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Abstract 
In this paper, the KP-MEW(2,2) equation is considered under a certain pa-
rametric condition. We prove that the equation has two isochronous centers 
under certain parametric conditions, and there exist two families of periodic 
solutions with equal period. 
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1. Introduction 

The KdV equation [1] 
0t x xxxq aqq q+ + =                      (1.1) 

is a model that governs the one-dimensional propagation of small-amplitude, 
weakly dispersive waves. The nonlinear term xqq  and the linear dispersion 
term xxxq  in Equation (1.1) cause the steepening of wave form and the spread 
of the wave, respectively. After that, one of the well known 2-dimensional gene-
ralizations of the KdV equation is KP equation [2] which was derived: 

0,t x xxx yyq aqq q q+ + + =                    (1.2) 

More recently, MEW equation and KP-MEW equation were given and inves-
tigated on some methods [3] [4] [5]. Particularly, Asit Saha [6] considered the 
generalized KP-MEW equation 

( ) ( )( ) 0m n
t yyx xxt x

q q q q± ± ± =                 (1.3) 

by using the theory of bifurcations of planar dynamical systems [7]. More pre-
cisely, for 2m n= = , what called KP-MEW(2,2) equation in the form 

( ) ( )( )2 2 0t yyx xxt x
q q q q+ + + =                 (1.4) 
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is investigated by Li and Song [8] by bifurcations method to find compacton-like 
wave and a kink-like wave for (1.4) when integral constant g was not neglected. 
After that, (1.4) was investigated to find the peakon soliton, cuspon soliton and 
smooth soliton solutions on the boundary condition by using the phase portrait 
analytical technique [9]. 

In presented paper, we consider the KP-MEW(2,2) equation in the form 

( ) ( )( )2 2 0,t yyx xxt x
q q q q− − − =                 (1.5) 

where integral constant 0, 1g c< = − . As the relationship between wave speed 
and period is significant [10] [11], we prove that the KP-MEW(2,2) equation has 
two isochronous centers under certain parameter conditions. Consequently, we 
find that there exist two families of periodic solutions with equal period. 

This paper is organized as follows. In Sec. 2, for parameters 1c = −  and 
0g < , the phase portraits of systems (2.2) are shown. In Sec. 3, we prove that the 

KP-MEW(2,2) equation has two isochronous centers under certain parameter 
conditions and there exist two families of periodic solutions with equal period. 

2. Phase Portrait 

Making the transformations ( ) ( ) ( ),q x t q x ct u ξ= − =  to (1.5), integrating it 
twice, it arrives to 

( ) ( )2 21 ,c u u c u g′′− + − + =                   (2.1) 

where c is the wave speed, g is the integral constant, ’ is the derivative with re-
spect to ξ . 

Equation (2.1) is equivalent to the planar dynamical system 

( ) 2 2

d ,
d

1 2d .
d 2

u y

g c u u cyy
cu

ξ

ξ

 =



+ + + − =

                (2.2) 

Using the “timescale” transformation d 2 dcuξ τ= , (2.2) reduces to the regu-
lar system 

( ) 2 2

d 2 ,
d
d 1 2 ,
d

u cuy

y g c u u cy

τ

τ

 =

 = + + + −


                 (2.3) 

with the first integral 

( ) 2 2 2 3 41 1, ,
2 3 4
g cH u y cu y u u u h+ = − + + = 

 
          (2.4) 

where h is an integral constant. Thus, systems (2.2) and (2.3) have the same to-
pological phase portraits except for the straight line 0u = . Under some para-
metric conditions, the variable τ  is a fast variable while the variable ξ  is a 
slow variable in the sense of the geometric singular perturbation theory [12]. 
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For the given constants 1c = −  and 0g < , the phase portrait is shown in 
Figure 1. 

From Figure 1, we know that on the condition 1, 0c g= − < , there are two 
family of periodic orbits for system (1.5), linking with the theory of dynamic 
systems, the periodic solutions correspond to the periodic orbits. Each periodic 
orbit hΓ  is contained in a unique level set ( ) ( ), : ,u y H u y h=  and its period 
equals to 

( ) dd .
h h

T h
y
φξ

Γ Γ
= =∫ ∫ 

                   (2.5) 

The function ( )T h  is called periodic function. If all orbits around the center 
have the same period, then the center is isochronous. 

3. Periodic Solutions with Equal Period 

In order to express ( )T h  as a linear combination of Abelian integrals, we de-
fine a series of functions 

( ) ( ) 12 d ,
h

i
iJ h u y u+

Γ
= −∫                    (3.1) 

then 

( ) ( )

( )

1

1
2

1

2 d

12 d
2

d ,

h

h

h

i
i

i

i

yJ h u u
h

u u
u y

u u
y

+

Γ

+

Γ

−

Γ

∂′ = −
∂

= −
−

=

∫

∫

∫







                 (3.2) 

 

 
Figure 1. Phase portrait on the condition 1, 0c g= − < . 
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where ' is the derivative with respect to h. Therefore, it has ( ) ( )1J h T h′ = . 
Combining Equatioins (3.1) with (2.4) and quoting to [13], it has 

( ) ( )

( ) ( ) ( )

