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Abstract 
We calculated the energy-momentum density of non-diagonal Bianchi type 
space-time in two different theories of gravity, General relativity (GR) and the 
theory of Teleparallel gravity (TG). Firstly, by applying Einstein, Landau- 
Lifshitz, Bergmann-Thomson and Møller prescriptions, using double index 
complexes in GR. Secondly, in the frame work of TG, we used the energy 
momentum complexes of Einstein, Bergmann-Thomson and Landau-Lifshitz. 
We also study the spacial cases of non-diagonal Bianchi type space-time BII, 
BVIII and BIX. We obtained the same energy-momentum density compo-
nents for Einstein and Bergmann-Thomson prescriptions for the above four 
mentioned space-times that we considered in our work. Also, we found that 
the energy density component in Møller prescription is zero for all Bianchi 
types space-times in GR. Furthermore, we show that if the metric compo-
nents are functions of time t alone, then the total gravitational energy is iden-
tically zero. 
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1. Introduction 

Since the outset of the general theory of relativity, the notion of energy-momentum 
localization has been one of the thorniest problems, which remains unsolved. 
There have been many attempts to find a generally accepted definition of the 
energy-momentum distributions for the gravitational field. Furthermore, there is 
no general agreed definition of energy in GR till now. Many tools have been 
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found to manage the energy-momentum localization problem, such as the su-
per-energy tensors [1] [2], and quasi-local definitions which are introduced by 
Penrose [3], and the most powerful tool of all the previously mentioned ones is 
the famous energy-momentum complexes which we are going to give a brief in-
tro about it now. Einstein [4] himself believed that the energy can be localized in 
GR and he introduced to the world the first ever prescription to the energy- 
momentum. Following Einstein attempt, several physicists proposed different 
energy-momentum complexes definitions, such as Tolman [5], Landau and Lif-
shitz [6], Papapetrou [7], Bergmann and Thomson [8], Weinberg [9] and Møller 
[10]. For a given space-time, these complexes give the same energy and momen-
tum density see ([11] [12] [13] [14]). However, some obtained results showed 
that these complexes do not provide same results for example, see ([15]-[24]). 

The main issue that makes energy-momentum complexes have some difficul-
ties, was because using different energy-momentum prescriptions could lead to 
different energy distributions for same space-time, and all calculations should be 
done only in Cartesian coordinate expect for Møller. Besides that, the biggest 
lack was there is no precise definition of a pseudo tensor in the general relativity. 

Some interesting results have been found recently by using different ener-
gy-momentum complexes in the general theory of relativity (see for example, 
[25] [26] [27] [28] [29]). 

The problem of energy-momentum localization has reformulated to an alter-
native theory called Teleparallel Gravity, which concentrates on the gauge theo-
ries for the translation group based on Weitzenböck geometry. In the theory of 
the teleparallel gravity, gravitation is ascribed to torsion. This theory was at-
tempted to solve the problems that are caused by the theory of general relativity. 
The first who noticed that the tetrad description of the gravitational field allows 
a more satisfactory treatment of the gravitational energy-momentum than it does 
in GR was Møller [30]. Within this theory, several researchers have calculated 
the energy-momentum distribution. For instance, Vargas [31], by using Einstein 
and Landau-Lifshitz energy-momentum complexes of the teleparallel version, 
found that total energy of the Friedmann-Robertson Walker space-time vanishes 
everywhere, which is agreed with the previous work of Cooperstock [32] and 
Rosen [33] in the concept of GR. Recently Alofi and Gad [34] obtained the TG 
versions of Lewis-Papapetrou Spacetime, and Aktacs [35] investigated Energy 
momentum distributions of Ruban universe in GR and TG. Gad and Alharbi [36] 
obtained the energy-momentum density for the gravitational field of the Van 
Stockum space-time in GR and TG. 

