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Abstract 
In this paper, we study the long time behavior of a class of Kirchhoff equa-
tions with high order strong dissipative terms. On the basis of the proper hy-
pothesis of rigid term and nonlinear term of Kirchhoff equation, firstly, we 
evaluate the equation via prior estimate in the space 0E  and kE , and verify 
the existence and uniqueness of the solution of the equation by using Galer-
kin’s method. Then, we obtain the bounded absorptive set 0kB  on the basis 
of the prior estimate. Moreover, by using the Rellich-Kondrachov Compact 
Embedding theorem, we prove that the solution semigroup ( )S t  of the eq-
uation has the family of the global attractor kA  in space kE . Finally, we 
prove that the solution semigroup ( )S t  is Frechet differentiable on kE  via 
linearizing the equation. Furthermore, we can obtain the finite Hausdorff di-
mension and Fractal dimension of the family of the global attractor kA . 
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1. Introduction 

In this paper, we mainly study the initial boundary value problem of the Kir-
chhoff equation with high order strong damping: 
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where 1, 2m p> ≥ , ( )1nR nΩ ⊆ ≥  is a bounded region with a smooth boun-
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dary ∂Ω , [ )0,Q = Ω× ∞  stands for the cylinder in n
x tR R× , the rigid term 

( ) [ )1 0,M s C∈ ∞  is a general function, ( ) ( )2 0m
tuβ β−∆ >  is the strong dis-

sipative term, u uρ  is the nonlinear term and 1ρ ≥ − , ( )f x  denotes the ex-
ternal force. 

Kirchhoff equation is a kind of important nonlinear wave equation, which is 
widely used in engineering physics, especially provides a strong support for 
measuring bridge vibration. Kirchhoff equation originates from a physical mod-
el, which is obtained by German physicist Gustav Robert Kirchhoff [1] when he 
studied the transverse vibration of elastic string: 

22 2

02 20
d , 0 , 0,

2
Lu Eh u uh P x f x L t

L xt x
ρ

 ∂ ∂ ∂ − + = < < ≥  ∂∂ ∂   
∫

 
As 1, 2, 1m p β= = = , Masanori et al. studied Kirchhoff equations with non-

linear dissipative terms in the literature [2]: 

( )2 ,tt tu M u u u u ru fρδ− ∇ ∆ + + =
 

and they had discussed the existence and attenuation of the global solution of 
the initial boundary value problem by using Galerkin’s method. 

Then Igor Chueshov studied the Kirchhoff equation with strong dissipative 
term for ( )21, 2,m p uβ σ= = = ∇  in reference [3]: 

( ) ( ) ( ) ( )2 2 ,tt tu u u u u g u f xσ ϕ− ∇ ∆ − ∇ ∆ + =
 

They proved that its weak solution exists and is unique. Particularly, the equa-
tion has strong exponential attractor when the nonlinear term ( )g u  is in a 
non-supercritical state. Further, Guoguang Lin, Yuhang Chen [4] et al. extended 
the equation to a higher order Kirchhoff-type equation based on the study of 
Igor Chueshov, and added a structural dissipation term 2mu∆ : 

( )( ) ( )( ) ( )2 ,
q m mm m

tt tq
u N u u a t u u I x+ ∇ −∆ + −∆ + ∆ =

 

They discussed the relationship between the order m and q, made reasonable 
assumptions about the relevant terms, proved the existence and uniqueness of 
the comprehensions, and made finite-dimensional estimates of the global at-
tractors. When the coefficient of structural dissipation term is not equal to 1, 
they can’t get the relevant conclusion. More research results can be referred to 
[5]-[16]. 

On the basis of previous studies, we improve the order of strong dissipation 
term further in this paper. At the same time, summing up previous experience, 
we discuss the difficult problem of the relationship between order m and p in the 
rigid term and ρ  in the nonlinear term, and get some theoretical results about 
the long time behavior of the equation. 

2. The Basic Assumptions 

For the convenience of later narration, the space and sign mentioned in the ar-
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ticle are defined as follows: 
( )2H L= Ω , ( ) ( ) ( )1

0 0
m mH H HΩ = Ω Ω , ( ) ( )2

0 0
m k k

kE H H+= Ω × Ω , kA  is 
the global attractor family from 0E  to kE , 0kB  is a bounded absorption set in 

0E , where 1, 2, , 2k m=  , ( )0 0,1,2,iC i> =   are constants. The inner prod-
uct ( ),⋅ ⋅  and norm ⋅  of H are given by ( ) ( ) ( ), du v u x v x x

Ω
= ∫ , ( )2L Ω

⋅ = ⋅ , 

( )pp L Ω
⋅ = ⋅ . 

