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Abstract 
In Riemann’s prime distribution formula, there is a key Riemann ladder 
function. This is the basis for Riemann to study the distribution of prime 
numbers. But the calculation of Riemann’s ladder function is very compli-
cated. According to the definition of Riemannian ladder function, we greatly 
improve the Riemannian ladder function, obtain new ladder function and 
improved Riemannian prime distribution formula, and prove the improved 
Riemannian prime distribution formula. We use the improved Riemannian 
prime distribution formula and merdens theorem to obtain a strong prime 
theorem. 
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1. Introduction 

The distribution of prime numbers is a difficult problem in number theory. The 
proof of prime theorem attracts many scholars and puzzles many wise people. 
Mathematicians have proved thousands of theorems on the premise of Riemann 
conjecture. 

In 1737, the Swiss mathematician Leonhard Euler published a formula: 

( ) 1

1
1 , 1,s s

n p
n p s

∞ −− −

=

= − >∑ ∏                   (1.1) 

Here (1.1) is called Euler product formula. Where n is an integer, p is a prime 
and s is a real number. 

Euler studied this formula. Let s = 1. For large x, Euler obtains an asymptotic 
formula 

1 ~ log log .
p x

x
p≤

∑                        (1.2) 
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From 1792 to 1793, Gauss, a German mathematician, studied the number of 
primes in 1000 adjacent integers around x. he found that for large x, the “average 
distribution density” of primes should be 1/logx, which is shown as follows [1] 
[2] [3] [4] [5]: 

( ) ( )1000 1~ ,
1000 log

x x
x

π π− −
 

where, the number of primes not exceeding x is π(x). General expression 

( ) ( ) 1~ , ,
log

x x r
r x

r x
π π− −

                  (1.3) 

Here (1.3) is Gauss’s guess. Represents the number of primes in r adjacent in-
tegers near x. 

For example 
Let x = 1238, r = 238, by (1.3) get 

( ) ( )1238 1238 238 203 168 10.14705 ~ 0.14042,
238 238 log1238

π π− − −
= = =  

According to (1.3), we can divide x into n parts. In this way, we can get π(x). 
Let integern, x = nr, by (1.3) can get 

( ) ( ) ( )
~ ,

log
rnr nr r
nr

π π− −                   (1.4) 

Set up 1,2,3, ,n a=  , Substituting (1.4) get 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 0 ~ ,
log

2, 2 ~ ,
log 2

3, 3 2 ~ ,
log 3

, ~ ,
log

rn r
r
rn r r

r
rn r r

r

rn a ar ar r
ar

π π

π π

π π

π π

= −

= −

= −

= − −



 

Add each 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 2 3 2

,
log log 2 log 3 log

r r r r r ar ar r
r r r rar

r r r ar

π π π π π π π π

π

− + − + − + + − −

= + + + +





 

Let x = ar, get 

( ) ( )1

1~ , ,
log

a

n

xx r a
nr r

π
=

=∑                    (1.5) 

Here (1.5) is a prime theorem without remainder. It is equal to the prime 
theorem π(x) ~ Lix. 

For example 
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Let x = 64, r = 16, a = x/r = 4, by (1.6) calculation, 

( ) 1 1 1 1~ 16 ~ 18,
log16 log32 log 48 log 64

xπ
 

+ + + 
 

 

actual ( )64 18π = . 
In this paper, we improve the Riemann ladder function and prove a strong 

prime number theorem by using the metens theorem [3]. 

( ) ( ) ( ) ( )1 2 log , ,x s x O x x xπ = + →∞              (1.6) 

( ) ( ) ( )
1

1 log log 2 log log 2 , 2,
a

n
s x x x n a x

=

= + − =∑  

Before proving (1.6), we use a simple method to prove (1.3). Obviously, if we 
prove (1.3), we will prove (1.5). 

