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Abstract 
In this study a novel manganese dioxide modified nanofiber was facile pre-
pared using the electrospinning technique. The as-prepared manganese dio-
xide/poly(vinyl alcohol)/poly (acrylic acid) (briefly as MnO2-PVA/PAA) was 
firstly characterized by SEM, FT-IR, XRD, stress-strain test and secondly 
tested as an adsorbent to remove uranium from aqueous solution. Effect of 
pH, ionic strength, initial uranium concentration, mixing time, temperature 
on the adsorption, reusability and adsorption mechanism were illustrated. 
The theoretical adsorption amount of MnO2-PVA/PAA calculated as 398.85 
mg/g was competitive compared with the reported values. The study proved 
MnO2-PVA/PAA is promising in the uranium removal from aqueous me-
dium. 
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1. Introduction 

Global fossil fuels such as coal, petroleum and natural gas are being intensively 
consumed and expectedly depleted within two hundred years in terms of cur-
rently annual consumption [1]. Nuclear energy is an extremely important can-
didate owning to high energy density (3.9 × 106 MJ/Kg uranium) [2] and zero 
greenhouse gas emissions [3]. Nevertheless, there is a tricky problem associating 
with nuclear energy. Uranium is an element of non-degradable nature, strong 
fluidity and long-lasting pollution of chemical and biological toxicity. By 
aqueous organisms uranium can migrate with the food chain readily, finally into 
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human body. Once over the limited range many fatal and irreversible injuries 
occur in lungs, kidneys or other organisms. The World Health Organization 
prescribes uranium limit as 14.4 µg/L [4]. Overall remediation of waters conta-
minated by uranium is of great significance. 

At present many remediation approaches includes chemical precipitation [5], 
solvent extraction [6], ion exchange [7], particle flotation [8], membrane separa-
tion [9], catalytic [10] and adsorption [11] [12], in which the adsorption attains 
more attention due to high feasibility, low energy cost and less second waste. Be-
sides adsorption craft parameters the adsorbent plays a key role. 

Metal oxide is explored as an effective kind of adsorbent for waste water re-
medy. Manganese dioxide (MnO2) presents excellent potentiality in this respect 
owing to acidity stability, negatively charged surface, low cost and high affinity 
[13]. The challenges in utilization of manganese dioxide as an adsorbent are as 
following: 1) Uranium uptakes of the raw manganese dioxide were demonstrat-
ed as commonly less than 60 mg/g [14]; 2) The fine particle size and aggregation 
of manganese dioxide lead to the difficulty in solid-liquid separation as well as 
the low efficiency in removal of uranium. It is such reason that many modifica-
tion of manganese dioxide were conducted. For example, Zhu et al. [15] used 
poly(N-hydroxymethylacrylamide/2-hydroxyethylacrylate)hydrogel immobilized 
manganese dioxide for removal of Pb2+, Cu2+, Cd2+ and Ni2+. Kim et al. [16] fabri-
cated magnetic manganese dioxide nanocomposites (Fe3O4/MnO2), which could be 
recovered by an external magnet. 

Electrospinning is one of the most compatible techniques to produce conti-
nuous nanofibers of inorganic, organic, metals and composites [17]. The 
as-produced nanofibers often with large specific surface area and abundant po-
rosity are promising in the fields of catalysis [18], batteries [19], medicine [20] 
and separation [21] [22]. To separate metal ions many electrospinning nanofi-
bers were reported, for example, polyacrylonitrile/SiO2 for Th4+, U6+, Cd2+ and 
Ni2+ [23], polyvinylpyrrolidone/CeO2/(3-mercaptopropyl)trimethoxysilane for 
Pb2+ and Cu2+ [24], poly(vinyl alcohol)/tetraethoxysilane/(3-aminopropyl) trie-
thoxysilane for Cd2+ [25], poly(vinyl alcohol)/titanium oxide/zinc oxide for Th4+ 
[26], polyvinylpyrrolidone/iron acetylacetonate for Hg2+ [27], poly(vinyl alco-
hol)/titanium oxide for Th4+ and uranyl [28], chitosan/multi-walled carbon na-
notubes for Cr6+ [29], chitosan/hydroxyapatite for Pb2+, Co2+ and Ni2+ [30]. 

