dynamical links to other species. 

The feeding and nutrient experiments reported in [11] are considered as ex-
ternal perturbations to the system. As shown in Figure 8, the perturbations 
cause certain effects on the system, but the system finds a rhythm to maintain 
the dynamics of species, which is related to the stability of nonlinear dynamical 
systems. The shapes of phase space ( )1 2,x x  are not so different from the origi-
nal standard rhythm after several perturbations. Our numerical results agree 
with conclusions derived from feeding experiments and nutrient-addition expe-
riments. Therefore, the properties of a system with a conservation law have a key 
to understand the unanswered question why these cycles exist. 

The timing of perturbation leads to an essential difference to the feeding ex-
periment of snowshoe hare: ... during the peak of the cycle in 1989 and 1990 (the 
feeding experiment) had no impact on reproductive output ... however, during 
the decline phase in 1991 and 1992, the predator exposure plus food treatment 
caused a dramatic increase in reproductive output ... [11]. The experiment can 
be studied in our model calculations, showing that perturbations in the increas-
ing and decreasing phase do not cause large effects on standard rhythm. The 
nonlinear simulations show that negative external perturbations just at the time 
of a decreasing phase or positive perturbations at an increasing phase induce 
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dramatic effects. For example, in order to increase populations of some species, 
it is better to let them find sufficient food (positive perturbation) during species’ 
reproductive, offspring season. 

The cycle of standard rhythm for Canadian lynx and snowshoe hare indicates 
that the stable dynamical system of lynx and hare functions persistently even if 
environmental nature is ruined by some degree. This is also compatible with the 
empirical fact that the ten-year cycle in snowshoe hare is resilient to a variety of 
natural disturbances from forest fires to short-term climatic fluctuations. But it 
has a limit as we have shown explicitly in Section 3, as recovery, disintegration 
and extinction phenomena. If a strong negative perturbation is applied persis-
tently for a long period, the system would fall into danger of extinction. The 
important results of our simulation tell that before a system gets in danger of ex-
tinction, the standard rhythm of the system will disappear or tend to become 
ambiguous. Even if the population of lynx seems to be decreasing in Figure 9(d), 
the interacting hare species are stable as theoretically predicted in Figure 9(b), 
which indicates a possible recovery of the lynx species in terms of food and pre-
dation. Hence, the lynx population decrease in 1920-2018 should be concluded 
to be induced by other causes beside food and predation. 

We cannot be sure at present what kinds of external perturbations caused the 
lynx population decrease, which is important to be investigated by local field re-
searchers. A long-term (more than ten years) negative perturbation and a vast 
environmental change that humans could cause would definitely endanger the 
standard rhythm of snowshoe hare, lynx and related species. If we carefully ob-
serve the standard rhythm of specific ecological systems of species, we could 
help sustain the dynamics of ecological system and study specific solutions to 
preserve natural environment and sustainability. 

6. Notes on Nonlinear Interactions, Lyapunov Function,  
Kolmogorov’s Predator-Prey Model, Atto-Fox Problem 

The CNI restricts the form of nonlinear interactions and reveals some characte-
ristic properties related to nonlinear dynamics, which helps us understand bio-
logical mechanism by way of possible physical analyses. The applicability and 
physical meanings of nonlinear differential equations with time-dependent coef-
ficients should be studied further for science from microscopic to macroscopic 
thermomechanical and biological systems. 

As physical reasons of nonlinear differential equation have been studied in 
terms of conserving and nonconserving interactions, nonlinear differential equ-
ations with time-dependent coefficients may reveal new mechanism and im-
prove understanding complex phenomena scientifically [36]. While nonlinear 
differential equations have been used for mathematical analyses and computer 
simulations to get coupling constants to produce big-data, one should know that 
nonlinear equations are just a mathematical and experimental tool for classifica-
tion and systematics (taxonomy) of natural phenomena. 
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There are unphysical and scientifically invalid problems, misunderstandings 
on nonlinear problems, such as the atto-fox problem [13] [14] [15] [16] [17]. 
Specifically, some researchers still insist that non-existing prey (negative number 
of prey) can be eaten by predators, and predators can increase or decrease by 
eating or interacting with negative prey, which comes from typical nonconserv-
ing nonlinear interactions, even with Lotka-Volterra and other general nonlinear 
equations. It is important to answer properties of conserving and nonconserving 
nonlinear dissipative problems in order to study nonlinear dynamics and some 
typical questions in this section. 