2. The Elementary Proof of Prime Number Theorem 

It is difficult to prove the prime theorem. It is especially difficult to prove the 
prime theorem in a simple way. We prove the prime theorem (1.3) by using the 
simple method according to Euler’s asymptotic formula 

Prove 
Let the integer r, prime p, x − r ≤ p ≤ x obviously [6] 

( ) ( ) ( )1 1 ,
x r p x x r p x

x r x x r x
p p

π π
− ≤ ≤ − ≤ ≤

− ≤ − − ≤∑ ∑            (2.1) 

For example 
Let x = 16, r = 12, x − r = 4, 4 ≤ p ≤ 16, π(16) − π(4) = 4, by (2.1) get 

( ) ( )1 1 1 1 1 1 1 14 16 4 16 ,
5 7 11 13 5 7 11 13

π π   + + + < − < + + +   
   

 

By (2.1) can ge 

( ) ( ) ( )1 11 ,
x r p x x r p x

x r x x x r x
p p

π π
− ≤ ≤ − ≤ ≤

− ≤ − − ≤∑ ∑          (2.2) 

Let 1 2r x= , get 

( )lim 1 1,
x

r x
→∞

− =                          (2.3) 

By (2.2) and (2.3) can get: 

( ) ( ) 1~ ,
x r p x

x x r x
p

π π
− ≤ ≤

− − ∑                    (2.4) 

According to Euler’s asymptotic Formula (1.2), get 

( ) ( )

( )( ) ( )

1 log~ log log log log log
log

log loglog log ,
log log 1log 1

x r p x

xx x r
p x r

x x
x r xx r x

− ≤ ≤

− − =
−

= =
+ −−

∑
 

From this, we get 
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( ) ( ) ( )2 3

1 log~ log ,
1 1 1 1log

2 3

x r p x

k

x
p

x
x r x r x r k x r

− ≤ ≤  
 − + + + +
 
 

∑


 

Take main item 1
x r

, get: 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2 2 3 3

1 log 1 1~ log log log 1
1 1 loglog 1

log
1 1 1 1 ,
log 2 log 3 log log

x r p x

k k

x
p x r xx

x r x r x

x r x x r x x r x k x r x

−

− ≤ ≤

 
= = −  

 − −

= + + + +

∑



 

Take the main item again 
( )

1
logx r x

, From this, we get 

1 ~ ,
logx r p x

r
p x x− ≤ ≤

∑                        (2.5) 

By (2.5) Substituting (2.4), 

( ) ( ) ( )~ , ,
log

rx x r x
x

π π− − →∞  

This proves (1.3). 
Now, let’s look at the mean of the prime p, by (x − r) ≤ p ≤ x can get 

( )
2,

2
x r x

p x r
− +

≈ = −  

According to (2.4), we change x into an average (x − r/2) get 

( ) ( ) ( ) 1~ 2 ,
x r p x

x x r x r
p

π π
− ≤ ≤

− − − ∑               (2.6) 

For example x = 271, r = 34, 237 ≤ p ≤ 271, prime number 241, 251, 257, 263, 
By (2.6) get 

( ) ( ) ( )271 237 ~ 254 1 241 1 251 1 257 1 263 4.02,π π− + + + =  

actual π(271) − π(237) = 4. 
We divide x into n parts, n is a positive integer. 
Let x = 2n, r = 2, can get (x − r/2) = (2n − 1), by (2.6) we get 

( ) ( ) ( )
2 2 2

12 2 2 2 1 ,
n p n

n n n
p

π π
− ≤ ≤

− − = − ∑  

Therefore, we can improve the Riemann ladder function. 

3. Improved Riemann Ladder Function 

In 1859, German mathematician Riemann published a formula [2]: 

( )
( ) ( )1

1
,

nk

n

n J x
x

n

µ
π

=

= ∑                     (3.1) 

Here (3.1) is Riemann’s prime distribution formula [4]. Where J(x1/n) is called 
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Riemannian ladder function [7]. The calculation is very complicated. 
According to the definition of Riemann ladder function: 