( ) ,M s ρ  and p satisfy the following conditions: 
(A1) For 0s∀ ≥ , we have ( )0 11 M sε µ µ+ ≤ ≤ ≤ , where 0 1,µ µ  are con-

stants, and 
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(A4) 
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220 min 1 1, ,
4 1

m m

m

βλ µλµε
β βλ

  ≤ ≤ + − 
+  

; 1λ  denotes the first eigen-

value of −∆  with the homogeneous Dirichlet boundary on Ω . 

3. Existence and Uniqueness of Solutions 

Lemma 1. Assume (A1)-(A4) are valid. Let ( )0 1 0,u u E∈ , ( ) ( )2f x L∈ Ω , 
then the initial boundary value problem (1.1) has a global solution ( ),u v  that 
satisfies ( )( )2

00, ; mu L H∞∈ +∞ Ω , 

( )( ) ( )( )2 2 2
00, ; 0, ; mv L L L T H∞∈ +∞ Ω Ω , and 

( ) ( ) 1

0

22 2 1
1

1

, 0 e ,tm
E

Cu v u v y α

α
−= ∆ + ≤ +            (3.1) 

( )
2

1 10
d 0 ,

2
T mv t C T yβ
∆ ≤ +∫                  (3.2) 

where tv u uε= + , ( )
2 2

21
1

2min 2 ,2 , , 2
2

mβλ εµ βεα ε ε ε ε ρ
µ

 −
= − − + 

 
,  

( )
22 2 22

1 0 0 0 0 2

20
2

my v u u u ρ

ρ
ε µ

ρ
+

+
= + + ∆ +

+
. 

So there exists a nonnegative real number 1R  and ( )1 1 0t t= Ω >  such that 

( ) ( )
0

22 2 2
1 1, .m

E
u v u v R t t= ∆ + ≤ >              (3.3) 

Proof. Let tv u uε= + , take the inner product of Equation (1.1) with v in H, 
and we get that 
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( )( ) ( )( ) ( )( )2 2 , , .
p m mm

tt tp
u M D u u u u u v f x vρβ+ −∆ + −∆ + =     (3.4) 

We process the terms in Equation (3.4) by using Young’s inequality, Holder’s 
inequality, Poincare’s inequality and differential mean value theorem, then we 
obtain that 
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2
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1, .
22

f x v f vε
ε

≤ +                  (3.9) 

Substitute (3.5)-(3.9) into (3.4), we have 
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Let ( )
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22 2 22

1 2

2
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ε µ

ρ
+

+
= + + ∆ +

+
. 

By using the differential Gronwall’s inequality, we obtain 

( ) ( ) 1 1
1 1

1

0 e ,t Cy t y α

α
−≤ +

 

( )
2

1 10
d 0 ,
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T mv t C T yβ
∆ ≤ +∫

 

thus ( ) ( )
0

22 2
1, m

E
u v u v y t= ∆ + ≤ , moreover 

( )
0

2 21
1

1

lim , .
Et

Cu v R
α→+∞

=
 

Lemma 1 is proved.   
Lemma 2. Assume (A1)-(A4) are valid. If ( )0 1, , 1, 2, , 2ku u E k m∈ =  , 

( ) ( )2f x L∈ Ω , then the initial boundary value problem (1) has a global solution 

( ),u v  that satisfies ( )( )2
00, ; m ku L H∞ +∈ +∞ Ω ,  

( )( ) ( )( )2 2
0 00, ; 0, ;k m kv L H L T H∞ +∈ +∞ Ω Ω , and 
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( ) ( ) 2
2 22 2 3
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, 0 ,
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tm k k
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C
u v u v y e α

α
−+= ∇ + ∇ ≤ +
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22

3 20
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T m k v t C T yβ +∇ ≤ +∫                (3.10) 

where tv u uε= + , 
2 2 2
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βλ ε βεα ε ε ε
µλ µ

 
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 
,  

( )
2 22

2 0 00 k m ky v uµ += ∇ + ∇ . 

