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Abstract 
The purpose of this research is to characterize shapes in thermodynamic 
terms, namely, in terms of total energy, dissipative energy, entropy, and tem-
perature. As case studies, polygons and some well-known curves were taken, 
and they were characterized using physical terms. The relation between en-
tropy and curvature was elucidated, and the black hole surface gravity and 
temperature were criticized and reinterpreted from this point of view. Partic-
ular energy attributions were evaluated by comparing the position of any 
edge of a polygon (i.e. its angle with the horizontal axis) with a broken crystal 
surface. Energies of all edges were added up at all positions between 0˚ - 360˚. 
In regular polygons, the total energy decreases with the increase of the num-
ber of edges. Entropy increases in the reverse order, and the increase of the 
number of edges increases entropy. It implies that the circle has the lowest 
energy but the highest surface entropy. In curves (circle, sine-curve, spiral, 
and exponential curve), the total energy, dissipative energy, and entropy all 
depend on amplitude and also on specific variables. Black hole entropy ex-
pressed in terms of the surface area is a configurational entropy and not 
thermal entropy; therefore, it does not involve a varying temperature term. 
The surface gravity of a black hole is connected to acceleration and thus to 
curvature. To relate it with the temperature needs to be reinterpreted, be-
cause, surface gravity behaves like an attractive force not exactly like temper-
ature. Hawking radiation is still possible, but the black hole does not get 
warmer as it evaporates. Material loss from the black hole gets faster as its ra-
dius decreases due to the curvature effect, i.e. by a mechanism similar to the 
Gibbs-Thomson effect. 
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1. Introduction 

Establishing a relation between entropy and geometry has been a tough issue in 
science, because, geometry concerns with shape, size, relative positions of fig-
ures, and also the type of space whether it is flat or curved, whereas thermody-
namics deals with work, heat, entropy, and temperature which are dynamical 
properties. Although their domains look quite different from each other they 
have a striking similarity, essentially in the descriptions of the surface properties 
of polygons and the phase rule in thermodynamics. Any convex polyhedron’s 
surface has Euler’s topological characteristics V − E + F = 2, where V, E, and F 
are respectively the number of vertices, edges, and faces. In thermodynamics, the 
Gibbs phase rule is given by F − C + P = 2, where F, C, and P refer to the degrees 
of freedom, the number of the constituent components, and the number of 
phases, respectively. Gibbs developed the graphical properties of equilibrium 
phases, and his internal energy function may be represented as a surface in a 
multidimensional Cartesian coordinate system. Weinhold argued that thermo-
dynamics has conjugate relations resembling the equations of classical mechan-
ics, such that temperature (T) can be described as being conjugate to entropy 
(S), and pressure with a negative sign (−P) to volume (V). The internal energy 
(U) is a function of entropy, volume, and chemical components (N1, N2, …), and 
it can be represented as a surface in a multidimensional Cartesian coordinate 
system [1]. He claimed that Riemannian geometry or some abstract geometry 
may provide additional insights into thermodynamic behavior. This idea had 
been taken up by others to represent thermodynamics by Riemannian mani-
folds. In these efforts, the interactions were expressed in terms of curvature ten-
sor, such that the curvature of internal energy can be expressed in terms of the 
second derivatives of extensive variables [1] [2] [3] [4]. The second derivative 
refers to the curvature of the surface of equilibrium states, and dissipative reac-
tions or changes give rise to curvature [5]. Its convexity warrants the entropy 
principle. There have been numerous types of definitions of entropy in litera-
ture, and entropy usually has an intimate relation with intrinsic and extrinsic 
geometry of surfaces or shapes [6].  

The shape of an object has no place in physical laws concerning the dynamical 
behavior of objects such as in Newton’s force equation, nor in momentum and 
energy equations where we are concerned with mass only not with its shape. 
However, every object in the physical world has a shape, because, in Aristotle’s 
words every physical entity has a boundary that imparts a shape to it; only me-
taphysical and non-physical entities have no boundaries. Anything which has a 
shape can be characterized by its energy content and its shape entropy. The 
shape of objects has become an important field of study concurrently with chaos 
theories, and especially after Maldelbrot’s revolutionary fractal concept [7].  

Entropy drives the phase behaviors of spheres, rods, suspensions, emulsions, 
etc., and yields ordered shapes at larger scales. The shape entropy becomes im-
portant when the intrinsic interactions start to dominate at moderate densities 
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[8]. The entropy of shapes revealed as the interface between two phases can be 
determined by using discrete formulation but it can be extended to continuous 
formulation [9]. The fragmentation entropy of spiral tilings can also be calcu-
lated by the same method [10]. The Shannon entropy denotes the information 
content in a system. Based on this formulation the curvature of an object’s 
boundary may also be used as an information measure [11]. In other words, 
curvature also may give information about the shape of an object [12]. By the 
same token, we may ask if known curvature can define temperature also for our 
system? This question is very difficult to answer, because, the only definition of 
temperature is given by Boltzmann for ideal gases in terms of translational aver-
age kinetic energy i.e., ( ) ( )2 21 2 3 2m m kT=v v . In thermodynamics, the tem-
perature was expressed as the inverse of the rate of change of entropy with in-
ternal energy. If we can determine the entropy of geometric objects, can we also 
define temperature in terms of geometric variables? These questions will be 
tackled in this research work.  

Another point to mention is that the entropy concept is also used as a measure 
of aesthetics [13]. There is an intimate relation between art (or aesthetics) and 
entropy [14] [15]. The second law of thermodynamics finds application to quan-
tify graphic complexity and aesthetic optimality [16]. Polygons, besides their 
characterization by edges and angles, can be characterized also by their aesthetic 
measures. The first concrete procedure to establish a measure for the aesthetics 
of geometric shapes was done by Birkhoff [17]. He defined the ratio of order (O) 
to complexity (C) as the aesthetic measure (M), such that M = O/C. He used 
terms related to the number of symmetry axis. Although square and rhombus 
have equivalent number of symmetry axis Birkhoff claimed that rhombus is less 
aesthetic than square, and he introduced a non-physical term into his equation 
called a non-pleasing parameter. Can entropy be used to explain the aesthetic 
difference between a square and rhombus without using Birkhoff’s “non-pleasing 
parameter”? This point also will be shortly elaborated.  

All the arguments made above were treated in this work using energy and en-
tropy attributes of shapes. It is possible to characterize trigonometric shapes and 
curves quantitatively in thermodynamic terms like energy and entropy. This 
work aims to develop some procedures to find out total energy, dissipative 
energy, entropy, and temperature-like attributes of planar geometric shapes, like 
triangles and higher polygons, and also of some curves like a circle, sine-curve, 
spiral, and exponential curve. The theory of viscoelasticity will be utilized to 
attribute energies to trigonometric shapes and curves. The outcomes of these 
studies were then applied to characterize the entropy and temperature of 
Schwarzschild black holes.  