( ) ( )
( ) ( ) ( )1 2 1 3 1

log, ,
2 3 log 2

kx x x xJ x x k
k

π π π
π= + + + + =  

A new ladder function is obtained by improving the ladder function 

( )
0 2 2 4 4 6 2 2 2

1 1 1 13 5 ,
p p p n p n

J x p
p p p p< ≤ < ≤ < ≤ − < ≤

= + + + +∑ ∑ ∑ ∑  

Let x ≥ 2, Integer n, prime p, get [4] 

( ) ( ) 1 2,x J xπ = +                       (3.2) 

( ) ( )
1 2 2 2

12 1 , 2,
a

n n p n
J x n a x

p= − < ≤

= − =∑ ∑  

Here (3.2) is an improved Riemannian prime distribution formula. It is strict-
ly equal to π(x). 

For example x = 16, a = 16/2 = 8, n = 1, 2, 3, 4, 5, 6, 7, 8. 
According to (3.2), a prime number is crossed each time, and the calculation 

is as follows: 

( ) 1 1 1 1 1 1 116 1 3 5 7 11 13 6,
2 3 5 7 11 12 2

π = × + × + × + × + × + × + =  

In fact, π(16) = 6, it is now prove that (3.2). 
Prove 
If there is a prime p between 2n − 2 and 2n, it must be 

2 1,p n= −                         (3.3) 

Set up 1,2,3, ,n a=  , by (3.2) and (3.3) get, 

( )
0 2 2 4 4 6 2 2 2

1 1 1 1 1 13 5 ,
2 2p p p a p a

J x p
p p p p< ≤ < ≤ < ≤ − < ≤

+ = + + + + +∑ ∑ ∑ ∑    (3.4) 

According to (3.4), we can get the 

( ) ( )1 1 1 1 1 11 3 5 ,
2 2 3 5 2

J x p x
p

π+ = × + × + × + + × + =        (3.5) 

By (3.5) get 

( ) ( )
1 2 2 2

1 12 1 ,
2

a

n n p n
x n

p
π

= − < ≤

= − +∑ ∑                 (3.6) 

Confirm (3.2) certification. 

4. Merdens’ Theorem 

In 1874, the mathematician Merdens proved that [7]: 

1lim log log ,
x p x

x M
p→∞ ≤

− =∑                     (4.1) 

Here (4.1) is called: merdens theorem [8]. Where the mertensian constant 
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0.2614972128476427837554268386086958 ,M =   

Let the coefficient c (x) be obtained from (4.1) 

( )1 log log ,
p x

x c x
p≤

− =∑                     (4.2) 

For the convenience of using (4.2), we transform (3.2). 
For example x = 8, a = 8/2 = 4, by (3.2) can get 

( )
0 2 2 4 4 6 6 8

1 1 1 18 3 5 7 ,
p p p p

J
p p p p< ≤ < ≤ < ≤ < ≤

= + + +∑ ∑ ∑ ∑  

Among 

0 2 2

2 4 4 2

4 6 6 4

6 8 8 6

1 1 ,

1 1 13 3 3 ,

1 1 15 5 5 ,

1 1 17 7 7 ,

p p

p p p

p p p

p p p

p p

p p p

p p p

p p p

< ≤ ≤

< ≤ ≤ ≤

< ≤ ≤ ≤

< ≤ ≤ ≤

=

= −

= −

= −

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

From the above 

( )
2 4 2 6 4 8 6

8 2 4 6

8 2 4 6 8 8

8 2 4 6 8

1 1 1 1 1 1 18 3 3 5 5 7 7

1 1 1 17 2 2 2

1 1 1 1 1 17 2 2 2 2 2

1 1 1 1 19 2 ,

p p p p p p p

p p p p

p p p p p p

p p p p p

J
p p p p p p p

p p p p

p p p p p p

p p p p p

≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

= + − + − + −

= − − −

= − − − − +

 
= − + + + 

 

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

 

Generally speaking, 

( ) ( )
2 4 6 2

1 1 1 1 11 2 , 2,
p x p p p p a

J x x a x
p p p p p≤ ≤ ≤ ≤ ≤

 
= + − + + + + = 

 
∑ ∑ ∑ ∑ ∑    (4.3) 