In the study of MnO2-PVA/PAA nanofiber was prepared by electrospinning 
and further in-situ coating. Advantages of the consequent MnO2-PVA/PAA are 
as following: 1) high availability; 2) better uranium separation performance in-
cluding high uranium uptake capacity, reusability and mechanical strength. 
MnO2-PVA/PAA was tested for uranium separation effectivity at different pH, 
ionic strength, adsorption time, initial uranium concentration and temperature. 
The kinetics, isotherms, thermodynamics, reusability and membrane perfor-
mance were discussed. The results herein demonstrated the high potential of 
MnO2-PVA/PAA as a candidate in membrane separation for uranium. 

https://doi.org/10.4236/jamp.2021.97118


W. Q. Tao et al. 
 

 

DOI: 10.4236/jamp.2021.97118 1839 Journal of Applied Mathematics and Physics 
 

2. Experimental Section 
2.1. Materials and Instruments 

All chemicals of reagent-grade purity were attained from commercial companies 
and directly utilized as received. The surface morphology of electrospinning na-
nofiber was measured by SEM (Nova Nano 450, Netherlands FEI Company). 
Chemical groups in nanofiber were observed by FT-IR (Nicolet 380, Thermo 
Nicolet Corporation). The crystal structure was determined by XRD (D8. Ad-
vance, Shuyun instruments (Shanghai) Co., Ltd). XPS measurement was per-
formed with Escalab 250 Xi (Thermo Fisher). The hydrophily was analyzed by 
measuring contact angle (JC2000C1, Shanghai Zhongchen Digital Co., Ltd.). The 
mechanical property was measured using Universal mechanical testing machine 
(WDT-5, Shenzhen Kaiqiangli Experimental Instrument Company). 

2.2. Preparation of PVA/PAA and MnO2-PVA/PAA Nanofiber 

The solution composed of 1.6 g poly (vinyl alcohol) and 10 mL deionized water 
was magnetically stirred to homogeneous phase at 85˚C, followed by addition of 
0.3 g poly (acrylic acid). After cooling down to room temperature the resultant 
solution stirred for well-mix was stored as the electrospinning precursor solu-
tion. 

The electrospinning operation for PVA/PAA nanofiber was described as the 
following. The above precursor solution was transferred in a syringe equipped 
with a stainless-steel needle of 22 G that serving as the anode. A rotation drum 
connected with the cathode was used as a collector. The anode-cathode voltage 
and distance were set as 23.5 kV and 15 cm, respectively. The flow rate was fixed 
as 0.5 mL/h. The collected nanofiber was thermo-treated for 3 h for cross-linking 
esterification reaction between PVA and PAA. The final mat was poly(vinyl al-
cohol)/poly(acrylic acid) nanofiber briefly as PVA/PAA. 

In-situ coating of MnO2 onto PVA/PAA was completed via a redox chemical 
reaction. Specifically, the mixture containing 1.0 g PVA/PAA and 100 mL potas-
sium permanganate solution (2.0 g/L) was agitated for 2 h at 35˚C at pH = 2.0, 
followed by dropwise addition of 5.0 mL absolute ethanol. The resultant solution 
was continuously agitated for 30 min until clarification. The nanofiber was taken 
out from the solution, washed with deionized water for three times, and dried at 
85˚C for 5 h. The as-prepared product was named as MnO2-PVA/PAA nanofi-
ber. 