2. Surface Energy Attributes 

The difference between square and rhombus is that the internal angles of the 
rhombus are different than 90˚. If we think of a rhombus with internal degrees 
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of 90˚ then it is nothing but a square rotated by 45˚, and they are mathematically 
the same object, but from a physical point of view, they have different properties. 
Whether the surface is a rhombus or rotated square, each is different than a 
square from a physical point of view if they represent crystalline surfaces. To vi-
sualize this, consider two solid specimens both cut out from a bulky material one 
is in the shape of a cube and the other is in the shape of a pyramid. From the 
material physics point of view, we can ask if the surface of cube and pyramid 
have identical properties even though both are fine-polished. The answer would 
be simply negative, because, they are cut out at different angles. Polishing could 
be theoretically achieved at best to the unit cell size of the crystal. Three cases are 
shown in Figure 1 where each tiny grid square represents a unit cell size. Three 
different surfaces are produced depending on different cutting angles, these are, 
square produced by applying 0˚ and/or 90˚ of cutting angle rotated square pro-
duced by 45˚ of cutting angle, and finally rhombus produced by an arbitrary cut-
ting angle.  

In Figure 1(a) all cells are aligned smoothly with respect to background geo-
metry or say to a referenced crystal surface, but in Figure 1(b) the surface is in-
clined by 45˚. That is, it represents a cross-cut view where the smooth crystal 
surface was cut at 45˚ such that a new surface was created at each unit cell com-
pared to Figure 1(a). In Figure 1(c) the cutting angle is something other than 
45˚. In material science, this figure depicts misorientation between the back-
ground (or reference) lattice and the lattice of an object. Depending on the angle 
between the two crystal sites at the interface one may classify them as the low- or 
high-angle boundaries. However, we will not do crystal orientation analysis here 
but concentrate only on the effect of angle of an edge such as that of Figure 1(b) 
& Figure 1(c) with respect to the background square lattice in this work.  

According to the Gibbs law, any surface no matter whether it is a droplet or 
crystal arranges itself in a manner to minimize its surface Gibbs free energy. In 
other words, a shape with low surface energy is achieved at the equilibrium state. 
According to Wulff, the length of a vector drawn from the center normal to the 
crystal face will be proportional to the surface energy of that face. It was proved 
years later that this proposal was scientifically true. The determination of the  
 

 
Figure 1. Surface of, (a) square, (b) rotated square, (c) rhombus. 
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equilibrium shape of an object is called Wulff construction, and it finds a vast 
number of applications in applied sciences, and in theoretical studies as well 
[18]-[26]. The knowledge of surface energies with Miller indices provides know-
ledge about the shape of the crystal. However, in this research work, we will not 
use the Wulff construction to figure out the shapes of polygons, but we will ra-
ther use the shape energies of some simple polygons and also of curves, and then 
elucidate the associated shape entropies using the laws of thermodynamics.  

In Figure 2, a general cross-sectional view of the broken surface of a crystal is 
shown, and only one edge is considered there, the second dimension was omit-
ted. Each tick denotes say the edge of the unit cell of a broken surface of the 
crystal. Ticks are supposed to exist on the entire broken surface. Figure 2 may 
help to specify interfacial energy, meanwhile, it also may form the basis for the 
energy of the edges of geometric shapes. The amount of energy needed to create 
a surface is proportional to the surface area. The energy attributes can be eva-
luated by considering the surface energy along with both horizontal and vertical 
directions [27]. The calculations are limited to the ranges indicated by the 
double-headed arrows in Figure 2 where the ticks denote the boundaries. 

The number of broken bonds along the horizontal (i.e. x-) and vertical (i.e. y-) 
directions can be found out from the geometry of the shape. The edge of a unit 
cell is given by “d”, therefore the number of unit cells is inversely proportional to 
d and directly proportional to the length  .  

( )# of broken bonds along -direction cosx
d

θ=
             (2) 

( )# of broken bonds along -direction siny
d

θ=
             (3) 

Their sum gives the total number of bonds along both directions, 

( ) ( )( )total # of broken bonds cos sindn
d

θ θ= = +
            (4) 

 

 

Figure 2. Surface pattern. 
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Now let us assign a unit energy of ε/2 to each bond. Then the total energy of 
created surfaces can be given by,  

( ) ( )( ) ( )cos sin cos 4
2 2

E
d d

ε εθ θ θ π= + = −
 

            (5) 

There are two limiting energies, one is the minimum and the other maximum. 
The former occurs when 0θ = , and the other at 45θ = , such that, 

min  
2

E
d

ε
=

                           (6) 

max 2
E

d
ε

=


                          (7) 

The values of ε and d are somehow arbitrary, so we can rearrange Equation 
(5) as, 

( ) ( )( ) ( )cos sin cos 4
2 2

dE θ θ θ
ε

  = + = − 
 

π
 

            (8) 

The 45˚ is a critical angle and we get the maximum number of broken bonds 
along the vertical axis at this angle. Below or above 45˚ the broken bonds de-
crease in number. It can be better seen pictorially in Figure 3, where all lengths 
are of equal length. 

We have 45θ =  for (d) in Figure 3, and it has the maximum energy given 
by Equation (7). The flat horizontal and vertical lengths, which are (a) and (f) 
respectively, have the minimum energy given by Equation (6). Similarly, (b) and 
(e) also have equal energies. The energy of (c) is between that of (b) and (d). Ei-
ther (a) or (f) represents a smooth surface while others represent surfaces at dif-
ferent distortions. 
 

 

Figure 3. Lengths at different inclinations. 
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3. Surface Energy Attributes of Geometric Shapes 
3.1. Triangles 

Let us form a triangle by pushing (a) up in Figure 3 until it touches (b) on the 
left to form a corner. Then the right ends of (a) and (b) can be joined by adding 
an edge. If we had 1˚ tilted (a) and also 1˚ titled (b) at the beginning, we would 
form the same triangle tilted by 1˚. This second triangle is nothing but 1˚ rotated 
shape of the former one. However, the second triangle has different surface 
properties than the first one as the tilting changes the surface properties of the 
edges. The surface energy can be found out by calculating energy using Equation 
(8) for each edge and summing them up. The rotation is performed in a coun-
terclockwise direction by 1˚ increase in each step until we stop at 360˚. The 
energies of edges are summed up to find the total energy at each step.  

Triangles with different shapes exhibit different energies as they are rotated. 
The types of triangles studied are shown in Figure A1 in Appendix A. Their 
areas are all equal, and it was arbitrarily taken to be 3600 units. The lengths of 
edges are shown on the edges.  

In Figure 4 the change of the energy of the acute scalene triangle of which all 
angles and all edge lengths are different from each other is shown. In Figure A1 
the angle of base AB is BA 0θ = , whereas those of BC and AC are BC 60.95θ = − , 
and CA 71.57θ = , respectively. These angles are found from the slopes of the 
edges. The very initial energy is calculated under these conditions, and in the 
next step the angle of AB is increased by 1˚, and the others also change accor-
dingly, thus we get BA 1θ = , BC 59.95θ = − , and CA 72.57θ = , respectively. 

In the calculations, d/ε was arbitrarily taken to be unity in Equation (8). The 
notations AB, BC, and CB in the legend of Figure 4 refer to the edges. AB is the 
shortest as seen from Figure A1, so it generally has the lowest energy values as 
seen from the very low curve in Figure 4. Similarly, BC is the longest and it gen-
erally exhibits the highest values. 

The change of total energy for all triangles is shown in Figure 5. The top 
curve in Figure 4 shows that the pattern repeats itself for every 90˚ of rotation. 
For better visual inspection the first two quadrants were displayed in Figure 5. 
 