Thus there exists a nonnegative real number kR  and ( )2 2 0t t= Ω >  such 
that 

( ) ( )
2 22 2 2

2, , .
k

m k k
kE

u v u v R t t+= ∇ + ∇ ≤ >          (3.11) 

Proof. Taking the inner product of Equation (1.1) with ( )k v−∆  in H, and we 
get that 

( )( ) ( ) ( )( ) ( ) ( )( )2 2 , , .
p m m k km

tt tp
u M D u u u u u v f x vρβ+ −∆ + −∆ + −∆ = −∆  (3.12) 

Similar to Lemma 1, each item of Equation (3.12) can be obtained 
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Substitute inequality (3.13)-(3.17) into (3.12), we have 
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By using the differential Gronwall’s inequality, we obtain 

( ) ( ) 2 3
2 2
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0 e ,t C
y x y α

α
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2 30
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2 22 2
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C
u v R

α→+∞
≤ =

 
Lemma 2 is proved.   
Lemma 3. (Daprato G. [9]) Let D be the bounded region of n

x tR R× , gµ  

and g are functions of ( )( )1qL D q< < ∞ , 
( )

,qL D
g C g gµ µ< →  a.e. in D, then 

g gµ →  is weak convergence in ( )qL D . 

Theorem 1. Assume (A1)-(A4) are valid. If ( )0 1, , kf H u u E∈ ∈ , then the ini-
tial boundary value problem (1.1) exists a unique smooth solution  
( ) [ )( ), 0, ; ku v L E∞∈ +∞ . 

Proof. First of all, we prove the existence of solution. 
Let ( ) ( )2 2 1, 2, , 2m k m k

j j j k mω λ ω+ +−∆ = =  , where jλ  represents the eigen-
value of −∆  with the homogeneous Dirichlet boundary on Ω , jω  represents 
the eigenfunction determined by the corresponding eigenvalue jλ , then 

1 2, , , hω ω ω  constitute the standard orthonormal basis of H. Suppose 
( ) ( )1

h
h h jh jju u t g t ω

=
= = ∑  is the approximate solution of the initial boundary 

value problem (1.1), where ( )( )1jhg t j h≤ ≤  is determined by 

( )( ) ( ) ( )( )
( ) ( )( ) ( )

2 2 ,

, 1, 2, ,

p m m km
h h h h h h jp

k
j

u M D u u u u u

f x j h

ρβ ω

ω

′′ ′+ −∆ + −∆ + −∆

= −∆ = 

   (3.19) 

Equation (3.19) satisfies the initial conditions 

( ) ( ) ( ) 2
0 0 0

1
0 in ,

h
m k

h h jh j
j

u u t u h Hα ω +

=

= = → → +∞∑
 

( ) ( ) ( )1 1 0
1

0 in ,
h

k
h h jh j

j
u u t u h Hβ ω

=

′ = = → → +∞∑
 

namely as h → +∞ , ( ) ( )0 1 0 1, ,h hu u u u→  in kE . According to the basic theory 
of solutions of ordinary differential equations, the approximate solution ( )hu t  
exists on ( )0, ht . 

Multiply both sides of (3.19) by ( )jh jhg g tε′ +  and sum over j. Let  
( ) ( ) ( )h h hv t u t u tε′= + , according to Lemma 1 and Lemma 2, estimation (3.3), 

(3.10), (3.11) still hold for ( ) ( )2
0 0,m k k

h hu H v H+∈ Ω ∈ Ω , namely we have 

( )
2 22 2 2, ,

k

m k k
h h h h kE

u v u v R+= ∇ + ∇ ≤             (3.20) 

( )
22

2 30 0
d 0 d ,

4
T Tm k

hv t y C tβ +∇ ≤ +∫ ∫              (3.21) 
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then we obtain ( ) ( )( ),h hu t u t′  is uniformly bounded on kE , and (3.20), (3.21) 
hold the priori estimate of the solution in the Lemma 2. Moreover, we know 
from (3.20) that ( ),h hu v  is bounded in [ )( )0, ; kL E∞ +∞ , from (3.21) that hv  
is bounded in ( )( )2 2

00, ; m kL T H + . 
In space kE , select the subsequence { }su  from the sequence { }hu  such 

that ( ) ( ), ,s su v u v→  is weak * convergence in [ )( )0, ; kL E∞ +∞ , and we obtain 
that sv  is bounded in ( )( )2 2

00, ; m kL T H +  via (3.21). 
Due to the Rellich-Kohdrachov Compact Embedding theorem, kE  ↪ 0E , 

( ) ( ), ,s su v u v→  is strong convergence a.e. in 0E . 

