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Abstract 
In this research, we have improved a relaxation method for triangular meshes 
intended for finite element fluid simulations which contain discrete element 
particles. The triangle edges are treated as springs which relax their lengths 
towards a “better” force equilibrium where the triangles are closer to equila-
teral shape. The actual kernel is an improved zero order integrator which is 
able to follow reconfigurations of the particles faster than earlier methods. 
The improved relaxation allows larger timesteps in the flow simulation and 
leads to more stable, faster mesh reconfigurations for fast moving particles in 
the flow. Additionally, this demonstrates how integrators of the same order 
zero can nevertheless have different convergence speeds towards equilibrium. 
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1. Introduction 

Systems of particles in fluids exhibit a wide range of phenomena like sedimenta-
tion, erosion, liquefaction as well as landslides, which go far beyond the rheology 
of homogeneous fluids. For the corresponding simulations, carelessness in the 
implementation of the boundary conditions of the particles introduces noise and 
inaccuracies in the interaction computation between particles and fluid and may 
annihilate the validity of a simulation method altogether. As the most reliable 
approach to take into account both the non-sphericity of granular particles, as 
well as the geometry of the pore space between those particles, we have devised a 
two-dimensional simulation that combines a discrete element method (DEM) of 
polygonal granular particles [1] with a finite element method (FEM) fluid on a 
triangular grid [2]. While the mesh generation itself is performed via Delaunay 
triangulation and discretizes the pore space between the particles exactly, the 
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shape of the resulting triangles is not necessarily computationally ideal. It is ad-
visable to improve the resulting mesh by moving the grid points inside of the 
fluid according to criteria which will be explained in Section 1.1. For this pur-
pose, in the grid relaxation implemented according to Ng et al. [3], grid points 
are treated as connection points between springs which are placed along the 
edges of the FEM-triangles. Those springs are then relaxed towards equilibrium 
lengths of corresponding equilateral triangles by employing a zero-order ODE-solver. 
The principle is explained in Section 2 for chains of one-dimensional springs, 
while the actual implementation for the two-dimensional flow simulation is dis-
cussed in Section 3. Only recently, we found that Persson and Strang [4] had 
earlier proposed a similar relaxation approach, but to obtain a grid which was as 
balanced as possible over the whole simulation domain. In contrast, our relaxa-
tion is implemented to improve the grid quality locally, to retain fine meshes 
near the particle boundaries and coarse meshes towards the far away buffer zones, 
while still reshaping the mesh elements into a more equilateral (and thus more 
favourable) shape. As it is not the dynamics of the spring system but the final 
equilibrium positions which are of interest, any spring oscillations that occur on 
the way to this equilibrium can be “cut off” by zero-order integrators. This ap-
proach is simpler than an implementation of a non-linear solver, which would 
have to take into account position changes of the grid points, any “non-linear” 
local elasticities due to direction, connectivity as well as actual and equilibrium 
lengths of the springs. Nevertheless, as we will show, zero-order integrators may 
still have different convergence speeds towards equilibrium. 

Unfortunately, the relaxation method we had used previously [3] (derived by 
introducing a first-order error into a second-order integrator) needed rather many 
timesteps to reach equilibrium, which made it computationally not very efficient. 
Ongoing relaxation during successive physical timesteps leads to changes of the 
triangle areas which introduced noise, to which the step adaption control of the 
integrator reacted by reducing the timestep. For small triangles, oscillations in 
the mesh could be introduced, which destabilized the flow simulation [5]. 

In this article, we want to modify the integrator so that it is still of zeroth-order 
but adapts faster to the reconfiguration of the particle positions to speed up the 
relaxation, increase the size of the timestep and avoid any oscillations in the 
mesh for small triangles. 