Spatially, homogeneous cosmological models play a major role in understand-
ing the structure and properties of space, and have been studied by many scien-
tists. Rosen [33] and Cooperstock [32] used the Einstein complex to calculate the 
energy and momentum distributions of a closed homogeneous isotropic un-
iverse that is described by Friedmann Robertson Walker (FRW) space-time. 
They showed that the total energy of the Universe is equal to zero everywhere. 
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Johri et al. [37] and Cooperstock and Israelit [38] calculated the total energy of 
of FRW Universe and they found it is also equal to zero at all times. Banerjee 
and Sen [39] studied the Bianchi type I and II space-times by using the Einstein 
energy-momentum complex and they found that the total energy density is zero 
everywhere. Xulu [40] extended the investigations of Banerjee and Sen with 
three more energy-momentum complexes using Landau and Lifshitz, Papape-
trou, and Weinberg and he found the same results. Radinschi [13] completed the 
investigation of Banerjee and Sen and Xulu for Bianchi type I by using the ener-
gy-momentum complex of Tolman and her result agrees with the results of Ba-
nerjee and Sen and Xulu that the total energy density vanishes everywhere. Var-
gas and So [41] by working in the context of teleparallel gravity they calculated 
the quasilocal energy-momentum of the Bianchi type I and II universes and they 
found that energy of both the matter and the gravitational fields vanishes for all 
regions this result is consistent with of Banerjee and Sen, Xulu, and Radinschi 
result that calculated in the framework of general relativity. Vargas [31] calculated 
the total energy of the FRW universe in teleparallel version of both Einstein and 
Landau-Lifshitz energy-momentum complexes and he found that the total energy 
vanishes whatever. Aydogdu and Salti [42] calculated the energy-momentum 
density for Bianchi type-II space time with the Bergmann-Thomson energy mo-
mentum definitions in both general relativity and teleparallel gravity and they 
found that these two gravitational theories give the same result which is that to-
tal energy is equal to zero. Tripathy et al. [43] they obtained energy and mo-
mentum distributions for the spatially homogeneous and anisotropic Bianchi 
type VIh metric, they used Einstein, Landau-Lifshitz, Papapetrou, and Berg-
mann-Thompson complexes in the framework of general relativity. They found 
that the results only agree for a specific value of the metric parameter h, where 
the energy and momentum vanish for the Bianchi VI−1 universe, except for the 
case of Landau-Lifshitz where the energy density components vanish, the mo-
mentum density components do not vanish. Özkurt and Aygün [44] investigated 
the energy and momentum density homogeneous Bianchi type VIh metric with 
Einstein, Bergmann-Thomson, Landau-Lifshitz, Papapetrou, Tolman and Møller 
prescriptions in general relativity and teleparallel gravity and their results agree 
with Tripathyet and Tryon. 

Following by Mishra et al. [45] obtained the energy and momentum for di-
agonal Bianchi types they used Einstein, Landau-Lifshitz, Papapetrou, Berg-
mann-Thompson, and Møller energy-momentum complexes in GR and they 
found for BI Universe the energy and momentum vanish identically for all pre-
scriptions. Moreover for BIII, BV, BVIh Universes they found that with specific 
choices of the metric parameter h the energy of the Universes becomes zero, ex-
cept for The Møller the energy density is found to be zero for all the Universes 
they have been considered. Recently Yang [27] investigated the energy of Bianc-
hi type-II cosmological model by using two prescriptions the energy-momentum 
complexes of Einstein and Møller, and obtained that total energy is zero in both 
prescriptions. 
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In the present work we illustrate the problem of energy and momentum den-
sity of non-diagonal Bianchi type space-time within the framework of two dif-
ferent theories of gravity, general relativity and teleparallel gravity. The paper 
has been organized as follows: In the next section we will briefly provide a brief 
overview of the non-diagonal Bianchi type space-time. In Section 3, we calculate 
the energy-momentum density for the above space-time in GR using double in-
dex complexes of Einstein, Møller, Landau-Lifshitz and Bergmann-Thomson. In 
section 4 we give a brief summary of the basic concepts of teleparallel gravity be-
side the calculation of the energy and momentum density components in the 
context of TG. In Section 5, we applied our obtained results to find the energy 
and momentum density of the non-diagonal Bianchi type BII BVIII and BIX 
Universe in both theories by using the same method. Finally, in section 6 we 
provide a summary and discussion of the obtained results. 

Through this paper we will use 1G =  and 1c =  units and the Greek al-
phabet ( ), , 0,1, 2,3µ ν ρ =  to denote tensor indices, that is indices related to 
space-time. The Latin alphabet ( ), , 0,1, 2,3a b c =  will be used to denote local 
Lorentz (or tangent space) indices whose associated metric tensor is  

( )1, 1, 1, 1ab diagη = − − − .  

2. Non-Diagonal Bianchi Type Space-Time 

The homogeneous and anisotropic Cosmological models have an important role 
in describing the universe in the early stages of its development [46]. The Bianc-
hi cosmologies have a significant role in theoretical cosmology, these models was 
studied by several authors, see [40] [42] [43] [44] [45] [47] [48] [49] [50] [51]. 
There are nine Bianchi type divided into two special classes: class A (Types I, II, 
VI0, VII0, VIII, IX), and class B (type III, IV, V, VIh, VIIh). 

Now we consider the line element in terms of quasi-Cartesian coordinates: 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2
1 1 3 1 3 2 2

2 2 2
3 3 1 3 1 2

d d d d

d 2 d d

s t a t x x a t f x a t x

a x a t x x x

 = − − + 
− +

h

h
     (2.1) 

where ( ) ( ) ( )1 2 3, ,a t a t a t  are functions of time and ( )3f x  and ( )3xh  are 
some functions of 3x . We use the following (see [51] [52]),  

 ,f
f

δ
′′

= −                          (2.2) 

where prime denotes a partial derivative with respect to 3x ,  

 
3

.'
x
∂

=
∂

 

According to the value of δ  we classified the Bianchi type-II (BII), Bianchi 
type-VIII (BVIII) and Bianchi type-IX (BIX) models from the metric (2.1), re-
spectively as follows:  

 
0, corresponds to BII model,

1, corresponds to BVIII model,
1, corresponds to BIX model.