According to Lemma 3, taking s s sg u uρ= , 
2
1

q ρ
ρ
+

=
+

, sg u uρ→  a.e. in 

( )qL Q , where [ )0,Q = +∞ ×Ω , then 

s su u u uρ ρ→  is weak * convergence in [ ) ( )( )0, ; qL L∞ +∞ Ω .  (3.22) 

Then in Equation (3.19), let h s=  and take the limit. For fixed j and s j≥ , 
we obtain 

( )( ) ( ) ( )( )
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2 2 ,

, .

p m m km
s s s s s s jp

k
j

u M D u u u u u

f x

ρβ ω

ω

′′ ′+ −∆ + −∆ + −∆

= −∆
 

Due to hu u→  is weak * convergence in [ ) ( )( )2
00, ; m kL H∞ ++∞ Ω , we have 

( ) ( )( ) ( )( ), ,k k
s j j ju t u tω λ ω−∆ →  is weak * convergence in [ )0,L∞ +∞ , 

( ) ( )( ) ( )( ), ,k k
s j j ju t u tω λ ω′ ′−∆ →  is weak * convergence in [ )0,L∞ +∞ . 

Then, we obtain ( ) ( )( ) ( ) ( )( ) ( )( )d, , ,
d

k k k
s j s j j ju t u t u t

t
ω ω λ ω′′ ′ ′′−∆ = −∆ →  is 

convergence in [ )0,D′ +∞ , where [ )0,D′ +∞  is the conjugate space of the infi-

nitely differentiable space [ )0,D +∞ . 

( )( ) ( )( ) ( )( ) ( )
222 22, ,

m km kp pm k km m
s s j j jp p

M D u u M D u uω λ ω
++ 

−∆ −∆ → −∆ −∆  
 

 is weak * convergence in [ )0,L∞ +∞ . 

Due to 
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( ) ( ) ( ) ( )
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2 2 2
2 2 2 2
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s j
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   = −∆ −∆ − −∆ −∆   
   

, 

( ) ( )( )
( ) ( ) ( )

2

22 2
22 2 2

,

, ,

m k
s j

m kk m k m k

j j j j

u

v u

β ω

β λ ω βε λ ω
++ +

′−∆ −∆

  → −∆ −∆ − −∆       

 is 

weak * convergence in [ )0,L∞ +∞ . 
According to Equation (3.22), we have 
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( )( ) ( ), ,k k
s s j j ju u u uρ ρω λ ω−∆ →  is weak * convergence in [ )0,L∞ +∞ . 

Because jω  is arbitrary, for ( ) ( )1
0

kv H H∀ ∈ Ω Ω  we have 

( )( ) ( ) ( )( )
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, .

p m m km
tt t jp

k
j

u M D u u u u u

f x

ρβ ω

ω

+ −∆ + −∆ + −∆

= −∆
    (3.23) 

Hence, Equation (3.23) is established for all j. The existence is proved. 
Then we prove the solution of the initial and boundary value problem is 

unique. 
Assume 1 2,u u  are the solution of the initial and boundary value problem 

(1.1). Let 1 2w u u= − , we have 

( )( ) ( )( )
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[ ) ( )( ) [ ) ( )( )

2 2
1 1 2 2

2
1 1 2 2

2 2
0

0,

0 0, 0 0,

0, ; , 0, ; .

p pm mm m
tt p p

m
t

t

m
t

w M D u u M D u u

w u u u u

w w

w L H w L L

ρ ρβ

∞ ∞

+ −∆ − −∆

+ −∆ + − =

= =

∈ +∞ Ω ∈ +∞ Ω

       (3.24) 

Taking the inner product of Equation (3.24) with tw  in H, and we get that 

( )( ) ( )( )( )
( )

22 2 2
1 1 2 2

1 1 2 2

1 d ,
2 d

, 0.

p pm mm m m
t t tp p

t

w w M u u M u u w
t

u u u u wρ ρ

β+ ∆ + ∇ −∆ − ∇ −∆

+ − =
 (3.25) 

According to Lemma 1 and Lemma 2, the Equation (3.25) is processed as fol-
lows 

( )( ) ( )( )( )
( ) ( )( ) ( )( )

2 2
1 1 2 2

2 2
1 1 2 2

22 2 24

1

,

1 d ,
2 d

d ,
2 d 2 2

p pm mm m
tp p

p p p mm m m m
tp p p

m m m
t m

M u u M u u w

M u w M u u u w
t

Cw w w
t

ξ

µ β
βλ

∇ −∆ − ∇ −∆

′≥ ∇ ∆ − ∇ − ∇ −∆

≥ ∆ − ∆ − ∆

  (3.26) 

( ) ( )1 1 2 2 5 1 2

2 26 6
2

1

, d

.
22

t t

m
tm

u u u u w C u u w w x

C C
w w

ρ ρ ρ ρ

λ

Ω
− ≥ − +

≥ − ∆ −

∫
      (3.27) 

Substituting (3.26)-(4.1) into (3.25), we obtain 

( )
22 22 22 64

1 6 2
1 1

d .
d

m m m
t t m m

CCw w C w w
t

µ βλ
βλ λ

 
+ ∆ ≤ − + + ∆ 

   

Let 
2

2 64
3 1 6 2

1 1

max ,m
m m

CCCα βλ
βµλ µλ

 
= − + 

 
, by using the integral Gronwall’s 

inequality we receive that 

( ) ( ) ( ) ( )( ) 3
2 22 2

0 0 e 0.tm m
t tw t w t w w αµ µ+ ∆ ≤ + ∆ =
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Hence ( ) ( )0, 0m
tw t w t= ∆ = , a.e. ( ) 1 20,w t u u= = . The uniqueness of solu-

tion is proved.   

