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Abstract 

This paper investigates the thermal energy effect on electron auto-localization. 
The polaron characteristics (self-action potential and effective mass) are ob-
served to be expressed via the renormalized electron-phonon coupling con-
stant tailored by the thermal energy. Low temperatures are observed to favour 
auto-localization of the carrier while high temperatures favour polaron un-
dressing and subsequent quenching of the quantum behaviour thereby ren-
dering the system classical. The critical (transition) temperature cτ  expressed 
via the critical coupling constant Cϒ  is found to be the separating boundary 
between the quantum and the classical phases. Therefore, the polaron under-
goes phase transition (from self-tapped to quasi free states) when the temper-
ature of the medium is enhanced. 
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1. Introduction 

Self-trapping relates local perturbation-like defects, impurity as well as regions 
of high affinity in amorphous solids and has been observed for electrons, holes, 
excitons, muons as well as muonium [1] [2] [3]. The phenomenon has also been 
observed for conduction electrons producing a local distortion and polarization 
of the lattice. Various experimental results demonstrate anomalous manifesta-

How to cite this paper: Fokou, I.F., Jipdi, 
M.N., Tchoffo, M. and Fai, L.C. (2021) Elec-
tron Auto-Localization Tailored by Its Ther-
mal Energy: Dynamic Matrix Approach 
(DMA). Journal of Applied Mathematics 
and Physics, 9, 515-527. 
https://doi.org/10.4236/jamp.2021.93036 
 
Received: February 6, 2021 
Accepted: March 28, 2021 
Published: March 31, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.93036
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.93036
http://creativecommons.org/licenses/by/4.0/


I. F. Fokou et al. 
 

 

DOI: 10.4236/jamp.2021.93036 516 Journal of Applied Mathematics and Physics 
 

tion of the self-trapping effect in bulk crystals [4] however, theoretical investiga-
tions are still going on in understanding such strange manifest. It is well known 
that a conduction electron (or hole) together with its self-induced polarization in 
a polar semiconductor or an ionic crystal results in a quasi-particle called a pola-
ron. The physical property of the polaron differs from those of the band-electron 
and in particular is characterized by its binding or self-energy, effective mass and 
by its response to external electric and magnetic fields. The general polaron 
concept was proposed by L.D. Landau [5] [6] and subsequently Landau and So-
lomon Pekar [7] [8] [9] as the auto-localization of an electron in an ideal crystal 
as a result of a lattice deformation by the field induced by the electron where the 
local states are assumed to be immobile. L.D. Landau [5] [6] investigated the po-
laron characteristics (self-energy and effective mass) in what Fröhlich [10] 
demonstrated to correspond an adiabatic or strong-coupling regime. 

The polaron concept is of interest, not only for its description of the particular 
physical properties of charge carriers in polarizable solids but also due to its in-
teresting field theoretical model consisting of a fermion interacting with a scalar 
bosonic field. Many studies have been devoted to electron auto-localization that 
is achieved when the polaron ground-state energy equals that of the quasi-free 
state [11] [12] [13] [14] [15] with the signature being the critical coupling con-
stant above which the electron is self-trapped. Recent investigations show that 
polaron characteristics may decrease with temperature [16] [17] [18] [19] and a 
transition from a quantum phase to classical phase predicted [19]. One of the 
prominent results is seen in ref [20] where the authors investigate experimental-
ly the mechanisms of energy transfer in Mn2+ doped ethylammonium lead bro-
mide. It is observed that for large temperature, photoluminescence is dominated 
by emission from Mn2+, with a complete suppression of band edge emission and 
self-trapped exciton emission. However, for low temperature in addition to Mn2+ 
emission, photoluminescence is observed from band edge and self-trapped exci-
ton emission; this potentially confirms the existence of self-trapping at low tem-
perature. 

Nevertheless, many authors strongly believe that, for a large class of (genera-
lized Fröhlich) models no such transition exists. More precisely, the dimensio-
nality of space has no qualitative influence on phase transition [21]. From 
another perspective, it is seen that, the phase transition from the mobile (qua-
si-free) to the localized polaron state, found in the literature is a feature of ap-
proximation rather than an intrinsic property of the Fröhlich Hamiltonian [22]. 
However, the intrinsic modification in the parameter of the system can produce 
such a transition. Such disturbance can be produced by external field influence, 
thermal energy… In ref [23], the self-trapping energy of a magnetopolaron in a 
polar-crystal slab is investigated; it is observed that, the temperature dependence 
of the self-trapping energies is strongly dependent upon the strength of the 
magnetic field. 