 

Figure 4. Change of energy of acute triangle with θ, where AB, BC, and CA denote the 
edges. 
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Figure 5. Change of energy of triangles with θ. 
 

As it is seen from Figure 5 equilateral triangle has the lowest total energy 
while obtuse has the largest energy in all degrees of rotation. Equilateral has the 
simplest pattern having the highest number of symmetry axes. It repeats itself 
for every 30˚, i.e. the pattern repeats itself three times in each quadrant. Between 
0˚ - 90˚ right triangle and right isosceles triangle have two peaks, and each peak 
is symmetric in the right isosceles. Other triangles have three peaks in this qua-
drant.  

The equilateral has the lowest energy while the obtuse has the highest. In all 
cases, the energy exhibits a minimum at 0˚, 90˚, and 180˚, because, these are the 
cases given by either (a) or (f) in Figure 3 for one of the edges. For equilateral 
and isosceles the energy becomes maximum at 45˚ and 135˚ (i.e. at odd-number 
multiples of 45˚ between 0˚ - 180˚). The maximum occurs usually close by 45˚ in 
other cases except at right isosceles.  

3.2. Higher Polygons 

The energies of the rectangle and the regular polygons from square to octagon 
are given in Figure 6. The energy in each case was found out by calculating the 
energy of each edge of the polygon and summing up for all edges. The total 
energy was found from the sum of all energy values between 1˚ - 360˚. Their to-
tal energies change as; rectangle: 55,919.26, square: 55,002.55, pentagon: 52,416.73, 
hexagon: 51,185.65, heptagon: 50,494.61, and octagon: 50,062.22 units. Rectangle 
has the highest energy. This might be because a rectangle has two longer sides, 
which make a larger contribution to energy.  

In regular polygons (i.e. equal-sided polygons, rectangle not included) the 
energy decreases as the number of edges increase from square to octagon. The 
energies of the pentagon, hexagon, and heptagon are close to each other while 
square has the largest and octagon the smallest energy as seen from Figure 5.  

If we keep increasing the number of edges of polygons indefinitely we finally 
get a circle. We can say that circle has the lowest energy than all polygons of the 
same area as the energy decreases with the increasing number of edges.  
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Figure 6. Change of energy of higher polygons with θ. 

4. Conservative and Dissipative Energies 

In Figure 3 as we go from (a) to (d) through (b) and (c) there occurs new distor-
tions in each case, and (a) is finally transformed into (d). In the vocabulary of 
material science, it is said that (a) is deformed into (b) and (b) is deformed into 
(c), and so on. The measure of deformation is the number of new bonds created 
along the vertical direction. In the theory of viscoelasticity, if an object is de-
formed under a force or stresses (τ), the stress is split into two components, one 
is along the direction of the applied stress and the other vertical to it. For in-
stance, consider a semisoft partly deformable material that is pushed by applying 
a force from one end along its axial direction as seen in Figure 7(a). 

The object responds in two ways; 1) it moves along the direction of force 
which is called “in-line” motion, and 2) it deforms in a direction vertical to the 
direction of applied force, and it is called “out-of-line” motion. The force (or 
stress) (τ) is split into its components along both directions. The τ



 denotes the 
parallel or in-line component of stress vector, and τ⊥  denotes the vertical or 
out-of-line component of stress as indicated in Figure 7(b). Note that the in-line 
motion is associated with conservative energy and the out-of-line motion with 
dissipative energy. In thermodynamics, the conservative energy is called work 
energy whereas dissipative energy is called heat energy. Here, we are not inter-
ested in the magnitude of stress as we are not dealing with a dynamic system. 
Whatever happens results in a change in the shape of the object and we are in-
terested only in the surface properties. The energy and entropy attributes are re-
lated only to surface patterns.  

Equation (8) gives the sum of these energies; the cosine component denotes 
the work-like energy and the sine component denotes the heat-like energy asso-
ciated with the surface. Since the entropy of a system is connected to its dissipa-
tive energy we can investigate how the entropy or randomness in geometric 
shapes can be expressed quantitatively. It is explained in Section 5. The heat-like 
or dissipative energy (q) can be simply deduced from Equation (8), such that, 
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Figure 7. Deformation and stress components, (a) Initially, (b) After deformation. 
 

( )sin
2

dq θ
ε

  = 
 



                       (9) 

The calculations can be simply done by using Equation (9) by changing θ by 
1˚, and the total q can be found out from the summation of q values of each edge 
of a polygon as done before in calculating the total energy E. Note that we must 
have 45θ ≤ , otherwise, the axes must be changed, i.e. the calculation must be 
done using ( ) ( ) ( )sin sin 90 cosθ θ θ→ − = . Again, d/ε was arbitrarily taken to 
be unity in Equation (9). 

4.1. Triangles 

The changes of dissipative energies (q) of triangles with θ are shown in Figure 8.  
The curves heavily overlapped with each other, therefore, only the changes 

between 0˚ - 180˚ were presented. In all cases, q reaches its maximum at 45˚ and 
135˚, and in an equilateral triangle the peak occurs at every multiple of 45˚/2. 
The right triangle exhibited the largest magnitude of difference between its 
minimum and maximum values. The scalene and isosceles had similar patterns 
because their heights had been taken to be equal. The two tiny minima between 
0˚ - 90˚ occur at the same height in isosceles but at different heights in scalene. 
The change of q with θ displayed a smooth curve in right isosceles, because, the 
angles between the hypotenuse and the other edges are 45˚, and the contribution 
to q used to change at appropriate proportions on rotation.  

4.2. Higher Polygons 

The dissipative energies of higher polygons (i.e. other than triangles) from rec-
tangle to octagon are given in Figure 9. The amount of q decreases in the order 
of, rectangle: 27,959.63, square: 27,501.28, pentagon: 26,208.37, hexagon: 
25,592.82, heptagon: 25,247.31, and octagon: 25,031.11. This is the same order as 
in the case of the change of E. The rectangle has the highest dissipative energy. 
This might be due to the reason that rectangle has two longer sides than the 
square as mentioned before, and long edges make a larger contribution to q 
when . 

The visual inspection shows that the amplitude of each repeating pattern is 
minimum in the heptagon in Figure 6, and it increases as heptagon, pentagon, 
hexagon, octagon, and square. In Figure 9, the order goes as heptagon, penta-
gon, octagon, hexagon, and square, where hexagon and octagon are switched  
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Figure 8. Change of dissipative energy of triangles with θ. 
 

 

Figure 9. Change of dissipative energy of higher polygons with θ. 
 
compared to the order displayed in Figure 6. As the number of edges further 
increases the patterns likely get quite smoother. 

5. Entropy 

The definition of entropy as degradation of energy in classical thermodynamics 
leads to some unconformity, because, it has applications in some systems where 
there is no heat or energy exchange such as mixing of two miscible liquids at the 
same temperature. Boltzmann proved in his H-theorem that entropy is a meas-
ure of the increase of randomness in a system. Boltzmann defined also the tem-
perature in terms of kinetic energies of randomly colliding molecules, i.e. 
( ) ( )2 21 2 3 2m m kT=v v , where k is the Boltzmann constant, and it can be ex-
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pressed in terms of gas constant R and the Avogadro number. In simple mo-
noatomic ideal gas the heat capacity at constant volume processes is simply giv-
en by ( )3 2 R . In constant volume processes there is no work term, and the 
change in heat energy (dq) simply becomes equal to the change in internal 
energy, such that ( )d 3 2 dq R T= . For such systems, the change of entropy (dS) 
is simply expressed by ( )d 3 2 dS R T T= . In other words, entropy change is 
given in terms of dT T , that is in terms of the fractional change of random ki-
netic energy.  