6.1. The Conserving and Nonconserving Nonlinear Equations 

It is often explained that a model of interacting populations is written in general 
as,  

 
( )

( )

d ,
d
d ,
d

x xf x y
t
y yg x y
t

=

=
                          (6.1) 

where ( ),f x y  and ( ),g x y  are any functions appropriately chosen to study 
an interacting system, called the autonomous (self-ruling or self-governing) dif-
ferential equation. The time variable t does not appear explicitly in the functions 
( ),f x y  and ( ),g x y  with the required condition ( )0,0 0f =  and ( )0,0 0g = . 

The meaning of functions depends on problems on which the nonlinear equa-
tions are applied, and this model is known as a general differential equation of-
ten called Kolmogorov’s predator-prey model [63]. It is not possible to deter-
mine whether Equation (6.1) is conserving or nonconserving nonlinear equation, 
because of the unknown functional form of ( ),f x y  and ( ),g x y . 

Well-known examples in the field of ecology are those of Malthus’ research 
for a population analysis, A. Lotka (1925) [37] and V. Volterra (1926) [38] for 
predator-prey differential equations known as Lotka-Volterra (LV) equation. 
The Kolmogorov’s equation can encompass wide ranges of nonlinear equations 
with some degrees of freedom to choose functions ( ),f x y  and ( ),g x y , how-
ever, it will not distinguish conserving and nonconserving nonlinear equations at 
the outset. Hence, it cannot avoid an unphysical problem like the atto-fox prob-
lem [13] [14] [15] [16] [17], depending on the form of functions, ( ),f x y  and 
( ),g x y  and initial conditions, ( ) ( )( )0 , 0x y . If initial conditions and appro-

priate form of autonomous functions are chosen in terms of Ψ-function in con-
serving approximations, unphysical problems would be avoided and contribute 
to useful physical analyses. 

6.2. Lyapunov Function Produced by Noether’s Theorem 

We showed that the conserved quantity, Ψ-function, can reproduce Lyapunov 
function of the classical Lotka-Volterra equations in the previous work [5] [6] 
[7]. The mathematical expressions and physical meanings of ( ),f x y , ( ),g x y  
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and stability in differential Equations (6.1) have been investigated by many re-
searchers in terms of limit cycles and atractors of Lyapunov functions [47]. Lya-
punov functions are scalar functions denoted as ( )1 , ,V t x y  and ( )2 , ,V t x y , in-
stead of ( ),f x y  and ( ),g x y  in (6.1), and nonlinear functions are genera-
lized to explicitly include t with the condition ( )1 ,0,0 0V t =  and ( )2 ,0,0 0V t = . 
There are two types of Lyapunov functions, which are strict Lyapunov (having 
negative definite time derivative along trajectories) and non-strict Lyapunov 
functions (negative semi-definite time derivatives along trajectories) [47]. The 
notion indicates how strongly a nonlinear system approaches its equilibrium 
state when t →∞ . In other words, a nonlinear interacting system in the Lya-
punov type corresponds to a dissipative system or a nonconservative system 
leading to an equilibrium after a long time. 

The systems with Lyapunov function have limit cycles and attractors, which 
designates energy dissipations of the system. The systems with Ψ-functions are 
strictly conserving systems corresponding to limit cycles at given time. It is es-
sential to understand that Kolmogorov or Lyapunov functions for systems of 
differential equations can be derived from Noether’s theorem when a system has 
an equilibrium state corresponding to certain dynamical conservation laws. The 
strict and non-strict Lyapunov function could be expressed by nonlinear con-
serving differential equation corresponding to the global property of Lagrangian 
approach based on conservation laws. Though Noether’s theorem relates stabili-
ty and conserved quantity analogous to symmetries and conservation laws of 
energy and momentum in physics, it is not yet clear what physical meanings the 
conservation laws have in nonlinear biological and ecosystems. Conservation 
laws are helpful to understand a system of nonlinear differential equations in 
view of scientific or physical terms. 

6.3. A Note on the Atto-Fox (10−18-Fox) Problem 

It should be emphasized that an irrational problem known as atto-Fox (10−18-Fox) 
problem [16] [17] in a system of nonlinear differential equations should not oc-
cur in a realistic ecosystem, or a conserved system of differential equations, be-
cause the conservation law, initial conditions and the Ψ-function restrict ad-
missible solutions for nonlinear interacting systems. The nonlinear ordinary dif-
ferential equations of the 2n-CNI system with a realistic initial condition can 
have stable solutions, and the solutions consist a stable closed hyper-surface of 
( 1 2 2, , , nx x x� ), as in Figure 6(c) and Figure 6(d), for example. The problem is 
restricted by properties of conservation laws, and dissipative non-conserved sys-
tems progress to a realistic equilibrium. One can directly observe in the CNI 
model that the Ψ-function cannot be constant or diverge when a physical solu-
tion does not exist with given coupling constants and initial conditions [5] [6] 
[7]. 