2.3. Uranium Adsorption Performance Test 

All batchwise experiments were conducted by controlling MnO2-PVA/PAA 
mass as 10 mg and solution volume as 50 mL. The solution pH was kept at 6.0 
except the study on pH influence where pH was from 2.5 to 6.0 with interval 
value of 0.5. The NaClO4 concentration was zero except the study on effect of 
ionic strength, in which NaClO4 concentration ranged from 0.1 mol/L to 0.6 
mol/L. The uranium concentration in feed solution was fixed at 50 mg/L except 
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the isotherms study. The duration was set as 2 h except the kinetics research 
where it varied from 5 min to 150 min. The environmental temperature was 
controlled at 298.15 K except in thermodynamics experiment, in which it was in 
the range of 288.15 K to 318.15 K with an interval of 5 K. After adsorption, the 
nanofiber was taken out and the residue uranium concentration in solution was 
detected with the standard arsenazo III method. The uranium uptake amount (qe 
(mg/g)) was calculated out using Equation (1): 

2 2
2 0 2([UO ] [UO ] )e

e
V

q
m

+ +−
=                   (1) 

where [UO2
2+]0 is uranium concentration in the feed solution (mg/L); [UO2

2+]e is 
uranium concentration (mg/L) before solid-liquid separation; V (L) is the vo-
lume of uranium-containing feed solution; m (g) is the mass of MnO2-PVA/PAA 
or PVA/PAA. 

The strip experiment followed the adsorption experiment were carried out by 
washing the spent nanofiber with eluate solution (50 mL, 1.0 mol/L) such as 
HCl, H2SO4, HNO3, Na2CO3, EDTA. The strip efficiency was figured out using 
Equation (2): 
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×
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where CD is uranium concentration in eluate (mg/L). VD is the volume of the 
collected eluate (L). qe is the uptake amount before strip (mg/g). 

For the recycling experiments, the recovered MnO2-PVA/PAA or PVA/PAA 
regenerated using HCl (1.0 mol/L) was applied to adsorb uranium repeatedly. 

3. Results and Discussion 
3.1. Characterization 

The microscopic morphologies of PVA/PAA and MnO2-PVA/PAA are shown in 
Figure 1(a), Figure 1(b). One can see that both nanofibers were non-directional 
homogeneous fiber beams without beads. The average diameter were 270 nm for 
PVA/PAA and 320 nm for MnO2-PVA/PAA. The particles on MnO2-PVA/PAA 
surface were MnO2. The FT-IR spectrum shown in Figure 1(c) displayed the 
characteristic bands of PVA/PAA at 3340 cm−1, 2942 cm−1, 1710 cm−1, 1090 cm−1 
and 850 cm−1 were resulted from vibrations of hydroxyl, C-H asymmetric, C=O 
in carboxyl and ester groups, C-O-C from the crosslinking reaction of PVA and 
PAA stretching and C-H bending. The FT-IR spectrum of MnO2-PVA/PAA re-
tained the characteristic bands of PVA/PAA and meanwhile highlighted charac-
teristic bands of MnO2 at 1370 cm−1 and 559 cm−1 assigned as stretching vibra-
tion of Mn-OH and Mn-O. XRD patterns shown in Figure 1(d) indicated MnO2 
indeed existed in MnO2-PVA/PAA according to PDF#44-0092. The stress-strain 
curve of PVA/PAA and MnO2-PVA/PAA are shown in Figure 1(e), Figure 1(f). 
As can be seen, as the immersion duration increased, stress-strain of PVA/PAA 
and MnO2-PVA/PAA decreased. The reason was attributed to the corrosion 
from the aqueous solution. 
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Figure 1. SEM images of (a) PVA/PAA, (b) MnO2-PVA/PAA; (c) FT-IR spectra of PVA/PAA and MnO2-PVA/PAA; (d) XRD 
patterns of PVA/PAA and MnO2-PVA/PAA; Stress–strain curves of PVA/PAA (e) and MnO2-PVA/PAA (f). 