So far, we kept using thermodynamic terms and now we can make a paradig-
matic change in our vocabulary while talking about the entropy of shapes. En-
tropy defined in terms of temperature as in classical thermodynamics is not ap-
propriate for geometrical shapes. It is better to go with the Boltzmann-Shannon 
entropy where entropy can be determined from the prevailing states of a system. 
The associated temperature can then be evaluated after finding entropy. In this 
view, each square in Figure 2 corresponds to an “area state” and each broken 
bond corresponds to an “interface state”. The elementary square size (i.e. d2) 
multiplied by the number of squares (i.e. Nsq) gives the total area. Similarly, the 
“NumberLines” at the boundary multiplied with elementary line-length (i.e. d) 
gives the total length of the boundary. Since conservative and dissipative ener-
gies are expressed in terms of horizontal and vertical lengths, respectively, the 
line elements can be further specified accordingly as N



 and N⊥ . The Num-
berLines is defined as, NumberLines = 1/d. The conservative and dissipative 
energies can thus be expressed in terms of N



 and N⊥ , i.e. they can be defined 
in terms of appropriate states. The shapes thus can be described by ratios, sums, 
and differences of dimensionless numbers.  

The entropy of discrete systems so-called the Shannon entropy can be calcu-
lated from the number of probable states. The change occurs along the vertical 
direction and the number of new states is generated along this direction as seen 
in Figure 10.  

This type of surface is studied in the literature in relation to crystal growth. 
The Kossel-Jackson-Temkin models of crystal growth are quite often referred to 
in the literature. The Kossel-Temkin entropy introduces a length scale into 
evolving thermodynamics of diffuse interfaces [9] [28] [29] [30]. The entropy of 
the crystal boundary can be simply calculated from the already formed surface 
where every step corresponds to a new state. 
 

 

Figure 10. Entropy states in a discrete system. 
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In Figure 10(a) there is a single surface (i.e. one state), while there are four 
surfaces (i.e. four steps or four states) in Figure 10(b), and there are seven states 
in Figure 10(c). As we go up along the vertical direction new surfaces are gener-
ated depending on the slope. Note that the number of states is equal to the 
number of cells along the vertical direction in all cases in Figure 10. Such a dis-
crete geometry was revealed in many systems in the literature. For instance, the 
entropy of the distribution of notes in a song also exhibits a surface similar to 
the surface of a crystal, and its evolving entropy can be calculated by using the 
Shannon entropy formula [31]. 

The Shannon entropy is defined as the logarithm of states. When the cell size 
“d” (see Figure 2) is decreased we get a greater number of states. When 0d → , 
we can take the natural logarithm of the vertical length to calculate entropy, i.e. 
we use the Boltzmann entropy if the system is not discrete. Now, we can write, 

( )entropy ~ log # of states                   (10) 

# of states ~ vertical height ~ ⊥                 (11) 

When 1⊥ =  we have ( )log 1 0= , and this is the case for Figure 10(a). En-
tropy can be related to length   and slope m as follows. 

vertical lenghtslope tan
horizontal length

m θ ⊥= = = =


‖

            (12) 

m⊥ = ‖
                          (13) 

2 2 2
⊥= +



                            (14) 

From Equations (13) and (14) one gets, 

2

21
m

m⊥ =
+

                          (15) 

Therefore,  

( )
2

2  ~ ln ln
1

mS
m⊥

 
 =
 + 

                    (16) 

The entropy of an edge can be expressed either in terms of the vertical com-
ponent of length ( ⊥ ) or in terms of the length (  ) and the slope (m).  

5.1. Entropy and Shape Temperature of Edges of Triangles 

When 0θ =  for one of the edges like Figure 3(a) its heat content is zero, and 
the associated temperature change also comes out to be zero, (i.e. ΔT). We can 
take the temperature of a horizontal edge to be zero as ground state temperature. 
Entropy and temperature both increase with the increase of q, or with the in-
crease of ⊥ . 

Equation (16) can be used to calculate the edge entropy of any polygon, and 
the total entropy can be simply found out from the sum of the entropies of all 
edges, such that, 
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( ),
1

~ ln
n

iS ⊥∆ ∑                        (17) 

Note that we omitted the constant in Equations (16) & (17). The change of ΔS 
for triangles is shown in Figure 11.  

The total edge entropy of the triangle shows a peak at 45˚ in all cases except in 
the right isosceles triangle. This might be because maximum randomness occurs 
at 45˚, and we also have a maximum q value as seen in Figure 8. Although the 
maximum q of the right isosceles triangle also shows up at 45˚, its entropy is 
minimum at 45˚ as seen in Figure 11. So, it is not only the length but also the 
angle between two adjacent edges which affect entropy. In fact, in Figure 8 the 
shapes of curves of a right triangle and right isosceles triangle also differ exten-
sively from each other. The decreasing order of total entropy (i.e. the area cov-
ered under the curve) goes as, isosceles, right isosceles, obtuse, scalene, and 
equilateral. The isosceles has the highest while the equilateral has the minimum 
entropy. 

The temperature associated with an edge can now be easily found out from 
the thermodynamic relation,  

~s
qT
S∆

                           (18) 

It should be kept in mind that this is not the kinetic temperature connected to 
( ) ( )2 21 2 3 2m m kT=v v . Anyway, Equation (18) is a general expression to re-
late heat, entropy, and temperature. It is more appropriate to talk about “tem-
perature” like attribute rather than kinetic temperature, or better to say “shape 
temperature”, Ts. The “log2” expression used in Shannon entropy need to be 
converted to “ln” in Equation (18). However, since Equation (18) is expressed as 
a relation we may not need to do it. 
 

 

Figure 11. Change of entropy of triangles with θ. 
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The change of shape temperature of each edge with the angle of rotation was 
calculated for each triangle, and it was found out that the general trends of the 
patterns were similar. Therefore, the changes of ΔS and θ were given only for 
scalene in Figure 12 as an example. The magnitudes are connected to the 
lengths only as the physical terms like heat capacity and ideal gas constant are all 
taken to be unity.  

The lengths of AB, BC, and CA are 80, 102.96, and 94.87 units, and the angles 
Â , B̂ , and Ĉ  are 71.57˚, 54.46˚, and 53.97˚ respectively. The magnitudes of 
maximum Ts values of AB and BC were close to each other, but that of CA was 
significantly high. It should be related to the high value of Â , i.e. the angle that 
the edge CA makes to the base. The patterns of ΔS and Ts cope with each other 
for AB as they are both equal to zero at 0θ = , but they differ for BC and CA.  

5.2. Entropy and Shape Temperature of Edges of Higher Polygons 

Entropy was calculated by using Equation (17) as in the former case. The pat-
terns obtained are shown in Figure 13. They came out to be in perfect symmetry 
in every quarter, thus only 0˚ - 90˚ interval was used in Figure 13. 
 