δ
δ
δ

=
= −
=

              (2.3) 
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3. Energy-Momentum Complexes in General Relativity 

In the theory of General Relativity, the energy-momentum prescriptions of 
Einstein (E), Møller (M), Bergmann-Thomson (BT) and Landau-Lifshitz (LL) 
can be written as follows:  

 [ ] [ ], ,k i kk ik
i iU Uγ γ= ∂ = ∂ 

 

                   (3.1) 

with  

 [ ]
( ) ( )( )

( ) ( )

1
2

1
2

1 (E),
2
1 (M).

kn m n km
in m

k
i

km n
m in n im

g g g g g g g
U

g g g g g

κ

κ

−  − ∂ − −  = 
 − ∂ − ∂


 





     (3.2) 

where 8κ = π . 

[ ]
( ) ( )( )

( )( )

1
2

1 (BT),
2
1 (LL).

2

ik m i km
m

i k

ik m i km
m

g g g g g g
U

g g g g g

κ

κ

−  − ∂ − −  = 
  ∂ − − 

 



 

      (3.3) 

These complexes are called double index complexes [53]. 
The superpotential [ ]k

iU   or [ ]i kU   is made up from the contravariant com-
ponents of the metric tensor and their derivative. By definition, each of them is 
anti-symmetric in the pair of indices k and  , hence the complexes satisfy the 
local conservation law  

 0, 0.k ik
k i kγ γ∂ = ∂ =  

0
0γ , 00γ , and 0

µγ , 0µγ  are, respectively, the energy and momentum density 
components. The complexes deriving from superpotential (3.3), are symmetrical 
in the two indices i and k; this permits the establishment of a conservation law of 
angular momentum as well.  

The energy and momentum distributions in the above various complexes are 
defined by  

 [ ]00 3d d ,i i iS
P x U Sγ= =∫∫∫ ∫ ∫ 



                (3.4) 

[ ]00 3d d ,ii i
S

P x U Sγ= =∫∫∫ ∫ ∫ 



               (3.5) 

where the first integration in both two above equations being carried out on the 
surface 0 const.x =  and the second on a close two-surface S belonging to the 
same hypersurface and expanding to infinity.  

Now, if we assume the general metric  

 2d d d ,s g x xµ ν
µν=                      (3.6) 

where the metric components gµν  are functions of time t alone and free of 
space variables. Consequently, the superpotential [ ]k

iU   and [ ]i kU   are also func-
tions of the time variable alone. From (3.1) and the antisymmetric of superpo-
tential, we have  

 0 00
0 0, 0.γ γ= =                      (3.7) 
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Therefore,  
Theorem 1. For all homogeneous space-times anzatz with the metric (3.6) the 

total gravitational energy for any finite volume is identically zero.  

3.1. Einstein Prescription 

The non-vanishing superpotential components, [ ]k
iU  , of the Einstein complex 

for the line element (2.1), using Equation (3.2), are  

 

[ ]

[ ] ( )

( )

[ ] ( )

[ ] ( )

[ ] ( )

03 1 2
0

3

01
1 1 2 3 3 2

[02]
1 3 1 2 2 1

01
2 3 1 2 2 1

02
2 2 1 3 3 1

03
3 3 1 2 2 1

,

1 ,

1 ,

1 ,

1 ,

1 .

E

E

E

E

E

E

a a fU
a

U a f a a a a

U a f a a a a

U a f a a a a

U a f a a a a

U a f a a a a

κ

κ

κ

κ

κ

κ

′
=

= − +

= −

= −

= − +

= − +

 

 

 

 

 

h

h

                 (3.8) 

where dot denotes a partial derivative with respect to t. 
Inserting the above components into (3.1), we find the energy and momentum 

density components in the sense of Einstein definition, respectively, as follows 

( )

0 1 2
0

3

0
3 3 1 2 2 1

0 0
1 2

1 ,

1 ,

0.

E

E

E E

a a f
a

a a a a a f

γ
κ

γ
κ

γ γ

′′ 
= −  

 

′= − +  

= =

                   (3.9) 

3.2. Møller Prescription 

The non-vanishing superpotential components, [ ]k
iU  , of the Møller definition 

for the line element (2.1), using Equation (3.2), are  

 

[ ] ( )

[ ] ( )( )

[ ] ( )

[ ] ( )

01
1 2 3 1

01
2 2 3 1 2 2 1

02
2 1 3 2

03
3 1 2 3

2 ,

2 ,

2 ,

1 2 .

M

M

M

M

U fa a a

U a a f a a a a

U a a a f

U a a a f

κ

κ

κ

κ

=

= −

=

=



 





h

               (3.10) 

Inserting the above components into (1), we find the energy and momentum 
density components, respectively, as follows  

 
( )0

3 1 2 3

0 0 0
0 1 2

1 2 ,

0.

M

M M M

a a a fγ
κ

γ γ γ

′=

= = =



                     (3.11) 
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3.3. Landau-Lifshitz Prescription 

The non-vanishing superpotential components, [ ]i kU  , of the Landau-Lifshitz 
prescription for the line element (2.1), using Equation (3.3), are 

[ ] ( )
[ ] ( ) ( )

[ ] [ ] ( )

[ ] ( )

[ ] ( )

003 2 2
1 2

101 2 2
1 3 1 3 1 3 2 3 2 3 2 3

102 201
3 1 1 3 1 3

202
3 1 1 3 1 3

303 2
1 2 2 1 1 2

1 ,

1 ,

1 ,

1 ,

1 .