3.2. Effect of pH and Ionic Strength on Uranium Adsorption 

The uranium uptake amount varying with pH is shown in Figure 2(a). It can be 
seen that pH increasing from 2.5 to 6.0 was beneficial for uranium adsorption. 
The further increase in pH would count against the adsorption. The explanation 
for the results was as following. Firstly positive charged species such as UO2

2+, 
UO2(OH)+, (UO2)2(OH)2

2+, (UO2)3(OH)4
2+, (UO2)3(OH)5

+ and (UO2)4(OH)7
+ 

were dominant at pH < 6.0, which showed high affinity toward both nanofibers. 
Secondly more hydrogen ion at lower pH could weaken the adsorption ability 
through protonating the nanofibers and occupying the adsorption sites. 

Effect of NaClO4 concentration in the range of 0 mol/L to 0.6 mol/L on the 
adsorption is conducted to illustrate the ionic strength influence and the result is 
shown in Figure 2(b). It can be seen that as NaClO4 concentration increased, the 
uranium adsorption on both fibers varied slightly. The result proved that the 
adsorption of uranium on both fibers werein the way of the inner-sphere surface 
complex [31]. The finding agreed with other uranium adsorption phenomenon 
reported in the literature [32].  

3.3. Adsorption Isotherms 

Effect of initial uranium concentration on the adsorption onto PVA/PAA and 
MnO2-PVA/PAA are shown in Figure 3. It can be seen that qe increased with the 
increase in Ce. The reasonable explanation was that higher concentration gra-
dient promoted the utilization in adsorption sites. To explain the adsorption  
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Figure 2. (a) Effect of pH on uranium adsorption onto PVA/PAA and MnO2-PVA/PAA 
(C0 = 50 mg/L, V = 50 mL, m = 10 mg, mixing time = 2 h, T = 298.15 K); (b) Effect of io-
nic strength on uranium adsorption (C0 = 50 mg/L, m = 10 mg, V = 50 mL, pH = 6.0, 
mixing time = 2 h, T = 298.15 K). 
 

 

Figure 3. Effect of initial U (VI) concentration on adsorption capacity. (m = 10 mg, V = 
50 mL, pH = 6.0, mixing time = 2 h, T = 298.15 K). 
 
mechanism, the data were further analyzed by fitting Langmuir and Freundlich 
isotherm models. 

The Langmuir model is associated with identical active sites and surface cov-
erage in the way of single layer. Its mathematical description is shown in Equa-
tion (3): 

1
L m e

e
L e

K q C
q

K C
=

+
                        (3) 

where Ce (mg/L) and qe (mg/g) are uranium concentration and uptake amount 
at equilibrium state; qmax (mg/g) is the theoretically saturation uptake amount; b 
(L/mol) is the Langmuir constant. 

The Freundlich model fits well with the adsorption on hetergeneous adsorp-
tion sites. Its empirically mathematical equation is presented as Equation (4). 

1/n
e F eq K C=                         (4) 

where n (mg/g) and KF (mol1−n∙Ln/g) are used to measure adsorption intensity 
and uptake amount, respectively. 
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As can be seen from Table 1, R2 values of the Langmuir model were closer to 
1.0 than the values of Freundlich. It could be concluded that the adsorption 
processes were in agreement with the assumption of Langmuir model. Both ad-
sorption processes took the monolayer way. The modification using MnO2 sig-
nificantly improved the adsorption amount from 58.51 mg/g to 398.85 mg/g. 

The theoretical qe of MnO2-PVA/PAA achieved to 398.85 mg/g, a very com-
petitive value compared with other adsorbent materials (shown in Table 2). The 
competitive qe of MnO2-PVA/PAA might originated from high disperse of 
MnO2 on PVA/PAA surface proved in Figure 1(b). 

3.4. Adsorption Kinetics 

Figure 4 shows the effect of mixing time on adsorption of U (VI) with PVA/PAA 
and MnO2-PVA/PAA. It can be found that the variation in qe presented three 
phases including: 1) the rapid boost stage within 0 - 20 min resulted from abun-
dant unoccupied sites; 2) the slow increase stage between 20 min - 120 min due 
to insufficient adsorption sites; 3) the steady stage after 120 min attributed to the 
dynamic state equilibrium. 
 