Therefore, polaron self-energy and effective mass in a polar crystal is strongly 
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related to external field as well as thermal energy and so, the description of the 
polaron dynamics under an arbitrary temperature is of great interest. Several 
phenomena like high temperature superconductivity [24] are suspected to be re-
lated to bipolarons (the stable pair of coupled polarons). Many studies are de-
voted to the behaviours of these carriers under thermal energy with the conduc-
tivity and mobility being quantities of primary interest [25] [26]. It is observed 
that the quasi-particles exist both in self-trapped (quantum phase) and qua-
si-free state (classical phase); however, the limit separating quantum phase and 
classical phase is not determined. 

This paper aims to demonstrate theoretically that polaron self-trapping transi-
tion can be induced by thermal energy and derive the critical temperature sepa-
rating the quantum and the classical phase. The work is organized as follows: 
section II applies the Dynamic Matrix Approach (DMA) in the derivation of the 
polaron energy momentum relation for arbitrary thermal energy in the strong 
coupling regime; Section III focuses on the results and discussions of the polaron 
characteristics at low and high temperatures. Section IV, is the summary and 
conclusion. 

2. Energy-Momentum (E-P) Relation for an Arbitrary  
Temperature 

We consider the polaron due to the interaction of the electron (or hole) with the 
long-wavelength optical phonons described by the Fröhlich field-theoretical 
Hamiltonian: 

( )
2

† †e
2

iQr
LO Q Q Q Q Q

Q Q

PH b b V b b
m

ω −= + + +∑ ∑               (1) 

We apply the Dynamic matrix approach [27] [28], the so-called Jipdi-Fai-Tchoffo 
(JFT) approach which is an all coupling approach to investigate the polaron 
problem. The particle momentum and the coupling strength are tailored by the 
lattice distortions where the lattice polarization is allowed to relax or adapt to 
the electronic distribution: 

Qfρ→ +P P P . 

Here, the fluctuation strength ρ  tailors the quantum and classical beha-
viours of the carrier respectively for 0ρ ≠  and 0ρ = . QfP  is the momentum 
fluctuation in the local frame while P, the total momentum satisfying the fol-
lowing Heisenberg equation of motion: 
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with the relevant phonon distribution function: 
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where DT  is the Debye temperature of the lattice. Considering 
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For simplicity, we consider that ( ),Q QτΦ ≡ Φr  then follows the Hamiltonian: 
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Here, ε  is the dimension of the system and Qγ  a variational parameter. 
Letting 
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then from refs [27] [28] [29] [30] and Equation (9), we obtain the following 

https://doi.org/10.4236/jamp.2021.93036


I. F. Fokou et al. 
 

 

DOI: 10.4236/jamp.2021.93036 519 Journal of Applied Mathematics and Physics 
 

transition matrix elements: 
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Averaging the transision matrix by an arbitrary phonon state Qn , then we 
obtain the polaron energy: 
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Equation (11) give the energy momentum (E-P) relation of a polaron for an ar-
bitrary thermal energy. The self-action potential is obtained at the minimum of 
the E-P curve while the effective mass is the inverse of the second derivative of 
that relation which respect to the momentum and measured at the energy min-
imum. The self-action potential energy of the system is therefore 
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The weak coupling result is obtained for 0ρ =  while the strong coupling 
result, for 0ρ ≠ . The thermal energy is found to renormalize the electron- 
phonon coupling constant vϒ  as 

2
2 2
eff tanh

2
v D
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S T
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ϒ = = ϒ                     (13) 

For limiting values of low and high temperatures then we have respectively 
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The renormalized electron-phonon coupling constant is observed to be tai-
lored by the thermal energy where low temperatures favour auto-localization of 
the carrier while high temperatures favour polaron undressing and subsequent 

https://doi.org/10.4236/jamp.2021.93036


I. F. Fokou et al. 
 

 

DOI: 10.4236/jamp.2021.93036 520 Journal of Applied Mathematics and Physics 
 

quenching of the quantum behaviour rendering the system obey classical laws. 