1.1. Meshing Criteria for Particles in Fluids 

Simulations of particles in fluids usually require a variety of regions with differ-
ent mesh sizes which must be joined together (see Figure 1). A fine mesh around 
the particles and a coarse mesh far away from any regions of interest may be 
used in conjunction. Algorithms are needed to ensure that the mesh size in the 
border regions between meshes does not change too abruptly, which would lead 
to unsteady flow behavior due to fast changes in the wave resistance and there-
fore to artifacts in the propagation of the FEM-solution. Further, degenerate  
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Figure 1. Typical configuration with fine mesh around the particles (bottom left of the 
computational domain), coarse mesh far away from the region of interest (right boun-
dary) and graded mesh in between. In (a), the initial grid from the Delaunay triangulation 
is shown, and in (b), the same grid after 60 relaxation steps. 
 
mesh shapes should be avoided, as they would lead to bad conditioning of the 
underlying system of equations. To improve the efficiency of the simulation, it is 
advisable to introduce graded meshes: In regions of interest, the size of the mesh 
elements needs to be kept small e.g. around the particles or where high gradients 
of the flow fields (pressure, velocity) need to be resolved with sufficient accuracy. 
On the other hand, many setups feature large buffer regions stretching towards 
the boundaries. Large mesh elements are sufficient there, because far away from 
the region of interest the gradients in the velocity and pressure fields are much 
smaller. When we then treat the meshes as springs acting between grid points, 
we can obtain close to equilateral triangles with a suitable force model: The equi-
librium configuration can be obtained by calculating the spring forces based on 
the current positions of the mesh points and “integrating” them with a zero-order 
algorithm which will return the positions of the mesh points in the force equili-
brium. As we will show here, an adept selection of this zero-order integrator 
leads to noticeable improvements in the relaxation behaviour. For the discussion 
of the topic, we will restrict ourselves to the two-dimensional case, but the situa-
tion in three dimensions is analogous. 

1.2. Triangular Grids for Particles in Fluids 

The forces of a fluid acting on a particle are obtained from the boundary integral, 
in two dimensions along the outline Γ , as  

( ) ( )( ){ }TDrag ˆ dijp n lδ η
Γ

= − + ∇ + ∇ ⋅∫F u u                   (1) 

from the pressure p (form drag), as well as from the velocity field u  and the 
viscosity η  (friction drag). In turn, the force of the particle acting on the fluid 
is exerted as a boundary condition of the fluid domain. This means that any si-
mulation approach that requires a physical fluid solid interaction becomes invalid 
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when the length of the boundary is discretized via an uncontrolled approxima-
tion. For structured square grids, this is indeed the case and it may come as a 
surprise that mesh refinement does not remedy this issue. As Figure 2 shows, 
the closest approximation of a unit circle on a square grid always has a “circum-
ference” (sum over the outlining element edges between the gridpoints) of 4, 
even for successive refinements: It is not possible to approach the correct cir-
cumference of 2π, although the approximation of the area improves. 

When we consider not only a single particle, but the very complicated pore 
space between sedimenting (or sedimented) particles, it is clear that a triangula-
tion is able to give a much better approximation than a decomposition into 
squares. In particular, for Equation (1), square grids will always result only in 
zero-order approximations, while for polygonal particles; triangular grids can 
represent the outline exactly, without any need for approximation. 

2. Relaxation Algorithm 

For a given setup of mesh points (from the outlines of the particles, as well as 
existing stencil points in the fluid space) we can always create a space filling tri-
angular mesh via Delaunay triangulation. More precisely, it is a so-called “con-
strained” Delaunay triangulation, which may violate the property that no points 
are contained in the circumcircle of any triangle, which is the condition for De-
launay triangulations in the strict sense. Nevertheless, the arbitrary particle posi-
tions (we assume polygonal particles throughout the paper) result in arbitrary 
positions of the grid points and in turn to mesh triangles with arbitrary angles. 
This has to be taken into account, as the quality of the mesh has to be main-
tained so that FEM-triangles do not contain angles above 135 degrees [6]. The 
closer the triangles are kept to an equilateral shape, the better the condition 
number of the Jacobian of the FEM-system becomes. 
 