LL

LL

LL BT

LL

LL

U a a ff

U a a a a a a a a a a a a f

U U a a a a a a

U a a a a a a

U a a a a a a f

κ

κ

κ

κ

κ

′= −

 = + + + 

= = +

= +

= +

   

 

 

 

h

h       (3.12) 

Using the above components in (3.1), we obtain the Landau-Lifshitz’s energy 
and momentum density components, respectively, as follows 

( )( )
( )

200 2 2
1 2

30
1 2 2 1 1 2

10 20

1 ,

2 ,

0.

LL

LL

LL LL

a a ff f

a a a a a a ff

γ
κ

γ
κ

γ γ

′′ ′= − +

′= +

= =

                    (3.13) 

3.4. Bergmann-Thomson Prescription 

The non-vanishing superpotential components, [ ]i kU  , of the Bergmann-Thomson 
complex for the line element (2.1), using Equation (3.3), are  

 

[ ]

[ ] ( ) ( )

[ ] [ ] ( )

[ ] ( )

[ ] ( )

003 1 2

3

101 2 2
2 3 2 2 3 1 3 1 3 1

1 2
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2
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3
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1 1 ,
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BT BT

BT
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a a fU
a

U a f a a a a a a a a a
a a f

U U a a a a
a f

U a a a a
a f

U a a a a f
a

κ

κ

κ

κ

κ

′ 
=  

 

 = + + + 

= = +

= +

= +

   

 

 

 

h

h    (3.14) 

Inserting the above components into (3.1), we get the energy and momentum 
density components using Bergmann-Thomson’s prescription, respectively, as 
follows 

( )

00 1 2

3

30
1 2 2 1

3
10 20

1 ,

1 1 ,

0.

BT

BT

BT BT

a a f
a

a a a a f
a

γ
κ

γ
κ

γ γ

′′ 
= −  

 

′= +

= =

                  (3.15) 
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4. Teleparallel Gravity 

The name of teleparallel gravity is usually used to denote the general three- 
parameter theory [54]. Teleparallel gravity theory has the same field equations as 
the theory of general relativity. It is an alternative formulation of gravity. In oth-
er words, it is equivalent to the theory of general relativity [55]. It can actually be 
understand as a gauge theory for the translation group based on Weitzenböck 
geometry [56]. 

4.1. Fundamental Concepts 

In this section we are going to review the basic concepts of the theory of telepa-
rallel gravity (see for example [54] [57] [58] [59]). 

In the theory of teleparallel gravity the tetrad, ah µ , is play the main role, while 
the metric tensor play the main role in the theory of general relativity. There are 
many ways to create tetrad, ah µ , one of these ways, it can be expressed by the 
dual basis of the differential one-form by choosing a coframe of the coordinate 
system [60]. Another way is by solving the following relation,  

 ,a b
abg h hµν µ νη=                         (4.1) 

where ( )1, 1, 1, 1ab diagη = − − − . 
ah µ  whose inverse is denoted by, ah ν , should satisfy the relationships  

 ; ,a a a
a b bh h h hν ν µ

µ µ µδ δ= =                    (4.2) 

and  

 ( ) ( )det , where : det ,ah h g g gµ µν= = − =           (4.3) 

where ( )gµν  is the covarint metric. 
Using the Minkowski metric, abη , the tangent space indices are raised and 

lowered while by using the space-time metric, gµν , the space-time indices are 
raised and lowered. The parallel transport of ahν  between two neighboring 
points is coded into the covariant derivative  

 ,a a ah h hα
µ ν µ ν µν α∇ = ∂ −Γ                    (4.4) 

where  

 a a
a ah h h hα α α

µν ν µ µ νΓ = ∂ = − ∂                  (4.5) 

is a Weitzenböck connection [56]. This connection provides a torsion that is de-
fined as follows  

 ( )a a
aT h h hρ ρ ρ α

µν νµ µν µ ν ν µ= Γ −Γ = ∂ − ∂             (4.6) 

It is not symmetric in µ  and ν . 
The connection ρ

µνΓ  and the Levi-Civita connection ρ
µνΓ 1 are connected by 

the following relation  

 ,Kρ ρ ρ
µν µν µνΓ = Γ +                     (4.7) 

 

 

1 ( ), , ,

1
2

g g g gρ ρσ
µν µσ ν νσ µ µν σΓ = + − . 
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where  

 ( )1
2

K T T Tρ ρ ρ ρ
µν µ ν ν µ µν= + −                    (4.8) 

is called the contortion tensor. 
The Weitzenböck connection Tλµν  can be defined by the following three 

parts [54]  

 ( ) ( )1 1 ,
2 3

T t t g V g V Aρ
λµν λµν λνµ λµ ν λν µ λµνρε= − + − +         (4.9) 

where  

 ( ) ( )1 1 1
2 6 3

t T T g V g V g Vλµν λµν µλν νλ µ µν λ λµ ν= + + + −        (4.10) 

is the tensor part that represents the torsion tensor,  

 V Tν
µ νµ=                          (4.11) 

is the vector part that gives the torsion vector, and  

 1
6

a
aA h A Tµ µ µνρσ

νρσε= =                   (4.12) 

is the axial-vector part that defines the torsion axial-vector, which represents the 
axial symmetry deviation from spherical symmetry [61]. 