3. Results and Discussion: Low and High Temperature  
Regime 

3.1. Weak-Coupling Limits 

Here, we consider self-action potential energy in (12) for the fluctuation strength 
0ρ =  and extremise the resultant expression with respect to the variational pa-

rameter Qγ  then this yields for arbitrary thermal energy, the polaron self-action 
potential energy 

1
2

efftanh
2v

D
LO v LO

TU
T

ω ωϒ = − ϒ = − ϒ                (14) 

and effective mass 
3

eff2
0 01 tanh 1 tanh

6 2 6 2
v D DT TM m m

T T
 ϒ ϒ = + = +       

          (15) 

where the renormalized electron-phonon coupling constant is: 
1
2

eff tanh
2

D
v

T
T

ϒ ≡ ϒ                        (16) 

The polaron characteristics versus thermal energy are depicted in the Figures 
(Figure 1 self-action potential and Figure 2, the effective mass). 

Figure 1 shows decrease self-energy for increase temperature and achieves the 
value zero for further temperature increase. This phenomenon is confirmed by 
Figure 2 where the effective mass decreases for increase temperature and for 
further increase temperature it achieves the value unity (value for the electron 
band mass). These results are in agreement with literature [16] [17] [18] [19]. 
The monotonic decrease of polaron characteristics with increase thermal energy 
confirms the renormalized electron-phonon coupling constant being tailored by 
the thermal energy where low temperatures favour auto-localization (quantum 
phase) of the carrier while high temperatures favour polaron undressing and 
subsequent quenching of the quantum behaviour rendering the system classical. 
The situation is well illustrated in Figure 2 where the effective mass achieves the 
quantum-phase values for low temperature and band electron mass for high 
temperature highlighting a phase transition. It is instructive to note that very 
small thermal energy is required remove the carrier in the quantum phase. From 
Figure 1 and Figure 2 we observe the critical temperature CT τ=  (phase tran-
sition temperature) above which ( cT τ ), the polaron characteristics have a 
monotonic decreases that the system loses its quantum phase and consequently a 
grip on the dynamical polarization in the phonon cloud as expected and achieves 
the classical phase with self-energy potential energy 

0Uϒ = , 

and the effective mass achieving the electron band mass 

0lim
T

M m
→+∞

=  
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Figure 1. Plot of self-energy LOU ωϒ   in units of the phonon energy versus thermal 

energy for weakly coupled system. 

 

 
Figure 2. Plot of effective mass 0M m  in units of the electron band mass versus ther-

mal energy for weakly coupled system. 
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and below which ( cT τ ), the coupling between the electron and the dynamical 
polarization in the phonon cloud grows non-perturbatively so that the 
self-action potential energy achieves the(quantum phase) value 

0
lim vT

LO

u
ω
ϒ

→
= −ϒ



 

and the effective mass 

0
0

lim 1
6

v

T

M
m→

ϒ
= + . 

The latter correspond to the Polaron characteristics in the quasi-free state. 
Therefore, by enhancing the thermal energy of a weakly coupled system , the 
Polaron characteristics decay quickly and achieve the classical phase characte-
rized by free-electron state or undress polarons. 

3.2. Strong-Coupling Limit 

Extremising the expression in (12) with respect to the variational parameter Qγ  
for low temperatures cT τ< , the polaron self-action potential energy achieves 
the form 

4
2 20.10610 erf tanh

2LO v vU βϑωϒ
  = − ϒ ϒ  

  


            (17) 

and the effective mass 
12

4 2
0 1 0.02001 erf tanh

2v vM m βϑ    = + ϒ ϒ      
           (18) 

Here, the probability integral with argument Z is defined as: 

( ) { }2
0

2erf exp d
z

z t t
π

= −∫ . 

For exceedingly low temperatures cT τ  then the polaron self-energy and ef-
fective mass achieves respectively the (quantum-phase) values 

20.10610 LO vU ωϒ = − ϒ                     (19) 

( )4
0 1 0.02001 vM m= + ϒ                    (20) 

These are respectively the polaron energy and effective mass for the 3D 
strong-coupling regimes [6] [7] [27] [31] [32] and characterizing self-trapped 
states. For high temperatures, the polaron characteristics are obtained from rela-
tions (14) and (15) respectively as 

effLOU ωϒ = − ϒ                        (21) 

eff
0 1

6
M m

ϒ = + 
 

                      (22) 

And mimics the Polaron characteristics in quasi-free states (see section 3.1). For 
exceedingly high temperatures cT τ  

00,U M mϒ = = . 