Replace (4.3) with (4.2), where 

( )1 log log ,
p x

x c x
p≤

= +∑  

And 

( ) ( ) ( ) ( )

( ) ( )

2 4 6 2

1 1

1 1 1 1

log log 2 2 log log 4 4 log log 6 6 log log

log log 2 2 ,

p p p p a

a a

n n

p p p p
c c c x c x

n c n

≤ ≤ ≤ ≤

= =

+ + + +

= + + + + + + + +

= +

∑ ∑ ∑ ∑

∑ ∑



  

It is obtained by substituting (4.3) above 
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( ) ( ) ( )( ) ( ) ( )
1 1

1 log log 2 log log 2 2 2 ,
a a

n n
J x x x c x n n

= =

= + + − −∑ ∑       (4.4) 

Namely  

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 log log 2 log log 2 1 2 2 ,
a a

n n
J x x x n x c x n

= =

= + − + + −∑ ∑    (4.5) 

Let a = x/2, s(x) denote the logarithmic part, which is obtained by substituting 
(3.2) above 

( ) ( ) ( ) ( ) ( )
2

1

11 2 2 ,
2

x

n
x s x x c x c nπ

=

= + + − +∑             (4.6) 

Among  

( ) ( ) ( )
2

1
1 log log 2 log log 2 ,

x

n
s x x x n

=

= + − ∑  

Here (4.6) is strictly equal to π(x). 
For example x = 8, x/2 = 4, by (4.6) get 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )( )

4 4

1 1

18 9log log8 2 log log 2 9 8 2 2
2

9log log8 2 log log 2 log log 4 log log 6 log log8

9 8 2 2 4 6 8 0.5,

n n
n c c n

c c c c c

π
= =

= − + − +

= − + + +

+ − + + + +

∑ ∑
 

By (4.2) calculation coefficient 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

4

6

8

2 1 log log 2 0.8665129

4 1 ) log log 4 0.50669907

6 1 ) log log 6 0.45013525

8 1 log log8 0.4440911

p

p

p

p

c p

c p

c p

c p

≤

≤

≤

≤

= − =

= − =

= − =

= − =

∑
∑
∑
∑









 

Get  

( ) ( ) ( ) ( )
( )

8 9 0.73209937 2 1.275418 9 0.4440911

2 0.8665129 0.50669907 0.4501352 0.4440911
4.000005 4,

π = − +

− + + +

= =

 

Actual π(8) = 4. 
By (4.6) we can prove the prime theorem with remainder. 

5. Prime Theorem with Remainder 

The remainder estimation of prime number theorem is very complicated. The 
key is to use the mertensian constant to calculate the coefficient. 

Let’s look at the remainder of (4.6). Among 

( )
2

1
2 2 ,

x

n
c n

=
∑  

Let even numbers y, x > y, according to (3.2) a = x/2, can get, 

( )2 2 2,x y x y= + −  
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From this we get 

( ) ( ) ( )
( ) 22 2

1 1 1
2 2 2 2 2 2 ,

x yx y

n n n
c n c n c y n

−

= = =

= + +∑ ∑ ∑  

Substituting (4.6),  

( ) ( ) ( ) ( ) ( )
( )

( )
2 2

1 1

11 2 2 2 2 ,
2

x y y

n n
x s x x c x c y n c nπ

−

= =

= + + − + + +∑ ∑     (5.1) 

where s(x) is the main term followed by the remainder. Now let’s look at the re-
mainder of (5.1). Among  

( ) ( ) ( )
( ) 2

1
1 2 2 ,

x y

n
x c x c y n

−

=

+ − +∑                   (5.2) 

Here (5.2) is the key remainder. Let’s see c(x) and c(y + 2n). 
In order to let c(y + 2n) approach M, let y = 2[x1/2]. According to (4.1) and 

(4.2), x tends to infinity, and we obtain 

( )
( )2 ,

c x M

c y n M

→

+ →
 

By (5.2) get  

( ) ( ) ( )
( )

( )
( )

( ) ( )