 

Figure 2. Refinement of a structured square mesh around a unit circle: Coarse mesh 
(thick grey line), intermediate mesh (thin grey line), fine mesh (dashed black line). No 
matter how fine the square mesh is, the circle will always be represented with a circumfe-
rence of 4 instead of 2π. 
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2.1. Relaxation Method 

The relaxation method in ref. [3] was derived from a Störmer-Verlet-integrator 
of second order  

2
1 12n n n nr r r aι+ −= − +                        (2) 

with the “virtual” relaxation timestep ι . We use Greek ι  (iota), which looks 
like the symbol of the physical timestep τ  with something missing, to express 
that ι  is deficient in physical meaning and only a (dimensionless/virtual) itera-
tion parameter. The acceleration na  is obtained from the spring force, as devia-
tion from the equilibrium length and can therefore be positive (under compres-
sion) or negative (under tension). From Equation (2) we obtain  

2
1 1 ,n n n n nr r r r aι+ −= + − +                        (3) 

21 .

n

n n
n n

v

r r
r aι ι

ι
−−

= + +
�������

                      (4) 

In [3], we dropped the term nv , to introduce an error of first order with  
2

1 .n n nr r aι+ = +                           (5) 

Accordingly, the remaining algorithm had an accuracy of order zero, which 
for the solution of Newton’s equation of motion converges to the force-equilibrium. 
For grids with roughly uniform grid size, the convergence of this method is very 
satisfying. Nevertheless, for a grid with short and long edges, or for large spring 
constants k, convergence issues arise in the form of grid oscillations (between 
corner nodes of the same triangles, or neighbouring triangles) and in the form of 
mesh elements getting squeezed by larger neighbouring elements. As a remedy, 
in [5] we have introduced an additional spring force (modelled as acceleration)  

( ) ( ), , ,sgnn gs n i n n i n
i

a k A A A A= ⋅ − ⋅ −∑                 (6) 

which uniformly wants to grow all edges of an element if its area nA  is smaller 
than that of its neighbours ,n iA  or shrink them if its area is larger instead. Grid 
oscillations, however, require a substantial reduction in the number of relaxation 
timesteps ι  per physical timestep τ  to be suppressed. Otherwise, they are 
pesky at least because they require a reduction of the physical timestep τ  
within the adaptive timestep control (see Section 4.2). In the worst case, they are 
disastrous, as the oscillations considerably change the triangle sizes from one 
physical timestep to the next, which leads to locking of the FEM due to oscilla-
tory noise in the solution [5]. 

When we consider the zero-order approximation in Equation (5) above as one 
extreme of Equation (4), while dropping the acceleration term would lead to  

1
1 .

n

n n
n n

v

r r
r r ι

ι
−

+

−
= +

�������

                        (7) 

This does not contain the spring forces at all and would be quite useless on its 
own. Now we can look for a “better” algorithm in the convex hull of both Equa-
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tion (5) and Equation (7) with a partitioning  

( )2
1 1 ,n n n nr r pv p aι ι+ = + + −                     (8) 

( ) ( )2
1 1 ,n n n nr p r r p aι−= + − + −                    (9) 

which for a partition factor 0 1p< <  would still be of order zero and thus pre-
serve the convergence. 

2.2. Linear Chain to Determine the Parameters 

The effects of the relaxation from Equation (9) can be visualized by implement-
ing a one-dimensional linear chain that starts out with random segment lengths 
and then relaxes the configuration towards equal distances between nodes. The 
average segment length we use is 1 1n nr r −− = . Partitioning values for 0.8 0.9p≤ ≤  
show very good stability while the results still converge relatively fast: For values 
of 0.9p > , the convergence speed is slowed down (up to 1p = , where the po-
sition of the mesh nodes does not change at all). In case of 0p = , Equation (9) 
becomes identical to Equation (5) (our old algorithm), which we will use for 
comparison. 