 

Figure 4. Effect of mixing time on adsorption capacity. (C0 = 50 mg/L, m = 10 mg, V = 50 
mL, pH = 6.0, T = 298.15 K). 
 
Table 1. The parameters of Langmuir and Freundlich isotherm models for uranium ad-
sorption on PVA/PAA and MnO2-PVA/PAA. 

Parameters MnO2-PVA/PAA PVA/PAA 

Langmuir 

qmax (mg/g) 398.85 58.51 

b (L/mol) 0.004 0.032 

R2 0.995 0.983 

Freundlich 

KF (mol1−n∙Ln/g) 23.01 8.91 

1/n 0.46 0.38 

R2 0.935 0.919 
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Table 2. The maximal adsorption capacity of various sorbents for uranium. 

Adsorbents Experimental parameters Qmax (mg/g) Reference 

HMO pH = 5.0, T = 298 K 57.6 [33] 

SBA-15 pH = 6.0, T = 298 K 203 [34] 

NIMS-4 pH = 6.0, T = 298 K 79.2 [35] 

CNFs pH = 4.5, T = 298 K 125 [36] 

U-PASS pH = 5.0, T = 303 K 147.8 [37] 

DSHM-DAMN pH = 8.0, T = 298 K 601 [38] 

HGly pH = 5.0, T = 293 K 186.5 [39] 

PVP/chitosan pH = 5.9, T = 298 K 167 [40] 

PAF pH = 5.0, T = 303 K 115.31 [41] 

Magnetic biochar pH = 4.0, T = 318 K 52.63 [42] 

Polypyrrole pH = 5.0, T = 298 K 87.72 [43] 

P(AO)-g-CTS/BT pH = 8.0, T = 298 K 49.09 [44] 

Fe-Al LDHs pH = 6.0, T = 298 K 99.01 [45] 

MnO2-PVA/PAA pH = 6.0, T = 298 K 398.85 this study 

 
To illuminate kinetics process in detail, two frequently used models, pseu-

do-first-order Equation (5) and pseudo-second-order Equation (6) kinetics equ-
ations, were adopted to fit the data. 

1(1 )k t
t eq q e−= −                       (5) 

2
2

21
e

t
e

q k t
q

q k t
=

+
                       (6) 

where qt (mg∙g−1) and qe (mg∙g−1) are the uptake amount at time t (min) and 
equilibrium, respectively; k1 (min−1) and k2 (g∙mg−1∙min−1) represent adsorption 
rate constants, respectively.  

The fitting values are listed in Table 3. It can be clearly seen that: 1) the cor-
relation coefficients values derived from the pseudo-second-order kinetics (0.997 
for PVA/PAA and 0.987 for MnO2-PVA/PAA) were closer to 1.0 than the pseu-
do-first-order kinetics (0.987 for PVA/PAA and 0.957 for MnO2-PVA/PAA); 2) 
the experimentally maximal uptake amounts (38.52 mg/g for PVA/PAA and 
227.87 mg/g for MnO2-PVA/PAA) were more approximate to the theoretical 
values (42.16 mg/g for PVA/PAA and 242.56 mg/g for MnO2-PVA/PAA) from 
the pseudo-second-order kinetics rather than the theoretical values (33.04 mg/g 
for PVA/PAA and 193.29 mg/g for MnO2-PVA/PAA) from the pseudo-first-order 
kinetics. The consequent parameters proved both adsorption processes were 
coincide with the assumption of the pseudo-second-order kinetics. The results 
indicated both adsorption processes are mainly chemical. 

3.5. Adsorption Thermodynamics 

The effect of temperature (288.15 K - 318.15 K) on the adsorption of uranium  
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Table 3. The calculated parameters of pseudo-first-order and pseudo-second-order mod-
els fitting the adsorption of uranium on PVA/PAA and MnO2-PVA/PAA. 