2 2

1 1
1 2 2 1 2

1 ,

x y x y

n n
x c x c y n x M M

x M x y M

− −

= =

+ − + → + −

= + − −

∑ ∑  

Namely 

( ) ( ) ( )
( )

( )
2

1
1 2 2 1 ,

x y

n
x c x c y n y M

−

=

+ − + → +∑              (5.3) 

Let’s look at a very small x.  
For example x = 16, y = 4, (x − y)/2 = 6, Substitute (5.3) and calculate ac-

cording to (4.2) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
(

)
( )

6

1
16 1 16 2 4 2

16 1 16 2 6 8 10 12 14 16

17 0.3242412 2 0.45013 0.44409 0.342158

0.3568 0.373601 0.3242

5.5121 2 2.2911 0.929918,

n
c c n

c c c c c c c
=

+ − +

= + − + + + + +

= × − + +

+ + +

= − =

∑

 

By (5.3) get 

( )1 5 0.2614972 1.3074861,y M+ = × ≈  

1.3074861 near 0.929918. 
x The bigger, the closer (y + 1)M. 
Now, let’s look at the scope of the remainder. 
By (5.3) Substitute (5.1), 

( ) ( ) ( ) ( )
2

1

11 2 2 ,
2

y

n
x s x y M c nπ

=

→ + + − +∑             (5.4) 
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For the y of sufficient size, it is obvious that the estimation is 

( )1 log ,M y M y x< + <  

Substitute (5.4) get 

( ) ( ) ( )

( ) ( ) ( )

2

1
2

1

2 2 ,

log 2 2 ,

y

n
y

n

x s x M c n

x s x y x c n

π

π

=

=

> + −

< + −

∑

∑
                (5.5) 

Let’s look at the coefficient, 

( ) ( ) ( ) ( ) ( )
2

1
2 2 2 2 2 4 2 6 2 ,

y

n
c n c c c c y

=

= + + + +∑   

From (4.1) and (4.2) Confirm M/2 < c(2n) < 1, obviously 

( )
2 2 2

1 1 1
2 2 2 2 1,

2

y y y

n n n

M c n
= = =

< <∑ ∑ ∑  

Get 

( )
2

1
2 2 ,

2

y

n

yM c n y
=

< <∑                       (5.6) 

By (5.6) Substitute (5.5) get 

( ) ( ) ( )

( ) ( ) ( )

log ,

log log ,
2

x s x M y s x y x
yMx s x y x s x y x

π

π

> + − > −

< + − < +
            (5.7) 

Let y = 2[x1/2], by (5.7) can get  

( ) ( ) ( )1 2 log ,x s x O x xπ = +                   (5.8) 

By (5.8) Confirm, The prime theorem (1.6) is proved. 

6. Conclusions 

Previously, we discussed the Euler asymptotic formula 
1 ~ log log .

p x
x

p≤
∑                        (6.1) 

From (6.2), we prove the prime theorem in a simple way 

( ) ( )1

1~ ,
log

x r

n
x r

nr
π

=
∑                       (6.2) 

Here (6.2) is a prime theorem without remainder. 
We also discuss the distribution formula of prime number of Riemann 

( )
( ) ( )1

1
,

na

n

n J x
x

n

µ
π

=

= ∑  

We make a great improvement on the distribution formula of Riemannian 
prime numbers 

( ) ( )
1 2 2 2

1 12 1 ,
2

a

n n p n
x n

p
π

= − < ≤

= − +∑ ∑                (6.3) 

https://doi.org/10.4236/jamp.2021.94042


D. Liu 
 

 

DOI: 10.4236/jamp.2021.94042 593 Journal of Applied Mathematics and Physics 
 

This is a function strictly equal to π(x). In this way, we prove that Riemann’s 
conjecture is correct in principle. 

According to the (6.3) theorem, we prove the strong prime number theorem 

( ) ( ) ( )1 2 log ,x s x O x xπ = +                    (6.4) 

Here (6.6) is a prime theorem with remainder. Where s(x) and Lix are equal. 
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