Figure 3 shows the linear chain with 20 mesh nodes, with the spring force  

( )ij
j iF k x x= −                         (10) 

between the nodes, while the first and last node ( 1i =  and 20i = ) were fixed. 
The relaxation timestep is an arbitrary (within the limits of convergence), di-
mensionless constant and taken as 0.1ι = . For partitioning values of 0p =  
(old algorithm) and 0.8p = , we can see clear differences for 50k = : The old 
algorithm shows oscillations that subside only slowly, while the new algorithm  
 

 

Figure 3. The old relaxation method (black lines with +, analogous to 0p =  in Equa-
tion (9)) shows various oscillations for 50k =  while the new relaxation method with 

0.8p =  (grey lines with � ) shows stable convergence. 
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ensures a smooth convergence towards the equilibrium points. With 0p =  as 
in Equation (5), the oscillations around the equilibrium position will occur for 

30k ≤  or even lower values in case of too large ι  (or too large changes of nr ). 
In the language of numerical analysis, this would correspond to an ι  which is 
larger than the stability radius of the integrator. The new algorithm Equation (9) 
with 0.8p =  properly locates the equilibrium positions without these issues. 
This more stable “advection” towards the equilibrium position occurs because 
the “velocity part” and the “acceleration part” compensate each other in case of 
larger ι , while with the old algorithm Equation (5) the points would oscillate 
around their equilibrium positions in such a case. The new relaxation with 

0.8p = , shows no oscillations up to spring constants of 150k = , whereas the 
“old” relaxation in Equation (5) already exhibits oscillations which diverge to-
wards infinity with these settings. In terms of stability, the possibility to equili-
brate systems without oscillations for spring constants up to 150k =  for 

0.8p =  instead of 30k =  for 0p =  (the old algorithm) corresponds to at 
least a factor of 150/30 = 5 in the grid size (towards smaller grids), or conversely 
for the same grid size translates into a convergence speed which is faster by a 
factor of 150/30 = 5. 

While in the theory of differential equations it is customary to compute con-
vergence radii, this cannot be done in our case, because we do not solve the un-
derlying differential equation in detail, but only compute suitable equilibrium 
solutions: The improvements are shown by the numerical results, not by any al-
gebraic relations. 

2.3. Failure of an “Implicit Euler” Relaxation 

The term npvι  in Equation (8), i.e. the use of the velocity of step n, corres-
ponds to an “explicit Euler” step. For the linear chain in the previous Section 2.2, 
we also tried out the corresponding “implicit Euler” step: We extrapolated the 
velocity to timestep 1n +  as  

1 .n n nv v aι+ = +�                         (11) 

and tried to advance the integrator with the 1npvι +�  instead of npvι . It turned 
out that the convergence was worse and stability (absence of oscillations) was 
considerably reduced. The reason becomes obvious when one inserts Equation 
(11) into Equation (9) so that  

( ) 2
1 1 ,n n n n nr r p r r aι+ −= + − +                   (12) 

which corresponds to the original Verlet-method in the form of Equation (3) 
with a prefactor p in front of ( )1n nr r −− : The accuracy order of the “implicit” 
step thus becomes higher than the one of the “explicit” step in the zero-order 
approach of Equation (5) because an additional first order term is added, and 
oscillations get amplified instead of curtailed. Therefore, this “implicit Euler” 
approach is not suitable for equilibration, e.g. our grid relaxation, because the 
“advection” to the equilibrium position is disturbed by the unwanted noise of 

https://doi.org/10.4236/jamp.2021.96086


J. Mueller, H.-G. Matuttis 
 

 

DOI: 10.4236/jamp.2021.96086 1264 Journal of Applied Mathematics and Physics 
 

the oscillations. That the improved accuracy delays the convergence to the equi-
libirum shows again that conventional stability theory cannot be meaningfully 
applied for zero-order equilibria. 

3. Implementation in the Simulation 

In our two-dimensional, combined DEM-FEM simulation [2], the mesh data are 
passed from the Delaunay triangulation routine (including node coordinates and 
a connectivity list) to the relaxation routine. This information is used to calcu-
late the edge lengths and areas of all mesh elements and further to generate a list 
of neighbouring elements. By comparing the areas of neighbouring elements, we 
get the spring accelerations based on area differences ,n gsa  from Equation (6). 
To force the triangular elements into a more equilateral shape, we compare the 
length of each edge jl  to the average edge length avel  of the associated ele-
ment and determine the related spring accelerations as  

( )
3

,
1

1with .
3n eq ave j ave j

j
a l l k l l

=

= − ⋅ = ∑               (13) 

For each edge, the accelerations are then summed up into  

, ,n n eq n gsa a a= +                        (14) 

and applied to the mesh nodes according to Equation (9). The nodes may move 
individually or in groups, in parallel or in opposite directions. Note that by 
treating directly the accelerations, not the forces, there is no need to additionally 
assign a virtual mass to the mesh nodes. In an additional buffer, the mesh node 
positions from the previous relaxation step are held to be used as 1nr −  in the 
next timestep. For the initialization of the first step, 1n nr r− =  is used (mesh 
nodes are at rest initially). 