1 2
1

1
2 2

2 4

22 d d

2 1 d
2 4

1 2 ,
2

h h

h

i
i

i

i

i i i

u yJ h u y u u
y

u g u hu u
y

gJ h J h hJ h

+
+

Γ Γ

+
−

Γ

+ +

−
= − =

−  = − +  

′ ′ ′= + +

∫ ∫

∫

 



 

that is 

( ) ( ) ( ) ( )2 4
1 2 .
2i i i iJ h gJ h J h hJ h+ +′ ′ ′= + +              (3.3) 

And integration parts, ( )iJ h  has another expression: 

( ) ( )
2

12 d 2 d ,
2h h

i
i

i
uJ h u y u y
i

+
+

Γ Γ
= − =

+∫ ∫ 

 
linking with (3.2) and (2.4), it becomes  

( ) ( )

( ) ( )

2
3

4

12 d
2 4

1 1 2 ,
2 2

h

i

i

i i

uJ h u hu u
i y

J h hJ h
i

+
−

Γ

+

 = − + +  

 ′ ′= − − +  

∫

 
then we obtain 

( ) ( ) ( ) ( )4
12 2 .
2i i ii J h J h hJ h+′ ′+ = − +               (3.4) 

Setting 1,0,1,2i = − , we obtain the vector  
( ) ( ) ( ) ( ) ( )( )1 0 1 2, , ,J h col J h J h J h J h=  satisfies the following Picard-Fuchs 

equation: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 3 1 1

0 4 2 0

1 5 3 1

2 6 4 2

1 3 1

0 4 0

1 5 1

2 6 2

1 2 ,
2

1 2 ,
2
1 2 ,
2
1 2 ,
2

1 2 ,
2
12 2 ,
2
13 2 ,
2
14 2 .
2

J h J h gJ h hJ h

J h J h gJ h hJ h

J h J h gJ h hJ h

J h J h gJ h hJ h

J h J h hJ h

J h J h hJ h

J h J h hJ h

J h J h hJ h

− −

− −

 ′ ′ ′= + +

 ′ ′ ′= + +

 ′ ′ ′= + +


 ′ ′ ′= + +


 ′ ′= − +


 ′ ′= − +



′ ′= − +


′ ′= − +





 
It is a system of linear equations with respect to ( ) ( ) ( ) ( )1 0 1 2, , ,J h J h J h J h  

and ( ) , 1, ,6iJ h i′ = −  . After doing a series of complicated calculations, we find 

https://doi.org/10.4236/jamp.2021.97103


M. Z. Wei, L. P. He 
 

 

DOI: 10.4236/jamp.2021.97103 1519 Journal of Applied Mathematics and Physics 
 

they hold the relationships: 

( ) ( ) ( )1 1 12 ,
2
gJ h hJ h J h− −′ ′= +                  (3.5) 

( ) ( ) ( )0 0 2
4 ,
3 3
h gJ h J h J h′ ′= +                  (3.6) 

( ) ( )
2

1 1 ,
4
gJ h h J h

 
′= − 

 
                   (3.7) 

( ) ( ) ( )
2

2 0 2
4 4 4 .
3 5 15
h h gJ h J h J h

 
′ ′= − + − 

 
             (3.8) 

Combining (3.5)-(3.8), we can obtain Lemma 3.1 as follows: 
Lemma 3.1. The vector ( ) ( ) ( ) ( ) ( )( )1 0 1 2, , ,J h col J h J h J h J h=  satisfies the 

following Picard-Fuchs equation: 

( )
( )
( )
( )

( )
( )
( )
( )

1 1

0 0
2

1 1

2 2
2

2 0
2 3

40 0 0
3 .

0 0 0
4

4 4 40 0
3 5 15

g gh

J h J hh
J h J h
J h J hgh
J h J h

h h g

− −

 
 
  ′         ′    =   ′ −       ′    
 − − 
   

As the result shown above, ( ) ( )
2

1 14
gJ h h J h

 
′= − 

 
, differentiating both sides 

of the equation, we have 
 

 
Figure 2. Simulations of two families of periodic solutions with the equal period. Setting 

0.001,0.08,0.18h = , they give rise to the green wave, red wave and the blue wave, respec-
tively. 
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( ) ( ) ( )
2

1 1 1 ,
4
gJ h J h h J h

 
′ ′ ′′= + − 

   

hence, ( )
2

1 0
4
gh J h

 
′′− = 

 
, it is said that ( )1 0J h′′ = . It can be concluded that 

( )1J h C′ = , with C is a constant, it implies ( )T h C= . Therefore, it is obtained 
Theorem 3.1. 

Theorem 3.1. If 1, 0c g= − < , the system (1.5) has two isochronous centers 

at 
( )

1

1
,0

2
c

E
 − + + ∆
  
 

 and 
( )

2

1
,0

2
c

E
 − + − ∆
  
 

. Consequently, Equation 

(1.5) has two families of periodic solutions with the equal period, see Figure 2. 

4. Conclusion 

In the present paper, we prove that the planar dynamical system has two isoch-
ronous centers under certain parameter conditions by using Picard-Fuchs equa-
tion, it is said that there exist two families of periodic solutions with equal pe-
riod. 
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