 

Figure 12. Change of entropy and shape temperature of a scalene triangle with θ. AB, BC, 
and CA denote the edges, respectively, AB being the base. 
 

 

Figure 13. Change of entropy of higher polygons with θ. 
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The entropies of the square and rectangle came out to be equal being inde-
pendent of the ratio of edges of the rectangle as long as the area is kept constant. 
The amplitude of repeating patterns follows similar behavior to that of q shown 
Figure 9; heptagon has the lowest amplitude change, then comes pentagon, 
hexagon, octagon, and square.  

The order of increase of total entropy that includes all the edges of the poly-
gon is as, square, pentagon, hexagon, heptagon, and octagon. The entropy in-
creases with the increase of the number of edges, and in the limit, we came up 
with a circle that will have the maximum surface entropy with a smooth surface 
having no amplitude fluctuations. It has the highest surface entropy despite it 
has the lowest surface energy (see Section 3.2). Therefore, it has the lowest shape 
temperature according to Equation (18). The increase of total entropy with the 
increase of the number of edges in polygons can be understood by simply com-
paring square and octagon, the former is four-sided and the latter eight-sided. 
Octagon is obtained from the square by fragmenting each side of the square into 
two, and the fragmentation process increases entropy, conceptually. As men-
tioned in the Introduction, the number of edges in Euler’s topological rule cor-
responds to the number of components in Gibb’s phase rule. The increase of the 
number of components in a system increases the Boltzmann entropy, and cor-
respondingly the increase of the number of edges increases the entropy of poly-
gons.  

The change of entropies and shape temperatures with the change of θ for the 
base edge of higher polygons are shown in Figure 14. As it is seen the magnitude 
of temperature decreases as the number of edges increases from square to octa-
gon. It theoretically reaches its minimum when a circle with the same area of 
polygons is achieved finally. 
 

 

Figure 14. Change of entropy and shape temperature of the base edge AB of higher po-
lygons. 
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The base edge of the rectangle is larger than that of the square, and both the 
entropy and the temperature of the base AB came out to be larger than that of 
the square as seen from the first and second graphs of Figure 14.  

In classical thermodynamics, “nothingness” is defined by zero degrees Kelvin 
(K) state where there is no energy, no heat, no entropy, no temperature. It is the 
very ground state which cannot be achieved by physical means. When do we get 
this state in geometry? It is the “point” that has no length, no energy, no entro-
py, and no temperature; no matter how we rotate it we cannot assign any physi-
cal attribute to it. The definition of a point from the times of Aristotle and Euclid 
to our age never changed; it is a primitive (or a apiori) notion upon which we 
build the geometry just like we build temperature and thermodynamic energy on 
zero degrees Kelvin. Zero degrees Kelvin cannot be achieved by decreasing the 
temperature no matter what is physically done; similarly, “point” cannot be 
reached no matter how much we contract a line. 

In polygons the lengths of sides are constant, i.e. the shape is constant, but it 
takes a different appearance as we rotate the polygon. As mentioned before, 
Birkhoff’s [17] claim of “rhombus is less aesthetic than square” can be inter-
preted in terms of entropy concept instead of his “non-pleasing parameter” 
which is a non-physical concept. As we rotate the square by 45˚ its entropy goes 
up to maximum when 45θ = , as seen in Figure 14. All of its attributes look 
more or less like that of a rhombus. In addition, the temperature also goes up to 
the maximum as we go from square to 45˚ rotated square. There is an intimate 
relation between aesthetics and entropy [31] [32] [33]. 

6. Thermodynamic Attributes of Curves 

In polygons the edge lengths are constant, and the calculations for energy and 
entropy are done for each edge at varying angles, and then they are summed up 
to find out the total value as described before. In the case of curves, first, we need 
to specify the beginning and the end of the curve. Then, we need to find out the 
length of our vector extending from an origin to a specific point on the curve.  

In the calculations carried out the curves were not rotated but the varying dis-
tance from the origin to any point on the curve was taken as the varying para-
meter. The specific curves studied are circle, sine curve, spiral, and exponential. 
Among these, the circle was considered first as it has constant vector length from 
the origin (i.e. radius), but the length changes with θ in the other curves. The 
diagrams of these curves are given in Appendix B.  

The total and dissipative energies are calculated from Equation (8), and Equa-
tion (9), respectively. The calculation of entropy change in curves needs a bit of 
attention. Let us consider a decaying exponential curve given in Figure B1. In all 
entropy calculations that we did for polygons, we took the base edge as our ref-
erence and changed the angle by 1˚, where the length was constant. A decreasing 
exponential curve never crosses the horizontal axis, and the smaller the angle θ 
the bigger the length of our vector from the origin, meanwhile, the smaller the 
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vertical component of length (i.e. ⊥ ). As ⊥  gets smaller than “1” the loga-
rithmic equation gives negative values for entropy. Theoretically, there is no 
problem with negative entropy values, because, one may get negative entropies 
according to Equation (17) as one may use any arbitrary length which is less 
than 1, (i.e. 1⊥ < ). The critical question here is to what specific point we must 
refer to, to calculate the entropy difference. The ΔS goes to zero when 0θ = , 
because, 0⊥ =  at 0θ = . Therefore, for 1θ <  angles we need to make an 
extrapolation to set the minimum entropy state. For any curve, this can be done 
by considering three points on the curve having angles closest to 1θ =  but 
smaller than 1˚, and then make extrapolation to calculate the corresponding en-
tropy to 0θ =  state. It gives us the minimum entropy value. For instance, as 
the small circle is closer to the origin than the big circle (see Figure B1), we take 
the smallest three angles of the small circle close to the horizontal axis and make 
the extrapolation accordingly. Since the “d” value must be the same, we use this 
value also for the bigger circle. Then the difference between this value and the 
entropy value calculated at any angle (i.e. log ⊥ ) gives us ΔS. We did not have 
this issue in polygons, because, we had log 1⊥ >  all the time, and also, we had 
constant edge lengths. The minimum entropy of any edge when 0θ =  was 
zero.  

In polygons, we simply had ( )in~ s θ⊥  , but in curves we had 
( ) ( )s n~ iθ θ⊥   no matter whether   changes with θ or not, and the entropy 

change in a circle is found out by the same procedure.  
After finding the change of ΔS with θ the shape temperature can then be cal-

culated using Equation (18). 

6.1. Circle 

The arc of the first quadrant of the circle was considered only, because, there is a 
perfect symmetry in the other quadrants. As seen from Figure 15 both E and q 
increased with the increase of length (i.e.   or radius r) as expected. The ΔS 
values of the big circle came out to be larger, because, its ⊥  values are bigger 
than that of the small circle. Their Ts values also follow the same pattern. As seen 
from Figure 15 the maximum occurs at 45θ =  in all cases as expected.  

6.2. Sine Curve 

The calculations for sine curves were carried out in the section shown in Figure 
B1, where the arrow indicates a representative case. The coordinates used for 
calculations were located at the middle of the half-wave such that the maximum 
height occurs on the vertical axis as in the case of a circle. In Figure 16 the 
symbol A in the legend refers to the amplitude of sine wave, and the behaviors at 
three different amplitudes were studied; these are 0.5, 1, and 2, respectively. The 
maximum total energy occurs at different angles depending on the value of am-
plitude, and the associated θ value increases with the increase of amplitude. In 
the case of dissipative energy, the maximum occurs at 45θ =  in all cases. The  
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Figure 15. Total energy, dissipative energy, entropy, and temperature of circles. 
 