The relaxation process is performed on the existing Delaunay triangulation 
for every physical timestep with a set number of relaxation steps shortN . In reg-
ular intervalls (usually every 50 physical timesteps), the grid is newly triangu-
lated and relaxed over an increased amount of steps longN , with additional re- 
triangulations every triN  steps. 

4. Comparison of Relaxation Algorithms 

To verify the effects of the new relaxation algorithm, we keep spring constant 
1k =  and step size 0.05ι =  from the old algorithm based on Equation (5) and 

set the partitioning to 0.9p = . Only the number of relaxation steps per physical 
timestep will be adjusted. 

4.1. Effect on the Mesh Geometry 

First, we compared the behaviour of the old and new relaxation algorithms for 
the graded mesh around a granular step. Here, the two-dimensional behaviour is 
very similar to the one-dimensional case discussed in Section 2.2. If both algo-
rithms are set to 4shortN = , 8longN =  and 4triN = , the new algorithm is 
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slower to converge towards an equilibrium configuration. In Figure 4(c) this 
can easily be observed, as the effect is most pronounced in the coarse regions of 
the mesh: For the same number of relaxation steps, in the mesh relaxed with the 
new algorithm the triangles are less equilateral compared to their counterparts 
that were relaxed using the old algorithm. This means more relaxation steps 
would be required to reach the same mesh quality. For the fine mesh in Figure 
4(a) the differences are minor as several nodes are already close to their equili-
brium configuration, but for a few triangles the new algorithm still lags behind. 
With the above settings, both relaxation algorithms do not reach the full equili-
brium configuration after a new triangulation in the allotted maximum number 
of steps longN  before the physical timestep is resumed, which is noticeable as a 
low frequency (corresponding to the time interval between new triangulations) 
wobble in the mesh. 

By increasing the parameters 20shortN = , 60longN =  and 20triN =  for the 
new relaxation, there are enough steps so that the grid points reach their equili-
brium position before the next physical timestep. In Figure 4(d), the triangles 
for the new algorithm are now much closer to an equilateral shape compared to 
the old relaxation. Further, Figure 4(b) shows that the new algorithm also  
 

 

Figure 4. Relaxation of the graded mesh around a granular step as shown in Figure 1. 
Subfigures (a) and (b) show details of the fine area while (c) and (d) show the coarse area. 
In (a) and (c), old (black lines) and new (grey lines) relaxation are compared for the same 
number of relaxation steps. In (b) and (d), the new algorithm uses more relaxation steps 
and reaches the equilibrium positions faster than the old algorithm. 
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allows more equilateral configurations in regions of the fine mesh that were not 
fully equilibrated before. With the nodes now in their equilibrium positions be-
fore the physical timestep is resumed, the wobble effect mentioned above is gone. 
This is in stark contrast to the old algorithm: With a similarly increased step 
count, oscillations would have time to build up and result in a faulty mesh or 
squeezed mesh elements. Profiling runs have been performed for the old relaxa-
tion with few steps and for the new relaxation with the increased step count. No 
discernable difference over the CPU-time required for computing a physical 
timestep was observed, which implies a negligible impact of the new relaxation 
algorithm, even though it performs more iteration loops. Further, while no 
change in CPU-time could be observed, the average physical timestep size in-
creased slightly (albeit only about one percent) which warranted further investi-
gation as discussed in the following. 