Materials 
qe,exp 

(mg/g) 

Pseudo-first-order model Pseudo-second-order model 

qe,cal (mg/g) k1 R2 qe,cal (mg/g) k2 R2 

PVA/PAA 38.52 33.04 0.0364 0.987 42.16 8.24 × 10−4 0.997 

MnO2-PVA/PAA 227.87 193.29 0.0405 0.957 242.56 1.69 × 10−4 0.987 

 
with PVA/PAA and MnO2-PVA/PAA were studied. The results are shown in 
Figure 5(a). It can be seen that both qe slightly increased with the increase in 
temperature. It is revealed that a higher temperature favored the adsorption.  

To study the thermodynamic nature of the adsorption, the thermodynamic 
parameters such as ΔH˚ and ΔS˚ were calculated out by Equation (7) from the 
slope and intercept of the linear plot between lnKd vs. 1/T. The change in Gibbs 
free energy ΔG˚ values was acquired using Equation (8). 

ln d
S HK
R RT
∆ ∆

= −
                       (7) 

G H T S∆ = ∆ − ∆                        (8) 

where Kd (mL∙g−1) is the distribution coefficient at the equilibrium state; R (8.314 
J∙K−1∙mol−1) is the ideal gas constant; T (K) is thermodynamic Kelvin tempera-
ture. 

lnKd as a function of 1/T is shown in Figure 5(b). The obtained values are 
listed in Table 4. ΔH˚ and ΔS˚ of positivity indicated both adsorption were en-
dothermic processes with entropy increase. The negative ΔG˚ values proved that 
both adsorptions were spontaneous. A higher temperature leading to a higher 
absolute value of ΔG˚ illustrated that increasing temperature promoted the ad-
sorption process. In addition, the absolute value of ΔG˚ for MnO2-PVA/PAA 
was greater than that of PVA/PAA, indicating that MnO2-PVA/PAA was more 
likeable for U(VI) than PVA/PAA.  

3.6. Desorption, Reusability 

The reusability is an important indicator for the practical application of a ma-
terial. The desorption behavior of PVA/PAA and MnO2-PVA/PAA were studied 
using stripping reagents such as HCl, H2SO4, HNO3, Na2CO3 and ethylenedia-
minetetraacetic acid (EDTA) of 1.0 mol·L−1. The desorption rate D% are shown 
in Figure 6(a). It is found that HCl solution had the most efficient strip ability. 
The reason maybe that Cl− with stronger polarity combined with 2

2UO +  to form 

2 3UO Cl−  readily. HCl solution was thus used for the next adsorption-desorption 
cycle experiments. 

The adsorption-desorption cycle experiments was conducted to assess the 
reusability of MnO2-PVA/PAA. HCl solution of 1.0 mol·L−1 was used as the de-
sorption reagent. The result is shown in Figure 6(b). It can be seen that the up-
take amount (qe) decreased as the cycle time increased. The decrease was re-
sulted from the decrease in effective adsorption sites. Firstly HCl solution could  
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Figure 5. (a) Effect of temperature on adsorption capacity; (b) linear plots of lnKd vs. 1/T 
(C0 = 50 mg/L, m = 10 mg, V = 50 mL, pH = 6.0, mixing time = 2 h). 
 

 

Figure 6. (a) Desorption efficiency of many eluents; (b) Reusing performance of 
MnO2-PVA/PAA. (C0 = 50 mg/L, m = 10 mg, pH = 6.0, mixing time = 2 h, T = 298.15 K.) 
 
Table 4. Thermodynamic parameters of adsorption of uranium onto PVA/PAA and 
MnO2-PVA/PAA. 

Parameters Temperature (K) PVA/PAA MnO2-PVA/PAA 

ΔH˚ (kJ∙mol−1) - 13.55 18.37 

ΔS˚ (J·K−1∙mol−1) - 106.04 146.32 

ΔG˚ (kJ∙mol−1) 

288.15 −17.03 −23.79 

293.15 −17.56 −24.52 

298.15 −18.10 −25.26 

303.15 −18.63 −25.99 

308.15 −19.16 −26.72 

313.15 −19.69 −27.45 

318.15 −20.22 −28.18 

 
not completely desorb all the uranium adsorbed on MnO2-PVA/PAA; Secondly 
the adsorption in the chemical way of the inner-sphere surface complex was not 
fully reversible. Even so qe decreased from the initial 208.87 mg/g to the final 
172.65 mg/g after five cycles. 