µνρσε  and µνρσε  are completely antisymmetric tensors with respect to the 
coordinates basis and defined by [62]  

 1 ,
g

µνρσ µνρσε δ=
−

                    (4.13) 

,gµνρσ µνρσε δ= −                     (4.14) 

where µνρσδ  and µνρσδ  are the antisymmetric tensor densities of weight −1 
and +1, respectively, with normalization 0123 1δ = −  and 0123 1δ = + . 

In the presence of matter, the action of teleparallel gravity is given by 

4 41 d d ,
16 MxhS T xh£ρµν

ρµνπ
= +∫ ∫              (4.15) 

where ( )det ah h µ= , M£  is the Lagrangian of a source field and  

 ( ) ( )32
1 .

2 2
ccS c T T T g T g Tρµν ρµν µρν νρµ ρν σµ µρ σν

σ σ= + − + −     (4.16) 

is a tensor written in terms of the torsion of the Weitzenböck connection. In the 
above form, 1 2,c c  and 3c  are the three dimensionless coupling constants of 
Teleparallel Gravity. 

These constants has a defined value that has been determined by Hayashi [54]  

 1 2 3
1 1, , 1.
4 2

c c c= = = −                  (4.17) 

The energy-momentum complexes of Einstein, Bergmann-Thomson and Lan-
dau-Lifshitz in Teleparallel Gravity, respectively, are given by [30]  
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( )

( )

( )

1 ,
4
1 ,

4
1 ,

4

hE

hB g

hL hg

µ µλ
ν λ ν

µν µβ νλ
λ β

µν µβ νλ
λ β

= ∂

=

∂

π

π
=

π
∂







                  (4.18) 

where µλ
ν  is the Freud’s super-potential and defined as follows  

 .hSµλ µλ
ν ν=                         (4.19) 

The energy and momentum distributions in the above complexes, respectively, 
are  

 

0 3

0 3

0 3

d ,

d ,

d ,

E

BT

LL

P hE x

P hB x

P hL x

µ µ

µ µ

µ µ

Σ

Σ

Σ

=

=

=

∫
∫
∫

                      (4.20) 

where 0P  is the energy, ( )1,2,3iP i =  are the momentum components and the 
integration hypersurface Σ  is described by 0x t=  constant. 

4.2. Energy-Momentum Density in Teleparallel Gravity 

In order to calculate the Einstein, Bergmann-Thomson and Landau-Lifshitz’s 
energy and momentum complexes of the metric in teleparallel gravity, we con-
sider the tetrad components of the line element (2.1). The tetrad components 
represented by ahµ  as follows 

1 1

2

3

1 0 0 0
0 0

,
0 0 0
0 0 0

a a a
h

a f
a

µ

 
 − =
 
 
 

h
                  (4.21) 

and its inverse b
a abh g hµ µν

νη=  is 

1 2

2

3

1 0 0 0
10 0

,10 0 0

10 0 0

a

a a f
h

a f

a

µ

 
 
 
 
 =  
 
 
 
  

h

                 (4.22) 

We can inspect that (4.21) and (4.22) satisfy the tetrad conditions (4.2), and 
hence the condition  

: det , where : det ,ah h g g gµ µν= = − =  

so  

1 2 3: det .ah h a a a fµ= =  

Using the above components of ahµ  and ahµ  in (4.5) we construct the Weit-
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zenböck connection, whose non-vanishing components are 

1 1
10

1

1
23

1 1 2
20

1 2

2 2
20

2

2
23

3 3
30

3

,

,

,

,

,

.

a
a

f
f

a a
a a

a
a
f
f

a
a

Γ =

′
′Γ = − +

−
Γ = +

Γ =

′
Γ =

Γ =



 





h
h

h h

                      (4.23) 

Using (4.6) and the above components, we find the non-vanishing torsion com-
ponents as following  

 

1 1 1
10 10 10
1 1 1
20 02 20
1 1 1
23 32 23
2 2 2

20 02 20
2 2 2

23 32 23
3 3 3

30 03 30

,

,

,

,

,

.

T T

T T

T T

T T

T T

T T

= − = −Γ

= − = −Γ

= − = −Γ

= − = −Γ

= − = −Γ

= − = −Γ

                     (4.24) 

Using this torsion component into Equation (4.16), we found the non-vanishing 
components of the tensor µν

β  as follows  

 

( )( )

03
0 2

3

01 3 2 2 3
1

2 3

1 1 2 2 102
1 3 2

2
2 2

13 1 2
1 2 2 2

3 2

,
2

,
2

1
,

4

2
,

4

fS
a f

a a a a
S

a a
a a a a a

S
a f

a f faS
f a a

′
= −

− −
=

− −
=

′ ′− −
=

 

 h h

hh

 

 

( )

2
23 1

1 2 2 2
3 2

2 1 1 201
2

1 2

02 3 1 1 3
2

1 3

,
4

,
2

,
2

aS
a f a

a a a a
S

a a
a a a a

S
a a

′
=

− −
=

− −
=

 

 

h

h
                     (4.25) 

           

( ) ( )2 2 2 2 2
2 3 1 313

2 2 3 2
3 2

2
23 1
2 2 2 2

3 2

,
4

,
4

f a a f f a a
S

a f a

aS
a f a

 ′ ′+ + − =

′
=

h h h h

hh
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03 1 2
3

1 2

12
3 2 2

2

,
2 2

.
4

a aS
a a

S
f a

−
= −

′
=

 

h
 

Using these components (4.25) in the relation (4.19) then insert it in equa-
tions (4.18), we obtain the energy and momentum densities in the sense of Eins-
tein, Landau-Lifshitz, and Bergmann-Thomson, respectively, as follows. 