4. Global Attractor and Dimension Estimation 

Theorem 2. [9] Assume E is a Banach space, and ( ){ } 0t
S t

≥
 are the semi-

group operators on E. ( ) :S t E E→ , ( ) ( ) ( )( ), 0S t s S t S s t s+ = ∀ ≥ , ( )0S I= , 
where I is the unit operator. Suppose ( )S t  satisfies the following conditions: 

1) ( )S t  is uniformly bounded, i.e. 0, ER u R∀ > ≤ , there is a constant 
( )C R , such that 

( ) ( ) [ )( ), 0, ;
E

S t u C R t≤ ∀ ∈ +∞
 

2) There is a bounded absorbing set 0B E⊂ , i.e. B E∀ ⊂ , there exists a 
constant 0t , so that 

( ) ( )0 0, ;S t B B t t≥⊂ ∀  
3) As 0t > , ( )S t  is a completely continuous operator. 
It is said that the semigroup operator ( )S t  exists a compact global attractor 

A. 
If ( )S t  is the solution semigroup that generated by the initial boundary val-

ue problem (1.1), i.e. ( ) ( ) 0u t S t u= , according to Lemma 1 and Lemma 2 we 
obtain the existence theorem of the following family of global attractors. 

Theorem 3. Under the assumption of Theorem 1, let ( )S t  be the solution 
semigroup that generated by the initial boundary value problem (1.1), then the 
initial boundary value problem (1.1) exists a family of global attractors, i.e. exists 
compact set 0k kA E E⊂ ⊂ , and 

( ) ( )0 0
0

,k k k
s t s

A B S t Bω
≥ ≥

= =


 

where ( ) ( ) ( ) ( ){ }2
0 0

2 2 2 2
0 , : , m k k

k
k k kH HE

B u v E u v u v R+ Ω Ω
= ∈ = + ≤ , 0kB  is the 

bounded absorbing set in kE  and satisfies: 

1) ( ) ( ), 0k kS t A A t= > ; 
2) ( )( )0lim , 0t k kdist S t B A→+∞ = , where for arbitrary bounded set 0k kB E⊂ , 

we have 

( )( ) ( )
0

0 , sup inf .
kkk

k k Ey Ax B
dist S t B A S t x y

∈∈
= −

 
Proof. The proof can be obtained by verifying the three conditions in Theo-

rem 2. Under the conditions in Theorem 1, suppose that the Equation (1.1) has a 
solution semigroup ( ) : k kS t E E→ . 

(1)According to Lemma 2, for arbitrary 0k kB E⊂ , it contains the bounded set 
of the sphere ( ){ },

kE
u v R≤  such that there exists a constant C, then we have 

( )( ) ( ) ( )2
0 0

2 2 2 2
0 0, ,m k k

k H HE
S t u v u v R C+ Ω Ω

= + ≤ +
 

where 0t ≥ , ( )0 0 0, ku v B∈ , ( ){ } 0t
S t

≥
 is uniformly bounded in kE . 

2) Further, ( ) ( )0 0 1 2, , max ,ku v E t t t∀ ∈ ≥ , we have 
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( )( ) ( ) ( )2
0 0

2 22 2 2
0 0 0 0, ,m k k

k
kH HE

S t u v u v R R+ Ω Ω
= + ≤ +

 
so 0kB  is a bounded absorption set of the semigroup ( )S t . 
3) Due to kE  ↪ 0E , we obtain that the bounded set in kE  is the compact 

set in 0E . Hence, ( )S t  is completely continuous operator. 
Theorem 3 is proved.   
In order to estimate the Hausdorff dimension and Fractal dimension of the 

family of global attractor, we linearize the problem (1.1): 

( )( ) ( )( ) ( )

( ) ( )
( )
( ) ( )

2 2

2 1 0,

, 0, , 0,

,0 , ,0 ,

p p pm mm m m m
tt p p p

m
t

t

U M u U M u u U u

U u U

U x t x t

U x U x

ρβ ρ

ξ η

′
′+ ∇ −∆ + ∇ ∇ ∇ −∆

+ −∆ + + =

= ∈∂Ω >

= =

   (4.1) 

where ( ), kEξ η ∈ , ( ) ( )( )0 1, ,tu u S t u u∈  is the solution of question (1.1) ob-

tained by ( )0 1, ku u A∈ . Then for a given ( )0 1,u u , ( ) : k kS t E E→ , it can be 

proved that for arbitrary ( ), kEξ η ∈ , there is a unique solution  

( ) ( )( ) [ )( ), 0, ;t kU t U t L E∞∈ +∞  to the linear problem (4.1). 