3.7. Mechanism Explored with XPS 

To explore the interaction of uranyl with MnO2-PVA/PAA in the molecular lev-
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el, XPS was used to reveal the binding energy of MnO2-PVA/PAA and 
MnO2-PVA/PAA-U(VI). C, O and Mn, the major composition of MnO2-PVA/PAA, 
were verified by C 1s, O 1s and Mn 2p peaks in Figure 7. Due to the characteris-
tic doublet of U 4f (shown in Figure 7(a), Figure 7(e)), it was no doubt that 
uranium had been adsorbed on the near-surface of MnO2-PVA/PAA. As can be 
seen in Figure 7(e), U 4f was splitted into U 4f5/2 and U 4f7/2, of which the former 
corresponded to U-O in uranyl and the latter was attributed to uranium atom 
binding with the oxygen atom in manganese dioxide. 

The C 1s signals (shown in Figure 7(d)) was deconvoluted into three peaks at 
288.52 eV, 285.65 eV and 284.53 eV assigned to carbon in C=O, C-O and C-C 
bonds, in which the former chemical bonds slightly shifted to 288.57 eV and 
285.71 eV owing to the participation of oxygen in interaction with uranium.  

The Mn 2p signal shown in Figure 7(c) presented as Mn 2p1/2 and Mn 2p3/2 
corresponding to the Mn-O bond. The slight change in binding energy proved 
that manganese did not directly interact with uranium. 

Obvious distinct are observed in the spectrum of O 1s (shown in Figure 7(b)). 
Indetail, the O 1s signal was splitted into four peaks originally positioned at 
532.89 eV, 531.73 eV, 531.27 eV and 529.39 eV assigned as C-O, C=O, Mn-O-H 
and Mn-O-Mn. After adsorption, the binding energy changed obviously and the 
relative intensity of four peaks varied significantly. The obvious distinct proved 
oxygen atom was the major donor atom. The adsorption mechanism of uranium 
onto MnO2-PVA/PAA is thus proposed as Figure 7(f). Namely the fixed uranyl  
 

 

Figure 7. XPS spectra (a) full spectrum, (b) O 1s, (c) Mn 2P, (d) C 1s, and (e) U 4f of MnO2-PVA/PAA and MnO2-PVA/PAA-U(VI); 
(f) The proposal mechanism of uranium interacting with MnO2-PVA/PAA. 
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with MnO2-PVA/PAA was anchored with two oxygen atoms in manganese dio-
xide. 

4. Conclusion 

In the study a novel manganese dioxide modified nanofiber, MnO2-PVA/PAA, 
was facile prepared using the electrospinning technique. MnO2-PVA/PAA was 
proved by SEM, FT-IR, XRD, stress-strain test. Effect of pH, ionic strength, ini-
tial uranium concentration, mixing time, temperature on the adsorption, reusa-
bility and adsorption mechanism were illustrated. The optimal pH was deter-
mined as 6.0. The adsorption took the way of inner-sphere surface complex. The 
theoretical adsorption amount of MnO2-PVA/PAA calculated as 398.85 mg/g. 
The pseudo-second-order kinetics well fitted the adsorption process, illustrating 
chemical mode. The thermodynamic parameter ΔH˚ and ΔS˚ were 13.55 
kJ·mol−1 and 106.04 J·K−1·mol−1. The absolute value of ΔG˚ increased as the tem-
perature increased. XPS revealed that uranyl complexed MnO2-PVA/PAA 
through the U-O-Mn bond. The results herein demonstrated high potential of 
MnO2-PVA/PAA as a candidate in separation for uranium. 
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