It is known that typical Lotka-Volterra (LV) equations used in applications 
produce the atto-Fox (10−18-Fox) problem. Let us prove it by the following LV 
type nonlinear equation:  
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( )

( )

d
d
d
d

x x y
t
y y x
t

α β

γ δ

= −

= − +
                       (6.2) 

where x and y are the population number of prey and predator respectively; 
d dx t  and d dy t  represent variations of populations with respect to time. The 
constants, , , ,α β δ γ , are arbitrary nonlinear coefficients whose interpretations 
depend on problems at hand, and different nonlinear terms are readily included 
in the equation. It is not generally possible to obtain an analytical solution to the 
nonlinear differential equation, and a solution to (6.2) must be obtained by numer-
ical computations with given coefficients as shown in Figure 11 and Figure 12.  

Living animals interact with other animals through reasonably large integer 
numbers as we know in a common sense. The lower left of Figure 12 shows that 
the small numbers such as ( ) ( ), ~ 1,90x y  at certain time t can interact with 
each other and continue to live, which is absurd and meaningless. More specifi-
cally, the LV Equation (6.2) is invariant with the scale change:  

 

 
Figure 11. The values of nonlinear coefficients are, 0.35α = , 0.0035β = , 0.25γ = , 

0.0020δ =  with initial values, ( )0 200x =  and ( )0 500y = . 

 

 
Figure 12. The x-y phase space solution. The LV equation develops from (0, 0) to finite 
numbers. 
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( ) ( ) ( ) ( ), ,X t ax t Y t by t= =                   (6.3) 

where a and b are arbitrary numbers. The equation for ( )X t  and ( )Y t  be-
comes:  

 
( )

( )

d
d
d
d

X X Y
t
Y Y X
t

α β

γ δ

′= −

′= − +
                      (6.4) 

with bβ β′ =  and aδ δ′ = . Hence, the solution ( ) ( )( ),x t y t  in Figure 11 
and Figure 12 can be equivalently constructed by the solution ( ) ( )( ),X t Y t . 

If we choose, for example, 1810a =  and 1b = , the solution can be expressed 
as ( ) ( )1810x t X t−=  and ( ) ( )y t Y t= . The solution  

( ) ( )( ) ( ) ( )( )18, 10 ,x t y t X t Y t−=  is obtained, and the system develops from (0, 0) 
to finite numbers of species (X, Y) with any initial conditions, which proves the 
atto-fox (10−18-fox) problem. The LV equation of the type (1.2) has a serious 
problem when it is applied to real biological and ecological problems. It should 
be used as an qualitative analysis at most. However, it is a misunderstanding that 
the nonlinear differential equation of interacting species is always constrained by 
the atto-fox (0−18-fox) problem. 

The LV equations may be summarized as: 1) the LV Equation (6.2) is too sim-
ple to apply to ecological and interactive systems. 2) density-independent exter-
nal perturbations should be included in numerical simulations in order to in-
clude changes of climate, temperature, seasons and landscape and so forth. The 
external perturbations are independent of ( )x t  and ( )y t . 3) the nonlinearity, 
initial conditions and nonlinear coefficients restrict values of coupling constants 
and avoid the atto-fox problem. In addition, nonlinear differential equations 
with or without time-dependent coefficients should be categorized in different 
classes of differential equations, which could provide with new and essential in-
formation of interacting systems [36]. 

6.4. Answers to Some Questions on Nonlinear Equations 

Some typical questions concerning difficulties on nonlinear differential equa-
tions are answered in order to elucidate applicability of the 2n-variable CNI eq-
uations. 
● (Question 1) There may be many periodic solutions in the n-variable nonli-

near model that depend on the values of nonlinear coefficients, 1,α � , and 
initial starting values, ( ) ( )1 0 , , 0nx x� . 

● (Answer) It is indeterminable from the beginning to know how many inde-
pendent solutions a nonlinear differential equation can produce, or it could 
have none. This is restated such that solutions ( 1 2, , , nx x x� ) would be trans-
formed in the phase space like Figure 12, resulting in the atto-fox problem or 
a physically meaningless problem, which may be correct for simple LV type 
nonlinear equations. However, one should be careful with the n-variable CNI 
model. The nonlinear coefficients and initial values in the n-variable model 
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are restricted with the conservation law Ψ and positivity 0ix ≥ . The adjust-
able nonlinear parameters are not entirely free, restricting physically mea-
ningless atto-fox problems. The consistent values of initial starting values and 
nonlinear coefficients should be determined from numerical simulations by 
including external perturbations. 

● (Question 2) Selecting initial conditions of scarce prey and plentiful preda-
tors, unphysical solutions to nonlinear equations could occur. For example, 1x  
may decrease even if it is zero when 2x  is positive and increasing, and 2x  
may decrease or increase even if 1x  is negative. This means that non-existing 
prey can be eaten by predators, and predators can increase or decrease by 
eating or interacting with negative prey. 