 

Figure 16. Total energy, dissipative energy, entropy, and shape temperature of sine 
curves. 
 
effect of the vector angle becomes more distinctly pronounced between 45˚ - 
90˚, the curves distinctly separate in this region. It is nothing but the shape effect 
of a sine curve. The same effect is also observed in ΔS and Ts curves. In all cases 
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larger amplitudes resulted in larger changes for all terms studied, i.e. in E, q, ΔS, 
and Ts.  

In these two cases (i.e. circle and sine curve) the effect of the change of ampli-
tudes was taken into consideration. The effect of the coefficient of the variable 
will be demonstrated below for two other different cases, one for spiral and the 
other for exponential curve, where the amplitudes were kept constant. In a spir-
al, the expansion of the curve and thus the curvature depends directly on θ. In an 
exponential curve, curvature depends on the variable of the equation (i.e. x in 

( )~ expy kx− . The change of θ of a vector thus depends on the value of 
( )exp kx− , and actually on the magnitude of the constant k.  

6.3. Spiral 

Two different spirals at different rates of expansion were studied (see Figure 
B1). The fast-expanding one results in larger total energy, dissipative energy, en-
tropy change, and temperature as seen from Figure 17. For the entropy case, a 
magnified view of the upper part of one of the peaks was also displayed as seen 
in Figure 17. The angle was changed between 0˚ - 720˚, and the amplitudes of 
oscillating waves continue to increase in all cases. The increase of Ts with the in-
crease of expansion rate, (i.e. the “b” constant in the equation, ( )expy a bx=  
agrees with the globule-to-helix transition in some macromolecules. The in-
crease of temperature or the use of some solvents transforms a macromolecule 
from globule into helical form. The globule state is a much more compact form 
and has smaller entropy whereas helix has larger entropy. In Figure 17 the one 
with a smaller “b” value has a more compact structure than the one with larger 
“b” value. The former has smaller entropy than the latter. 
 

 

Figure 17. Total energy, dissipative energy, entropy, and temperature of spirals. 
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6.4. Exponential Curve 

In this section, two exponential curves with different decaying rates were consi-
dered. The one having a higher rate constant (i.e. k = 1.5 case) decays faster than 
the one having a smaller rate constant (i.e. k = 1.0 case), (see Figure B1). There-
fore, the vector length from the origin to any point on the fast decaying curve 
comes out to be smaller than the corresponding vector extending to the relative-
ly slow decaying curve (i.e. k = 1.5 case). As a result, the total and dissipative 
energies of the fast decaying curve came out to be smaller than those of slowly 
decaying curve as seen in Figure 18.  

This result is true also for entropy change. The dissipative energies reached 
their maximum in both cases at 45θ = , but the temperature does not quite 
follow this trend. For k = 1.0 case temperature reaches its maximum at 45θ = , 
but for k = 1.5 case, it reaches its maximum at around 60˚. After this angle, the 
Ts of the fast decaying curve (i.e. k = 1.5 case) goes over the slow decaying curve 
(i.e. k = 1.0 case).  

From all these four cases (i.e. circle, sine curve, spiral, and exponential curve) 
it can be concluded that any parameter which affects the angle of the vector 
drawn from an origin to the curve changes the physical attributes, i.e. total 
energy, dissipative energy, entropy, and temperature, or in general the states 
concerning these attributes. The parametric changes are essentially dependent 
on the amplitude and the coefficient of θ angle. 
 

 

Figure 18. Total energy, dissipative energy, entropy, and temperature of exponential 
curves. 
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7. Time-Dependent Cases 

The entropic behaviors of exponentially decaying curves reveal some interesting 
implications. If the “x” variable of the exponential curve is substituted by time 
“t” parameter, then we can discuss the entropy change on the grounds of the 
time domain. Fast or slow decays refer to velocities of rates. For instance, the 
decay rate of a chemical compound “A” with an initial concentration of A0 into 
anything can be simply expressed as,  

anything
d
d

A
A kA
t

→

= −
                        (19) 

This is known as a first-order irreversible chemical reaction in chemical ki-
netics. Its integration gives, 

0e ktA A −=                           (20) 

Now we can elucidate it in terms of the entropy concept. We know that 
( ) ( ) ( )exp cos sini t t i tω ω ω= + , where ω  denotes frequency. Thus, a change in 

ω  corresponds to a change in k, and the entropy of a time-dependent trigono-
metric function becomes dependent on its frequency.  

In Figure 19 the comparison of two sine curves was given. The 2λ  denotes 
the numerical value of half of the wavelength. The amplitude was taken to be A 
= 1 in both cases. The triangular symbol refers to the case shown by the same 
symbol in Figure 16. The sine curve designated by the square symbol refers to  
 

 

Figure 19. Behaviors of sine curves at different frequencies. 
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the case where the frequency is increased twice. When the frequency is doubled 
the total energy and dissipative energies decrease as the length of the vector de-
creases. As seen from Figure 19 ΔS of the high-frequency case (i.e. 0.7854 with 
square symbol) goes over the low-frequency case after 45θ = . The behavior of 
Ts is like the behaviors of E and q. However, in Figure 18 the Ts of the fast de-
caying curve goes over the slow decaying curve after 60θ  . 

8. Curvature 

Curvature appears in thermodynamics in relation to surface properties. For in-
stance, in a curved liquid-vapor interface the change of vapor pressure is given 
by the Kelvin equation,  

m

sat gas

2 1ln Vp
p R T r

γ
=                       (21) 

where p is actual pressure, psat is saturation pressure for the flat surface, γ is the 
surface tension of the droplet, Vm is molar volume, Rgas is the universal gas con-
stant, and T is temperature. The change of vapor pressure or chemical potential 
(i.e. μ) across a curved surface is known as the Gibbs-Thomson effect, and the 
change in Gibbs free energy or chemical potential is given by [27], 

gas

2 1 ~mV
G

R r
γ

µ∆ =                      (22) 

These two equations are related to each other only by the temperature term. 
Curvature reveals in both pressure change and interfacial energy change. In oth-
er words, curvature affects both pressure and interfacial energy. Therefore, cur-
vature directly affects the thermodynamic properties and it has a predominant 
role in the formation of shapes [34]. Curvature, entropy, and shape were dis-
cussed within the same framework in the past [11] [12]. As mentioned in the In-
troduction, “dissipative reactions or transformations give rise to curvature and 
thus a thermodynamic length” and also “dissipative reactions or changes give 
rise to curvature” [5]. The dissipative energy q and the associated ΔS and Ts 
terms may be thought to be connected to curvature. Temperature is an intensive 
property in thermodynamics, and curvature also is an intensive property in 
geometry. We may check if there is a connection between curvature and q, ΔS, 
and Ts.  

In Figure 20 there are two vectors AC and A'C' which are of equal length. AC 
resembles vector (c) in Figure 3, and A'C' resembles vector (b). Now let us con-
sider the mirror images of AC and A'C' which are BC and B'C', respectively. 