Lemma 4. For 0, 0t R∀ > > , the mapping ( ) : k kS t E E→  is differentiable 
on kE . Then the derivative of ( )0 1,u uϕ =  is a linear operator of  
( ) ( ) ( ) ( )( ): , , tG t U t U tξ η → , where ( ) ( )( ), tU t U t  is the solution of the linear 

initial boundary value problem (4.1). 
Proof. Let ( )0 0 0, ku v Eϕ = ∈ ,  ( )0 0 0, ku v Eϕ ξ η= + + ∈ , and 0 kE Rϕ ≤ , 



0
kE

Rϕ ≤ , define ( ) ( ) 0,u v S t ϕ= , ( ) ( )0,u v S t ϕ=  , then ( )S t  has Lipschitz 

property on the bounded set kE : 

( ) ( ) ( )
2 2

0 0 e , .
kk

ct
EE

S t S tϕ ϕ ξ η− ≤                (4.2) 

Let u u UΘ = − −  is the solution of the linear initial boundary value problem 
(4.1), then we have 

( )( ) ( )

( ) ( )

2 2
1 2 ,

0 0 0.

p m mm
tt tp

t

M u h hβΘ + ∇ −∆ Θ+ −∆ Θ = +

Θ = Θ =
        (4.3) 

( ) ( )( )( )

( )( ) ( )

2
1

2 ,

p p mm m
p p

p p mm m m
p p

h M u M u u

M u u U u

= ∇ − ∇ −∆

′
′+ ∇ ∇ ∇ −∆

 

 

( )2 1 ,h u u u u u Uρ ρ ρρ= − + + 

 
Let ms u= ∇ , ms u= ∇  , u u u= − , ( )1 4 41 s sξ α α= − + ,  

( )2 5 5 11 sξ α α ξ= − + , ( ) ( )( )p p
p pN M s sξ ′′= , ( )4 5, 0,1α α ∈ . 

Then 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( )

2 2 2
1 1

22 2
1 2 4

2

1

,

m m mm m m

m mm m

mm

h N u u N s u u N s u

N u u N u u

N s u

ξ

ξ ξ α

= − ∇ −∆ + ∇ −∆ − ∇ Θ −∆

′= − ∇ −∆ − − ∇ −∆

− ∇ Θ −∆



 

( ) ( ) ( )
( ) ( )

2 3

1 2
4

1 1 1

1 1 .

h u u u u

u u

ρ ρ ρ

ρ ρ

ρ ξ ρ ρ

ρ ρ ξ ρ−

= − + + + − + Θ

= + − + Θ  
Taking the inner product of Equation (4.3) with ms u= ∇ , we receive that 

( )
( )( )

2 2 22 2

1 2

1 d 1 d
2 d 2 d

, ,

pk k m k m k
t tp

k
t

M u
t t
h h

β+ +∇ Θ + ∇ ∇ Θ + ∇ Θ

= + −∆ Θ
      (4.4) 

( )( ) ( )

( ) ( )

( ) ( )

2
1 1

2 22
7 2

2 228 10 10

1 1

22 42 28 9

1

,

22 2

,
2 2 2

k m k m m k
t t

m k
t

m m k k
t

k m k
tk m

m k m k
t m k

h N u u

C N u u

N s u

C C C

C C
u

ξ

ξ

λ λ

β
βλ

+ +
∞

+
∞

+
∞

+

+ +
+

−∆ Θ ≤ ∇ ∆ ∇ Θ

′+ ∇ −∆ Θ

+ −∆ ∇ Θ ∇ Θ

 
≤ + ∇ Θ + ∇ Θ 
 

 
+ ∇ Θ + + ∇ 

 

     (4.5) 

( )( )
( ) ( )

2

21
4

4 2 22 211 12 11 12
4 2

1 1 1

,

1 1

.
22 2 2

k
t

k k k
t t

m k m k k
tm m k

h

u u

C C C Cu

ρρρ ρ ξ ρ

λ λ λ

−

∞ ∞

+ +

−∆ Θ

≤ + ∇ Θ + + ∇ Θ ∇ Θ

 
= ∇ + ∇ Θ + + ∇ Θ 

 