4.2. Effect on the Timestep Control 

For simulations of dry granular materials, adaptive time integrators are not very 
efficient: The timestep is essentially determined by the oscillation frequency due 
to the particle masses and Young’s moduli. In configurations with fluids and 
particles, the time scale of the dynamics can change much more due to changing 
motion patterns (release of avalanches, easing of movement after the collapse of 
aggregates etc.), and even the particle-particle interactions can be “damped away” 
from the dry oscillation frequency by the viscosity of the fluid in the porespace. 
In our simulation, we have implemented the time-adaptive BDF2 (backward 
differentiation formula/Gear Predictor-Corrector of second order) recom-
mended in [7]: As parameter which is used to control the increase or decrease of 
the physical timestep size, the deviation of the field variables between corrector- 
and predictor-step is used. Important for the timestep selection is that BDF2 is 
an implicit integrator, so that the timestep can be selected independently from 
the grid size and related Von-Neumann stability considerations. Only the max-
imum timestep limit set by the DEM needs to be considered but, due to the 
dampening effects of the fluid, the timestep can increase by a factor of about two 
to five, depending on domain geometry and fluid viscosity. Nevertheless, for 
years we were rather disappointed that the timestep had been set by the algo-
rithm in a rather “defensive” way: The size of the timestep seemed much slower 
than the actual dynamics (movement of the particles) mandated and uncon-
nected to the “slowness” of the fluid flow. Only recently, we discovered that 
among the causes for the small timestep were the spurious grid oscillations men-
tioned in Section 4.1 caused by the old relaxation in Equation (5). They in turn 
led to spurious changes of the mesh triangles and therefore the flow rate between 
some meshes [5]. This introduces considerable noise for the affected triangles, as 
the flow is interpolated from the old grid and used in the predictor, while the 
corrector works with the new, modified mesh. As the timestep control must be 
coupled to the largest overall deviation between predictor- and corrector-step 
even for even few small meshes, the impact on the timestep is considerable. 
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As the new relaxation algorithm shows a far more stable behaviour, we pre-
pared a test simulation with nine particles sedimenting in water to compare the 
effects of new and old relaxation on the timestep (see Figure 5): While the initial 
configuration is identical for both cases, at the later stage, the new relaxation has 
farther advanced in physical time, so that the particles have sedimented further. 
This indicates that the simulation with the new algorithm is running at a larger 
timestep size. To verify this, a look at the detailed timestep sizes in Figure 6 is 
necessary: In the first part of the simulation, the timestep sizes start out similar,  
 

 

Figure 5. Overlay of nine particles sedimenting in a fluid, simulated with old (only poly-
gonal outline) and new (filled grey polygons) relaxation algorithms. The bottom edge of 
the frame indicates a solid boundary. The initial configuration (left) is identical for both 
cases. After 2100 timesteps (right), the new relaxation has advanced further in physical 
time than the old relaxation due to the—on average—larger timestep size. The particles in 
the simulation with the new relaxation are mostly stacked into columns with edge-edge 
contacts, but for the old method, some particles in the left column are still sedimenting. 

 

 

Figure 6. Comparison of physical timestep size for a simulation of nine sedimenting particles with old (thick black line) and new 
(thin grey line) relaxation algorithms. The displayed timestep size is the moving mean over a 50 timestep interval for better visibil-
ity. Note that the timestep size is plotted over physical time and not over the timestep number, so the impact of physical effects 
(such as particle collisions) can be compared better. 
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as the timestep remains near the maximum limit defined by the DEM. In this 
phase, the particles are simply sinking and nothing much of interest is happen-
ing. Once the first particle collisions occur, the sudden change in particle veloci-
ty causes the length of the timestep to drop. While the timestep for the simula-
tion with the new relaxation algorithm seems to dip a bit further down in case of 
collisions with high impact forces, it is also able to recover slightly faster and seems 
to be less affected by collisions with small impact forces. The average timestep size 
is 53.2106 10newτ −= ×  for the new relaxation compared to 52.9659 10oldτ −= ×  
for the old one, an increase of about 8%. However, the effect on more complex 
geometries may be less pronounced. If small sections of the pore space prevent a 
more deformed triangle from relaxing at all (due to geometry constraints), the 
timestep will be impacted regardless of the relaxation algorithm until the geo-
metry changes again. It should also be noted that in Figure 6 towards the end, 
the physical events start to drift apart between the simulations with the different 
relaxations, even though the timestep values are plotted over physical time. This 
is caused by the nonlinear-deterministic character of the DEM: Polygonal par-
ticles have a high Lyapunov exponent, so e.g. a contact of a corner with an edge 
allows a particle to tilt either way, left or right. For multiple particles and colli-
sions, this will cascade into an enormous amount of possible final configurations. 
As a consequence, single particle trajectories have less significance than statistic-
al averages like sinking speeds and slope angles [8]. This gets even more pro-
nounced, when variable timestep sizes come into play. In case of the nine sink-
ing particles, the simulations start to drift apart from each other after a few colli-
sions and from about 0.12 s onwards, the particle positions are distinctly differ-
ent. The differences in geometry then result in different mesh configurations, 
meaning a further comparison of timestep size would not yield meaningful data 
anymore. 