As the height CD contracts to C'D' the dissipative component of energy (i.e. q) 
decreased. Meanwhile, AD extends to A'D' and so the conservative component 
gets larger. In other words, randomness decreases as CD decreases in magnitude, 
because, the number of broken bonds on the edges decreases. Thus, the contrac-
tion of CD to C'D' has two effects, one is the decrease of dissipative energy and 
the second is the decrease of entropy. 
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Figure 20. Curvature. 
 

Let us draw a circle passing through A, B, C, and also through A', B', and C'. 
The magnitude of the radius of circle depends both on the length of vector (i.e. 
AC or A'C') and its angle. Therefore, the circle radius (R) or the curvature 
( 1 Rκ = ) carries information about the value of q and ΔS. Curvature appears 
both in dissipative energy and entropy just like temperature term in thermody-
namics. If ( )CD or C D 0′ ′ → , then R →∞  or 0κ → , it refers to a flat smooth 
surface as in Figure 3(a) or Figure 7(a). Therefore, curvature seems to be a 
good candidate to be used in dissipative properties. However, it is not quite true 
on a quantitative basis, because the curvature is defined in terms of geometric 
radius and we are confined to the height CD (or C'D') in Equations (9) & (17), 
not to the radius. The radius of curvature extends further away beyond point D 
(or D'), but the calculations of q, ΔS, and Ts are all based on CD (or C'D') pro-
vided 45θ ≤ . There is only one special situation that curvature can exactly 
cope with CD. This is the case when we have AD = DC, that is when AB is equal 
to diameter, so that CD is equal to the radius R in circle. This is the case shown 
by the triangle A B C′′ ′′  in Figure 20(a), where A D D C′′ ′′ ′′= , and 45θ = . 

The study carried out on planar objects in this work can be extended to 
three-dimensional objects where calculations may be more cumbersome de-
pending on the geometry of the shape. The increase in the number of symmetry 
axes of the object may provide relatively easier calculations. For instance, the 
study of a sphere that has perfect symmetry in all directions can easily be done. 
The smallest discrete distance “d” then turns out to be the smallest discrete sur-
face area in three-dimensional objects.  

As mentioned at the very beginning, the viscoelastic and thermodynamic 
attributes of the shapes of polygons and curves were investigated in this work. In 
dynamic systems, for instance, in time series systems, it is not the finite trigo-
nometric shapes but rather patterns form in time. The conservative and dissipa-
tive energies and the configurational entropies in such systems were discussed in 
the literature [35] [36] [37] [38]. Although there are similar approaches to eva-
luate the properties, in both cases their scientific grounds are different. 

9. Black Hole Temperature 

In black hole physics, the attributes were established mainly by making analogies 
with other physical laws. For instance, the ever-increasing surface area of the 
black hole due to material suction from the surrounding space or due to some 
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other processes such as merger black holes was thought to mimic the second law 
of thermodynamics. Christodoulou proved that the irreducible mass of a black 
hole is proportional to the square root of the surface area [39]. Bekenstein inter-
preted the irreversible increase of the surface area of a black hole as black hole 
entropy [40], and Hawking confirmed Bekenstein’s conjecture and fixed the 
proportionality constant using thermodynamic concepts [41] [42]. The entropy 
equation is given by,  

24bh
P

k AS =


                        (23) 

where k is the Boltzmann constant and P  denotes the Planck length, 
3

P G c=   where G is the gravity constant. The first law of thermodynamics 
of Schwarzschild black hole was set to be,  

8
M Aκδ δ=

π
                       (24) 

where the units are such that 1k G c= = = . M denotes the mass and κ  de-
notes the surface gravity which is the gravitational acceleration experienced at 
the surface. It was proposed that 8κ π  is analogous to temperature in the same 
manner A is analogous to entropy [41]. The following relations were proposed 
to describe the thermodynamics of black holes [43] [44] [45] [46].  

2~ ~bhS A M                       (25) 

1~
M

κ                         (26) 

~bh
hT
M

                       (27) 

The last formula implies that the Schwarzschild black hole is black (i.e. Tbh = 
0) in the classical limit, i.e. 0h → .  

Hawking conjectured that virtual particles can form as the pair of particle and 
anti-particle just outside the event horizon due to quantum effects. Each pair 
forms out of nothing with zero total energy at positive and negative energy 
states. It is possible before annihilation that one of them may fall into a black 
hole and the other runs away as Hawking radiation. As the one with negative 
energy is swallowed by the black hole it takes away energy from the back hole, 
i.e. reduces its mass. In time, a black hole is supposed to evaporate and diminish. 
The temperature of the black hole increases as it gets smaller due to its evapora-
tion as implied by Equation (27) [43].  

The black hole entropy and temperature concept has been disputed for dec-
ades and it has not settled yet. First of all, all horizons possess entropy and tem-
perature not necessarily black holes [47] [48] [49] [50]. Although it makes sense, 
the black hole entropy concept still is a shrouded concept for us [51]. The tem-
perature concept of a black hole should not be taken and should not be used for 
emission processes in black holes [52]. Helfer commented that “none of the de-
rivations that have been given of the prediction of radiation from black holes is 
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convincing” [53]. An important point is that horizons can be observer-dependent 
but entropy is an observer-independent attribute [54]. The related discussions 
expanded our knowledge and yielded new fundamental ideas such as holo-
graphic models [55] [56] [57], and also to interpret gravity as an emergent prop-
erty like entropy such that gravity is a kind of entropic force [58] [59].  

Despite all these objections, the existing definitions of black hole entropy and 
temperature keep surviving. The entropy defined by Equation (23) is reasonable, 
and it is similar to classical systems. Black hole entropy can be considered to be a 
contribution to the entropy content of the universe. 

After this concise survey, we can now make a few comments on black hole 
temperature. 

9.1. Curvature and Temperature 

When the first law of thermodynamics was defined by Equation (24), κ necessar-
ily turns out to be a temperature term. However, κ is surface gravity and has 
something to do with acceleration and so with the curvature of spacetime.  

As mentioned above in Section 8 there is a kind of relation between curvature 
and entropy and thus between curvature and temperature, but this relation is 
not one-to-one. The heat and entropy and thus temperature all are determined 
from the vertical axis by using the length of CD or C'D' (Figure 20). However, 
the curvature cannot be found out by using CD or C'D'. Only and only in the 
special case when the vertical length is equal to the radius, i.e. when radius = 
C''D'' (Figure 20) we have a one-to-one correspondence between curvature and 
entropy and thus temperature. Therefore, it is not correct to relate κ directly to 
temperature, because, it is associated with acceleration and thus with curvature, 
but the temperature is not related to curvature. Only in spherical geometry like 
that of the black hole we have the equality of radius and height to calculate en-
tropy and temperature for an outside observer. If we think of a hypothetical 
black hole in the shape of an ellipsoid then we would have varying κ and thus 
varying temperature profile on the surface leading to instability. It is better to 
comprehend κ as a term that influences the temperature.  