● (Answer) This is a typical conjecture derived from LV type nonlinear equa-
tions and the comment is not correct at all regarding the conserving nonli-
near model. Because nonlinear coefficients are not entirely free parameters, it 
is not possible to find solutions by selecting any nonlinear coefficients and 
initial conditions of scarce prey and plentiful predators, and atto-fox type 
problems are prohibited. A specific numerical example is shown in the paper 
[6] [7]. The solutions to n-variable CNI equations are different from those of 
conventional, nonconserving nonlinear equations.  

It is important to stress that the atto-fox problem found in a simple Lotka- 
Volterra equation is not intrinsic to conserving nonlinear differential equations. 
The n-variable CNI equations with external perturbations are useful to simulate 
real data numerically. 

7. Conclusions on the Survival of the Fittest and Symbiosis  
from Conserving Nonlinear Interactions 

We examined characteristic properties of several ecological systems based on 
CNIs which include generalized Lotka-Volterra type prey-predator, competitive 
interactions. The practical construction of solutions from 2-variable to n-variable 
CNIs is discussed in order to apply the model to more realistic biological phe-
nomena and responses to external environmental changes. It is difficult to adjust 
values of coefficients for nonlinear differential equations to satisfy given initial 
conditions and real population ecological data. It is emphasized in the current CNI 
model that nonlinear differential equations are more than a convenient comput-
er analysis of big data. When an appropriate set of nonlinear parameters in the 
conserving nonlinear model is found, it can be used to examine characteristic 
properties, such as stability and standard rhythm internally related to dynamics 
of a corresponding nonlinear system. 

The important factors (nutrient, predation and social interactions) are needed 
for all species to survive in nature, but they are easily altered with environmental 
and natural conditions. An abnormal increase in population numbers of a spe-
cies would endanger the survival of a species itself as well as other species, which 
could be observed by examining the population rhythm. Even if a mechanism of 
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population increase is unknown, the CNI method would help study a cause in 
terms of the conservation law of the ecosystem, stability and recovering strength 
to external perturbations. It seems that as a predator needs a prey for its food, a 
prey needs a predator for the conservation of its own species. Nature simulta-
neously nurses and demolishes life because of the finite resources of food, energy 
and environment of the Earth. The conservation law and rhythm of species 
could be considered to have been constructed by species to survive in natural 
conditions for a long time with evolutionary strategies. Hence, the cycle (rhythm) 
of species would be interpreted as manifestation of the survival of the fittest to 
the balance of a biological system. 

Conservation of forest-associated animals requires an understanding of habi-
tat quality, along with the development of environmental spatio-temporal man-
agement strategies that are consistent with high-quality habitat [59]. The natural 
environment and habitat quality should be conserved for species, and so such 
conditions would manifest themselves as a dynamical rhythm of interaction and 
be related to conservation laws, whereas temporal and spatio-temporal condi-
tions should be considered as external perturbations. The current conserving 
approximations with external perturbations help us understand cause and effect 
for complicated natural phenomena of ecosystems. 

Nonlinear differential equations have bifurcation solutions depending on coupl-
ing strengths which cause a sudden qualitative and quantitative change into so-
lutions, even when a small smooth change is made to parameter values (coeffi-
cients of given nonlinear differential equations) of nonlinear differential equa-
tions. In addition, nonlinear differential equations with time-dependent coeffi-
cients generate a different class of independent solutions compared to nonlinear 
differential equations with constant coefficients [36]. Nonlinear differential equ-
ations seem to have yet unexplored properties, which should be investigated fur-
ther. The nonlinear differential equations with time-dependent coefficients would 
be related to the reaction-diffusion interactions of density-dependent growth 
and dispersal of viruses, density-dependent diffusion coefficient of cooperative 
phenomena and the evolutionary population dynamics [64]. The applications of 
CNI model to other dynamical fields will be investigated in the future. 

We conclude that stability and conservation law are constructed by species in 
mutual dependence or cooperation to survive for long-time periods in severe 
nature. The standard rhythm should be regarded as the result of strategy for spe-
cies to survive in nature. Therefore, the conserving nonlinear differential equa-
tions are suitable to reveal properties of complicated interacting ecological sys-
tems. 

Whatever roles plants and animals have to play, species that can fit and bal-
ance other creatures can survive in nature. A strong predator cannot even sur-
vive if it ignores the law of the standard rhythm and conservation law of ecosys-
tems constructed by other members and the environment. We hope that this 
study will help understand dynamical balance and activities for living animals 
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and importance of natural environment for life. 
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