To stress-test the relaxation, we modified the above simulation, so the nine 
particles sink through a greater height difference, resulting in higher particle ve-
locities and thus more intense collisions. The simulation with the old relaxation 
algorithm failed even before any particles hit the ground: Once the particles 
reach a certain sinking speed, the relaxation struggles to keep the mesh nodes 
moving together with the particles until a node in front of a particle gets pushed 
inside it, causing the simulation to crash, which is the reason why in Figure 7 
the black line suddenly terminates. This can be remedied by increasing the re-
laxation step counts or by performing new triangulations more often, but this 
reintroduces mesh oscillations. On the other hand, the new algorithm has no is-
sue moving the mesh together with the sinking particles. For the new relaxation, 
the grey line in Figure 7 also shows, the dips in the timestep size caused by the 
first row of particles bouncing off the floor are only slightly more severe than in 
Figure 6. However, the moment a particle from the second row crashes into a 
bouncing particle from the first row, the simulation with the new algorithm 
locks as well. As stated earlier in this section, the upper limit for the timestep is  
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Figure 7. Comparison of physical timestep size for a simulation of nine particles sedimenting from a greater height. The old re-
laxation (thick black line) causes the simulation to crash due to a meshing error. The simulation with the new relaxation algorithm 
(thin grey line) locks because of a residual error, once the DEM starts feeding unphysical jumps in the particle velocities into the 
FEM. The displayed timestep size is again the moving mean over a 50 timestep bracket, and plotted over the physical time. 

 
given by the DEM but increased by a factor as the particle movement is damped 
by the fluid. With the increased particle velocities and even higher relative veloc-
ities due to the bouncing, the dampening effect of the fluid was insufficient. 
With the timestep at the moment of the collision still well above the limit for a 
dry DEM, the calculation of the contact forces resulted in unphysical values for 
the particle velocities which, when fed back into the FEM, locked the simulation. 
This of course can be remedied by reducing the maximum possible timestep size, 
but it is a great example that the new relaxation allows us to keep the timestep 
size limit coming from the FEM consistently above the one from the DEM, 
meaning timestep size will for the most part not be limited by the difference be-
tween predictor and corrector results anymore. 

5. Summary and Conclusions 

We used a spring-model between grid points to improve the quality of the FEM 
mesh generated via Delaunay triangulation: The relaxed length of a spring is 
matched to the side length of equilateral triangles, equilibrating all mesh trian-
gles towards a more equilateral shape. An existing zero-order integrator was used 
to compute the equilibration process and by improving its convergence properties, 
we were able to suppress oscillations in the equilibration more efficiently and al-
low for the equilibrium state to be reached faster. The details of the grid relaxa-
tion do not influence the FEM-solution directly; they just increase the speed at 
which the quality of the mesh is improved. Nevertheless, as a “bad mesh” in the 
pore spaces between granular particles leads to ill-conditioning of the underlying 
nonlinear system of equations, the improved mesh generation helps to increase 
the overall stabilisation of the simulation and reduces the risk of faulty mesh 
structures locking the simulation. 
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For some setups, the possible physical timestep was increased by up to 8%, 
while for particles moving inside the fluid, the relaxation could now keep up 
with the changes of the particle outlines where the older algorithm failed, while 
both with respect to memory requirements and computational effort, the addi-
tional costs of the new algorithm are negligible. 
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