The energy-momentum density components in the Einstein prescription will 
become  

( )

0 1 2
0

3

3
0 3 1 2 2 1

1 2
0 0

1 ,

1 ,

0.

a a fhE
a

hE a a a a a f

hE hE

κ

κ

′′ 
= −  

 

′= − +  

= =

                    (4.26) 

The energy-momentum density components in the Landau-Lifshitz prescription 
will become  

 

( )( )
( )

200 2 2
1 2

03
1 2 2 1 1 2

01 02

1 ,

2 ,

0.

hL a a ff f

hL a a a a a a ff

hL hL

κ

κ

′′ ′= − +

′= +

=

                    (4.27) 

The energy-momentum density components in the Bergmann-Thomson pre-
scription will become  

 ( )

00 1 2

3

03
1 2 2 1

3
01 02

1 ,

1 1 ,

0.

a a fhB
a

hB a a a a f
a

hB hB

κ

κ

′′ 
= −  

 

′= +

= =

                    (4.28) 

5. Special Cases 

According to the value of δ  using (2.3), we define ( )3f x , the function ( )3xh  
can be defined from the solution of the Einstein field equations as follows [51] 
[52]. 

, const.f bf b
f
′

′′ ′− = =h h                    (5.1) 

We consider from the general case of the Bianchi type space-time the follow-
ing Special Cases. 

Case I  
The metric (2.1) reduces to BII space time if 0δ =   

 0, 0.f f
f
′′

′′− = → =                      (5.2) 

Solving the above equation, we get   
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( )3 1 3 2 ,f x c x c= +  

where 1 2,c c  being some arbitrary constants. Without loss of generality, when 

3f x=  and by solving the non-homogeneous linear differential Equation (5.1) 
we find  

( ) 3 2
3 3 3 3 43 2x bx c x c= + +h , 

where 3 4,c c  being some arbitrary constants. 
Then the corresponding metric is expressed by the line element  

( )
( )

2 2 2 2 2 6 5 4 2 2 2 2
1 1 3 3 3 1 3 2 2

2 2 2 3 2
3 3 1 3 3 1 2

d d 9 3 4 d

d 2 3 2 d d .

s t a dx b x bx x a x a x

a x a bx x x x

 = − − + + + 
 − + + 

     (5.3) 

Assuming that 0b =  then the line element becomes 

2 2 2 2 4 2 2 2 2 2 2 2 2
1 1 3 1 3 2 2 3 3 1 3 1 2

1 1d d d d d 2 d d .
4 2

s t a x x a x a x a x a x x x   = − − + − +      
  (5.4) 

Case II  
When 1δ = − , we get BVIII space-time  

 1, 0.f f f
f
′′

′′− = − → − =                    (5.5) 

This is a homogeneous equation has the general solution as  

( ) ( ) ( )3 5 3 6 3sinh cosh ,f x c x c x= +  

where 5 6,c c  being some arbitrary constants. Without loss of generality, when 
( ) ( )3 3sinhf x x=  and by solving equation (5.1), we find 

( ) ( ) ( )3 3 3 3 7 3 8cosh sinh cosh ,x bx x b x c x c= − + +h  

where 7 8,c c  being some arbitrary constants. 
Then the corresponding metric takes the form,  

( ) ( ) ( )(
( ) ( ) ( ) ( )

( )) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2
1 1 3 3 3

2 2 2
3 3 3 3

2 2 2 2 2 2 2
3 1 3 2 2 3 3

2
1 3 3 3 3 1 2

d d d cosh 2 sinh cosh

2 cosh sinh 2 cosh sinh

cosh sinh d d

2 cosh sinh cosh d d .

s t a x b x x b x x x

bx x b x b x x

x a x a x a x

a bx x b x x x x

= − − −
+ + −

+ + −
 + − + 

  (5.6) 

Assuming that 0b =  then the line element become as follows,  

 
( ) ( )

( )

2 2 2 2 2 2 2 2 2
1 1 3 1 3 2 2

2 2 2
3 3 1 3 1 2

d d d cosh sinh d

d 2 cosh d d .

s t a x x a x a x

a x a x x x

 = − − + 
− +

      (5.7) 

Case III  
Finally, the BIX space-time can be found when 1δ =   

 1, 0.f f f
f
′′

′′− = → + =                   (5.8) 

Solving the above equation, we have the general solution as follows  
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( ) ( ) ( )3 9 3 10 3sin cos ,f x c x c x= +  

with 9 10,c c  being some arbitrary constants. Without loss of generality, when 
( ) ( )3 3sinf x x= , the solution of (5.1) becomes 