The quasi-particle achieves bare electron characteristics referring the system 
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classical (undressed polaron). The latter mimics exactly the results for the weak 
coupling regime. The plot of the polaron energy versus temperature is depicted 
on Figure 3 and the effective mass on Figure 4. 

Figure 3 depicts the variations of the self-action potential as a function of ther-
mal energy while Figure 4 depicts variations of the Polaron effective mass with 
thermal energy. The self-action as well as the effective mass shows a monotonic 
decrease with increase temperature [16] [17] [18] [19] above the critical value: 

2

22arctanh

D
c

c

v

T
τ =

 ϒ
 ϒ 

                      (23) 

Here, the Debye temperature is and the critical coupling constant characteriz-
es the value with enhanced self-trapping. This critical temperature should be the 
crossover temperature below which the coupling of the electron to the dynami-
cal polarization in the phonon cloud grows non-perturbatively. From the plot of 
the polaron energy versus the coupling constant, for exceedingly high tempera-
tures CT τ , the energy has a linear behaviour (renormalized by the hyperbol-
ic tangent function) as in the weak-coupling regime ( quasi-free states) while for 
low temperatures it has a parabolic behaviour as in the strong-coupling regime 
and imitate results observed in literature [7] [27] [31] [32] (self-tapped states). 
The effective mass has a four-power law for the low temperature regime while 
for the high temperature regime, a linear law renormalized by the hyperbolic 
tangent function of the thermal energy. 
 

 
Figure 3. Plot of self-energy LOU ωϒ   in units of the phonon energy versus thermal 

energy for strongly coupled system. 
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Figure 4. Plot of effective mass 0M m  in units of the electron band mass versus ther-

mal energy for strongly coupled system. 

 
The observation of Figure 3 and Figure 4 shows that in contrast with weakly 

coupled system, the quantum phase (self-trapping) is being kept longer. A high 
thermal energy is required to destroy the quantum phase and then produce 
phase transition. The variation of the thermal energy makes the quasi-particles 
to changes its characteristics. The quantum behaviour (self-trapping) survive for 
low temperature and quenches for high temperature (classical phase). That illu-
strate the self-trapping transition characterised by the quenching of au-
to-localisation in Polaron states. This general result has been confirmed experi-
mentally for exciton in 2

nM +  doped ethylammonium lead bromide where crit-
ical temperature above which band edge and self-trapped exciton emission are 
suppressed is estimated [20]. 

4. Conclusions 

The paper, investigates the thermal energy effect on electron auto-localization 
and finds the critical temperature Cτ  characterizing the limit below which the 
polaron is self-trapped. The polaron characteristics (self-action potential energy 
and effective mass) are observed to be expressed via the renormalized elec-
tron-phonon coupling constant tailored by the thermal energy. Low tempera-
tures are observed to favour auto-localization of the carrier while high tempera-
tures favour polaron undressing and subsequent quenching of the quantum be-
haviour thereby rendering the system classical. The critical (transition) temper-
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ature expressed via the critical coupling constant is observed to be the transition 
point between the quantum and the classical phases. This critical temperature 
should be the crossover temperature below which the coupling between the elec-
tron and the dynamical polarization in the phonon cloud grows non-perturbatively. 
So, for temperatutres greater than the critical temperature, the system has the 
tendency to lose the grip on the dynamical polarization in the phonon cloud and 
for exceedingly high temperatures, the energy has a linear behaviour (renorma-
lized by the hyperbolic tangent function) as in the weak-coupling regime while 
for low temperatures, it has a parabolic behaviour as in the strong-coupling re-
gime. The effective mass has a four-power law for the low temperature regime 
while for the high temperature, a linear law renormalized by the hyperbolic tan-
gent function of the thermal energy. 

Therefore, even though many authors predict that the Polaron do not under-
goes phase transition, it is demonstrated that, in the particular case of external 
influence (thermal energy), the electro-phonon coupling is renormalized and the 
phase transition is observed (from self-trapped to quasi-free states). 
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