      (4.6) 

According to (4.4)-(4.6), we obtain 

( )2 2 22 2

2 228 11 10 12
10 12 2

1 1 1

2 429 11
8 4

1 1

d
d

.

k m k m k
t t

k m k
tk m m

m k
m k m

t
C C C CC C

C CC u

µ β

λ λ λ

βλ λ

+ +

+

+
+

∇ Θ + ∇ Θ + ∇ Θ

   +
≤ + + ∇ Θ + + ∇ Θ   
   
 

+ + + ∇ 
   

Let 8 11 10 12
4 10 12 2

1 1 1

max ,k m m

C C C CC Cα
λ µλ µλ

 +
= + + + 

 
, we receive 

( ) ( )2 2 2 2 42 2 2
4 13

d .
d

k m k k m k m k
t t C u

t
µ α µ+ + +∇ Θ + ∇ Θ ≤ ∇ Θ + ∇ Θ + ∇  (4.7) 

By using the differential Gronwall’s inequality, we have 

( )15
42 2 T2

14e , .
k

C tk m k
t

E
Cµ ξ η+∇ Θ + ∇ Θ ≤

 

According to the Lipschitz property of ( )S t , as ( )
2T, 0

kE
ξ η → , we obtain 
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( ) ( ) ( )( )

( )
( )15

2

0 0 2T
142T

,
e , 0.

,

k

k

k

E C t

E

E

S t S t G t
C

ϕ ϕ ξ η
ξ η

ξ η

− −
≤ →

 

That means ( )S t  is uniformly differentiable on kE .   
Theorem 4. Under the conditions of Theorem 3, the family of global attractor 

kA  of the initial boundary value problem (1.1) have the finite Hausdorff dimen-

sion and Fractal dimension, and ( ) ( ) 3,
2 2H k F k
N Nd A d A< < . 

Proof. In order to estimate the dimension of the family of global attractor kA , 
we rewrite the initial boundary value problem as a first-order evolution equation 

( ) ( ) ,t g FεΨ + Λ Ψ + Ψ = Ψ  

where ( ) ( )TT, , tu v u u uεΨ = = + , ( ) ( )T
0,g u uρΨ = , ( ) ( )( )T

0,F f xΨ = , 

( )( )( ) ( )2 22 .p m mm
p

I I

M u I Iε

ε

εβ ε β ε

− 
 Λ =  ∇ − −∆ + −∆ − 
   

Further, let ( ) ( ) ( )tL F gεΨ = Ψ = Ψ −Λ Ψ − Ψ , where : k kL E E→  is Fre-
chet differential. 

Similarly, we rewrite the linear Equation (4.1) as 

( ) 0,tP P g Pε φ′+ Λ + =                     (4.8) 

where ( )T, tP U U Uε= + , ( )t tP L= Ψ , ( ) ( )( )T
0, 1g P u Uρφ ρ′ = + , U is the 

solution of Equation (4.1), 

( )( )( ) ( )2 22 ,p m mm
p

I I

M u I D Iε

ε

εβ ε β ε

− 
 Λ =
 ∇ − −∆ + + −∆ − 
   

( )( ) ( )2 .
p p mm m m
p p

D U M u u U u
′

′⋅ = ∇ ∇ ∇ −∆
 

For every fixed ( )0 0, ku v E∈ , assume that ( ) ( ) ( )1 2, , , NU t U t U t  are N so-

lutions to Equation (4.8). The initial value ( ) ( ) ( )1 1 2 20 , 0 , , 0N NU U Uξ ξ ξ= = = , 

where ( )1,2, ,i kE i Nξ ∈ =  . 

Then 

( ) ( ) ( )

( ) ( )( )

2
1 2

2
1 2

d
d

2 0,

k

k

N E

t N N E

U t U t U t
t

tr L Q t ξ ξ ξ

∧

∧

∧ ∧ ∧

− Ψ ⋅ ∧ ∧ ∧ =





 

where ∧  represents the cross product, tr represents the trace of the operator, 

NQ  represents the orthogonal projection from kE  to  
( ) ( ) ( ){ }1 2, , , Nspan U t U t U t . 