( ) ( ) ( ) ( )3 3 3 3 11 3 12cos sin cos( ) ,x bx x b x c x c= − + − +h  

where 11 12,c c  being some arbitrary constants. 
Therefore, the corresponding metric takes the form,  

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( )) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2
1 1 3 3 3 3

2 2 2 2 2 2 2
3 3 3 1 3 2 2

2 2 2
3 3 1 3 3 3 3 1 2

d d d cos 2 sin cos 2 cos

sin 2 cos sin cos sin d

d 2 cos sin cos d d .

s t a x b x x b x x x bx x

b x b x x x a x a x

a x a bx x b x x x x

= − − + +
+ + + + 

 − + − + − 

 (5.9) 

Assuming that 0b =  then the line element is expressed by,  

 
( ) ( )

( )

2 2 2 2 2 2 2 2 2
1 1 3 1 3 2 2

2 2 2
3 3 1 3 1 2

d d d cos sin d

d 2 cos d d .

s t a x x a x a x

a x a x x x

 = − − + 
− +

       (5.10) 

Now we are going to obtain the energy-momentum density in GR by using 
Einstein’s, Møller, Landau-Lifshitz and Bergman-Thompson prescriptions, and 
then in TG by using Einstein’s, Landau-Lifshitz and Bergman-Thompson ener-
gy-momentum complexes.  

Einstein prescription  
The energy-momentum density components in the sense of Einstein, respec-

tively, as follows 
For the BII space-time represented by the line element (5.4), 

( )

0
0

0
3 3 1 2 2 1

0 0
1 2

0,
1 ,

0.

E

E

E E

a a a a a

γ

γ
κ

γ γ

=

= − +  

= =

                  (5.11) 

( )

0
0

3
0 3 1 2 2 1

1 2
0 0

0,
1 ,

0.

hE

hE a a a a a

hE hE
κ

=

= − +  

= =

                  (5.12) 

and for the BVIII space-time showed by the line element (5.7),  

 

( )

( ) ( )

1 2 30
0

3

0
3 3 1 2 2 1 3

0 0
1 2

sinh1 ,

1 cosh ,

0.

E

E

E E

a a x
a

a a a a a x

γ
κ

γ
κ

γ γ

 
= −  

 

 = − + 

= =

              (5.13) 

( )

( ) ( )

1 2 30
0

3

3
0 3 1 2 2 1 3

1 2
0 0

sinh1 ,

1 cosh ,

0.

a a x
hE

a

hE a a a a a x

hE hE

κ

κ

 
= −  

 

 = − + 

= =

              (5.14) 
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and for the BIX space-time expressed by the line element (5.10),  

 

( )

( ) ( )

1 2 30
0

3

0
3 3 1 2 2 1 3

0 0
1 2

sin1 ,

1 cos ,

0.

E

E

E E

a a x
a

a a a a a x

γ
κ

γ
κ

γ γ

 
=  

 

 = − + 

= =

                 (5.15) 

( )

( ) ( )

1 2 30
0

3

3
0 3 1 2 2 1 3

1 2
0 0

sin1 ,

1 cos ,

0.

a a x
hE

a

hE a a a a a x

hE hE

κ

κ

 
=  

 

 = − + 

= =

                 (5.16) 

Møller prescription  
The energy-momentum density components using the Møller prescription are 

as follows, 
For the BII space-time represented by the line element (5.4), 

( )0
3 1 2 3

0 0 0
0 1 2

2

0.

M

M M M

a a aγ
κ

γ γ γ

=

= = =



                      (5.17) 

and for the BVIII space-time defined by the line element (5.7),  

 
( )( )0

3 1 2 3 3

0 0 0
0 1 2

1 2 cosh ,

0.

M

M M M

a a a xγ
κ

γ γ γ

=

= = =



                   (5.18) 

and for the BIX space-time showed by the line element (5.10),  

 
( )( )0

3 1 2 3 3

0 0 0
0 1 2

1 2 cos ,

0.

M

M M M

a a a xγ
κ

γ γ γ

=

= = =



                   (5.19) 

Landau-Lifshitz prescription  
We obtain the Landau-Lifshitz’s energy-momentum density components, re-

spectively, as follows 
For the BII space-time expressed by the line element (5.4),  

 ( )

00 2 2
1 2

30
1 2 2 1 1 2 3

10 20

1 ,

2 ,

0.

LL

LL

LL LL

a a

a a a a a a x

γ
κ

γ
κ

γ γ

= −

= +

= =

                   (5.20) 

( )

00 2 2
1 2

03
1 2 2 1 1 2 3

01 02

1 ,

2 ,

0.

hL a a

hL a a a a a a x

hL hL

κ

κ

= −

= +

= =

                   (5.21) 

and for the BVIII space-time represented by the line element (5.7),  
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( ) ( )( )

( ) ( ) ( )

00 2 2 2 2
1 2 3 3

30
1 2 2 1 1 2 3 3

10 20

1 sinh cosh ,

2 sinh cosh ,

0.