As explained in the former sections, the surface entropy and temperature of 
geometric shapes like polygons or curves can be calculated with reference to 
background geometry as seen in Figure 1. Although there are some proposals 
about the inner structure of black holes the general understanding is that it 
probably has a uniform structure like empty space. The empty space is not emp-
ty as we know from quantum electrodynamics and quantum chromodynamics. 
We may conjecture that the inner structure of black holes may have a kind of 
discrete structure as quantum gravity implies it. In fact, according to hologram 
theory or topological quantum theory, all inner physical attributes can be pro-
jected onto the boundary [55], and black hole entropy (or area) involves Planck’s 
constant as seen from Equation (23). Let us think arbitrarily for a while of its 
discrete form to be like that of Figure 1. For an observer at the center, the 
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change of the angle of rotation of a line (i.e. the radius line) connecting the cen-
ter to any point on the circumference (see Figure 15) reveals varying entropies. 
This is the entropy with respect to the background (see Figure 3). For a bigger 
circle, the entropy increases in proportion to the length of radius whatever the 
angle is (Figure 15). For an observer outside the black hole, the inner structure 
is impermeable, and so the outside observer perceives the increase of entropy 
only with respect to the increase of radius, or surface area. This is so, because, 
the definition of entropy in physics is not made with respect to space, but rather 
on the probability distribution of the stuff in concern, and it reveals only at the 
surface in black holes.  

In classical thermodynamics entropy has two components as in the well-known 
cylinder-piston expansion example, one is due to change in internal energy and 
the other is due to movement of the piston. The component associated with in-
ternal energy involves a temperature change while the one associated with the 
expansion (or contraction) of the piston involves the distance covered by the 
piston. If the expansion of the piston is isothermal, there is no change in tem-
perature. The same is true also for an inflating balloon under isothermal condi-
tions. The change in entropy only due to expansion of piston is given by,  

final
gas

initial

ln
V

S nR
V
 

∆ =  
 

                    (29) 

where n is the number of moles, Rgas is the gas constant, and V is volume. The 
related energy change (ΔE) is, 

final
gas

initial

ln
V

E T S nR T
V
 

∆ = ∆ =  
 

                (30) 

This description depends on the random collision of molecules where the 
ideal gas law ( gasPV nR T= ) holds, P indicating the pressure. Under very high 
pressures or very low temperature the ideal gas law does not hold, and a correc-
tion factor Z is used to modify the gas law, such that, gasPV Z nR T= . Under 
these severe conditions, the assumptions of ideality do not hold. For instance, at 
very low temperatures, molecules come close by to each other and start to attract 
each other. Without changing the temperature nonideality can be obtained also 
at very high pressures as the mean free paths between the molecules are ex-
tremely decreased, and the electrons of molecules start to influence each other’s 
electronic states which result in again a kind of increase in chemical interaction 
between molecules. Under these conditions Equation (29) can be modified by 
introducing Z such that,  

final
gas

initial

ln
V

E T S Z nR T
V
 

∆ = ∆ =  
 

                (31) 

Shortly saying, the attractive forces enhance the matter interaction without 
changing the temperature. Since gasnR  is constant one can interpret Z to be a 
kind of factor that decreases T, because Z < 1. Hence one can claim that “as at-
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traction increases temperature decreases”, but this is a false claim, because, the 
temperature does need to be changed, and the increase in attraction is taken care 
of by Z. In other words, the effect of attraction is represented by Z while T is left 
unchanged.  

In a cylinder-piston system, the entropy term connected to temperature 
change (i.e. associated with the change in internal energy) denotes thermal en-
tropy, while the one connected to the motion (i.e. expansion of piston) denotes 
the configurational entropy. Thermal entropy involves temperature terms (i.e. 

( )v final initiallnS nC T T∆ = ) whereas configurational entropy does not (Equation 
(29)).  

In black hole thermodynamics, the increase of surface area interpreted as the 
increase of entropy is connected to thermal entropy. The globule-to-helix transi-
tion in some macromolecules, and also the expansion of coil, or sphere, etc. may 
all be associated with the increase of temperature. The globule-to-helix transi-
tion can also be achieved by introducing a proper solvent into the medium. The 
solvent attracts the molecules of the globule such as the entangled linear chains 
of polymers and increases the end-to-end distance between chains. The “attrac-
tion force” between solvent and polymer chains functions as a kind of “increase 
of temperature” of the medium. Therefore, surface gravity κ (Equation (24)) 
should not be connected to temperature but simply to the exerted attractive 
force revealed by gravity. κ is the formal analogue of Z. If δM increases in Equa-
tion (24) then δA also increased but not in linear proportion, because, κ also in-
creases. The increase of κ functions as the increase of Z in Equation (30). 

9.2. Curvature and Evaporation  

Now let us consider Equation (22) which relates energy to curvature in classical 
thermodynamics. It simply means that the smaller the radius, or the larger the 
curvature the larger the surface energy. This equation applies to systems having 
a curved surface like a water droplet. The surface tension γ represents the cohe-
sive force or the extent of the attractive interaction of surface molecules. If we 
keep T constant and decrease r in Equation (21) then p increases, and the eva-
poration from the surface is accelerated. The same conclusion is derived from 
Equation (22) such that if r decreases the free energy change becomes larger, and 
the chemical potential μ becomes larger, therefore evaporation is enhanced. In 
Equation (22) the increase of curvature (e.g. 1/r) is reflected exactly as if the in-
crease of temperature weakens or breaks down the bonds between liquid mole-
cules enhancing the rate of evaporation. What changes is not the temperature 
but μ. The same mechanism occurs in black holes. The loss occurring according 
to Hawking radiation decreases the radius and thus κ, and it then increases the 
rate of material loss; the smaller the r, the faster the rate of evaporation. The 
temperature need not be changed while the black hole is evaporating.  

The description given in this section is quite fundamental and sets the frame-
work without going into details. It can be elaborated in more detail by using the 
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equations of general relativity and working with curvature tensor and energy 
tensor terms. It will be an entirely different subject to work on.  

10. Conclusions 

The total energy, dissipative energy, entropy, and temperature attributes of po-
lygons and curves were demonstrated from the viewpoint of thermodynamic 
principles and viscoelastic theory. All these properties change as the polygon is 
rotated. The total energy, dissipative energy, entropy, and temperature depend 
on the edge lengths and the interior angles.  

In regular polygons, the square has the highest and the octagon has the lowest 
total energy. The energy decreases as the number of edges increases implying 
that the circle has the lowest energy. However, total entropy increases with the 
increase of the number of edges, though, the edge length decreases as the area is 
kept constant in all cases. It implies that the circle has the maximum entropy 
even though it has minimum surface energy.  

In curves, the total energy, dissipative energy, entropy, and temperature de-
pend on the compactness of the curves. In other words, the amplitude and fre-
quency in sine curves, amplitude, and decay constant in exponential curves, ex-
pansion constant in spirals play predominant roles in total energy, dissipative 
energy, entropy, and temperature.  

In black hole thermodynamics, the interpretation of the increase of surface 
area as the increase of entropy should not lead to relate the surface gravity κ to 
temperature. κ behaves as a term that represents the attractive force due to grav-
ity. The Hawking radiation may still occur, but the black hole does not get war-
mer as it evaporates. The material evaporation gets faster as the radius decreases 
due to the curvature effect similar to the Gibbs-Thomson equation in classical 
thermodynamics, and the black hole does not warm up as it evaporates. 
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Appendix A 

 

Figure A1. Triangles. 

Appendix B 

   
 

  

Figure B1. The formulas, pictures and parameters of the curves studied. 
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