According to uniform Gronwall’s inequality, we obtain 
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( ) ( ) ( )

( )( ) ( )( )
2

1 2

2
1 2 0

exp d .

k

k

N E

t
N t NE

U t U t U t

trL Qξ ξ ξ τ τ τ

∧

∧

∧ ∧ ∧

≤ ∧ ∧ ∧ Ψ ⋅∫





        (4.9) 

For arbitrarily given time τ , let ( ) ( ) ( )( ) ( )T
, 1, 2, ,j j j j Nω τ ξ τ η τ= =   are 

the orthogonal projection of ( ) ( ) ( ){ }1 2, , , Nspan U t U t U t . Then, we have 

2 22 1.m k k
j jξ η+∇ + ∇ =                   (4.10) 

Define the inner production on kE  as  
( ) ( )( ) ( ) ( )2 2, , , , ,m k m k k kς η ς η ς ς η η+ += ∇ ∇ + ∇ ∇ . 
According to the above conditions, we receive 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1

,

, ,

k

k

N

t N t N j j Ej

N

t j j Ej

trL Q L Q

L

τ τ τ τ ω τ ω τ

τ ω τ ω τ

=

=

Ψ ⋅ = Ψ ⋅

= Ψ

∑

∑
    (4.11) 

where 
( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( )
, ,

, ,
k k

t j j t j jE E

j j j j

L L

gε

τ ω τ ω τ τ ω τ ω τ

ω ω φ ω ω

Ψ = Ψ

′= − ∧ −
. 

( ) ( ) ( )(
( ) ) ( )

( )( )( )

( ) ( )
( ) ( )

2 2

2

22 2 2

2 22 2

2 2 2
2 21 162

2
16

, ,

, ,

1 ,

, ,

1 1
2 2

2
2

p mm
j j j j j j jp

m
j j j j

pm k m m k m k
j j jp

k k m k k k k
j j j j j j

m
m k k

j j

M u D

M u

D

C

C

εω ω εξ η εβ ξ ε ξ ξ

β η εη ξ η

ε ξ εβ ξ η

ε ξ η β η ε ξ ξ η

ε β β λ ε
ε ξ η

ε ε

+ + +

+

+

∧ = − ∇ − −∆ + + ⋅


+ −∆ − 


= ∇ + ∇ − − ∇ ∇

+ ∇ ∇ + ∇ − ∇ + ∇ ⋅ ∇

 − + − −
≥ − ∇ + ∇  
 

+ +
− ∇

2
,k

jξ

 (4.12) 

( )( ) ( ) ( )( )
2 2

17

, 0, , ,

.

j j j j j

k k
j j

g u

u C

ρ

ρ

φ ω ω ρ η ξ η

ρ η η
∞

′ =

≥ − ∇ ≥ − ∇
          (4.13) 

According to (4.10)-(4.13), let  

( ) ( )2 2 2
1 16

17

1 1
min ,

2 2

m C
C

ε β β λ ε
δ ε

 − + − − = − − 
  

, 
2

162
2

Cε ε
γ

+ +
= , we ob-

tain 

( )( ) ( ) ( )( ) 2

1 1
, .

k

N N
k

t j j jEj j
L Nτ ω τ ω τ δ γ ξ

= =

Ψ ≤ − + ∇∑ ∑        (4.14) 

For almost all t, we have 
2 1

2
2

1 1
,

mN N
k m

j j
j j

ξ λ
−

−

= =

∇ ≤∑ ∑
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where jλ  is the eigenvalue of ( )2m−∆ . Thus 

( )( ) ( )( )
2 1

2

1
.

mN
m

t N j
j

tr L Q Nτ τ δ γ λ
−

−

=

Ψ ⋅ ≤ − + ∑
 

Suppose 

( ) ( )( ) ( )
0

00

1sup inf d ,
j k

t
N t NEA

q t trL S Q
tξ

τ τ τ
∈Ψ ∈

 = Ψ ⋅ 
 ∫

 
( )lim .N Nt

q q t
→∞

=
 

Due to (4.14), we have 
2 1
2

1
.

mN
m

N j
j

q Nδ γ λ
−

−

=

≤ − + ∑
 

Therefore, the Lyapunov exponents 1 2, , , Nσ σ σ  of 0kB  are uniformly 
bounded, moreover 

2 1
2

1 2
1

,
mn
m

N j
j

Nσ σ σ δ γ λ
−

−

=

+ + + ≤ − + ∑

 
such that 

( )
2 1 2 1

2 2

1 1
,

3

m mn N
m m

j j j
j j

Nq N δδ γ λ γ λ
− −

+
= =

≤ − + ≤ ≤ −∑ ∑
 

2 1
2

1

21 .
3

mN
m

N j
j

Nq N
N
γ δδ λ
δ

−

=

 
≤ − − ≤ −  

 
∑

 
Further, 

( )
1

1max .
2

j

j N
N

q

q
+

≤ ≤
≤

 

Thus, we obtain ( ) ( ) 3,
2 2H k F k
N Nd A d A< < .   
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