LL

LL

LL LL

a a x x

a a a a a a x x

γ
κ

γ
κ

γ γ

= − +

= +

= =

            (5.22) 

( ) ( )( )

( ) ( ) ( )

00 2 2 2 2
1 2 3 3

03
1 2 2 1 1 2 3 3

01 02

1 sinh cosh ,

2 sinh cosh ,

0.

hL a a x x

hL a a a a a a x x

hL hL

κ

κ

= − +

= +

= =

            (5.23) 

and for the BIX space-time showed by the line element (5.10),  

 

( ) ( )( )

( ) ( ) ( )

00 2 2 2 2
1 2 3 3

30
1 2 2 1 1 2 3 3

10 20

1 sin cos ,

2 sin cos ,

0.

LL

LL

LL LL

a a x x

a a a a a a x x

γ
κ

γ
κ

γ γ

= − − +

= +

= =

             (5.24) 

( ) ( )( )

( ) ( ) ( )

00 2 2 2 2
1 2 3 3

03
1 2 2 1 1 2 3 3

01 02

1 sin cos ,

2 sin cos ,

0.

hL a a x x

hL a a a a a a x x

hL hL

κ

κ

= − − +

= +

= =

             (5.25) 

Bergmann-Thomson prescription  
We obtain the components of energy and momentum densities using the 

Bergmann-Thomson definition, respectively, as follows 
For the BII space-time represented by the line element (5.4),  

 ( )

00

30
1 2 2 1

3
10 20

0,
1 1 ,

0.

BT

BT

BT BT

a a a a
a

γ

γ
κ

γ γ

=

= +

= =

                    (5.26) 

( )

00

03
1 2 2 1

3
01 02

0,
1 1 ,

0.

hB

hB a a a a
a

hB hB

κ

=

= +

= =

                    (5.27) 

For the BVIII space-time defined by the line element (5.7),  

 

( )

( ) ( )

1 2 300

3

30
1 2 2 1 3

3
10 20

sinh1 ,

1 1 cosh ,
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BT

BT BT
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κ

γ
κ

γ γ

 
= −  

 

= +

= =

                (5.28) 

( )
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1 1 cosh ,

a a x
hB
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hB a a a a x
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 
= −  

 

= + 
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01 02 0.hB hB= =                        (5.29) 

For the BIX space-time represented by the line element (5.10), 

( )

( ) ( )

1 2 300

3

30
1 2 2 1 3

3
10 20

sin1 ,

1 1 cos ,

0.

BT

BT

BT BT

a a x
a

a a a a x
a

γ
κ

γ
κ

γ γ

 
=  

 

= +

= =

               (5.30) 

( )

( ) ( )

1 2 300

3

03
1 2 2 1 3

3
01 02

sin1 ,

1 1 cos ,

0.

a a x
hB

a

hB a a a a x
a

hB hB

κ

κ

 
=  

 

= +

= =

               (5.31) 

6. Discussion and Summary 

In the present work, we have obtained the energy and momentum density com-
ponents for the non diagonal Bianchi types for some well known energy-momentum 
complexes such as Einstein, Landau-Lifshitz, Bergmann-Thompson and Møller 
prescriptions using double index complexes in GR and as well as in TG. The 
general results of the non diagonal Bianchi type universes have been used to 
calculate the energy and momentum of BII, BVIII and BIX Universes. 

Our result indicates the following: 
1) We obtained that the Einstein prescription agrees with Bergmann-Thompson 

prescription. In these two prescriptions, we get the same energy-momentum 
density in GR as well as in TG,  

0 00
0

E BTγ γ=  
0 0E BT i
iγ γ=  

2) The only non vanishing momentum density components are the third 
momentum component. Otherwise, it vanishes identically for all prescriptions in 
both theories  

0 0 10 20 10 20 0 0
1 2 1 2 0.E E LL LL BT BT M Mγ γ γ γ γ γ γ γ= = = = = = = =  

1 2 01 02 01 02
0 0 0.hE hE hB hB hL hL= = = = = =  

3) Many researchers investigated the Bianchi type-II cosmological model in 
both theories and they indicated that the energy vanishes for all regions, see [27] 
[41] [50] [63] [64]. Our result agrees with them in the case of Einstein, Berg-
mann-Thompson, and Møller. 

4) It is clear that the energy density in the Møller prescription is zero for all 
the non-diagonal Bianchi types in GR. Our result agrees with [45] where they 
obtained the energy-momentum density of some diagonal anisotropic Bianchi 
type Universes using different energy-momentum complexes in the framework 
of General Relativity. They found that unlike the other prescriptions, in the case 
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of Møller, the energy is zero for all types of Bianchi Universes they have consi-
dered. Also, our result agrees with [49]. They found that Møller is the only pre-
scription where the energy density is equal to zero for Bianchi type-IV Universe. 
Lassner [65] indicates that Møller energy-momentum complex is a powerful 
concept of energy and momentum in general relativity. Our result agrees with 
him. 

5) While, in other prescriptions the energy density does not vanish for all 
types expect for Bianchi type-II space-time as we already indicated.  

6) If the scale factors of the metric are function in t only, then the total ener-
gy-momentum density is identically zero for all Bianchi types space-times. This 
sustains our theorem (1). 

7) In all prescriptions, the expressions for the energy and momentum density 
are well-defined. 
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