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Abstract 
On the basis of analyzing the shortages of present studies on plant disease 
model for autonomous phenomenon, and considering the actual situation, 
this paper applies the joint factors of environmental change and the infectivi-
ty for latent plants into the system; therefore we deal with a non-autonomous 
plant disease model with roguing. Some sufficient conditions are established 
for extinction of diseases and permanence of the system in this paper. 
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1. Introduction 

In the real world, the phenomenon of plant virus diseases is quite widespread; a 
lot of plant diseases are closely related to people’s lives. In the Middle Ages, Eu-
ropean barley developed ergot disease. Eating barley mixed with ergot caused 
people to be psychedelic, turned black for their limbs, and gangrened. After eat-
ing sweet potato with black spot disease by livestock, it can induce asthma or 
even death in severe cases. Papaya (known as “Beneficial Fruit King”) virus dis-
ease in Guangdong Province can’t be cultivated so far. The potato in Ireland 
stopped production due to potato late blight, which caused 1.1 million people 
died of starvation, and forced 1.64 million people to flee to North America in 
1845-1846 [1]. In 1970, because of the pandemic of corn spot disease in the 
United States, the yield was reduced by fifteen percent, which was about 16.5 bil-
lion kg, and the economic loss was 11 billion US dollars [2]. 
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Therefore, we know a variety of plant diseases which play important roles in 
not only threatening plant’s lives but also lead to catastrophic economic conse-
quences. With the development of modern technology and the world economy, 
the problem of plant virus diseases attracts more and more attentions. Millions 
of plants suffer or die of various virus diseases every year. Plant viruses are im-
portant constraints to crop production, and cause serious losses in yield and 
quality of many crops grown in agriculture, horticulture and forestry [3] [4] [5] 
[6] [7]. Among various methods to control plant virus diseases in the real world, 
there are great research efforts on chemical methods, but no chemicals can rou-
tinely be used to control viruses in the crop [8]. Therefore, it is necessary to take 
effective measures to control the spread of plant virus. Methods to prevent virus 
from reaching the host are well-developed. Cultural control strategy is the most 
commonly method for controlling plant diseases, and roguing is one of the me-
thods for cultural control strategy [9] [10] [11] [12] [13]. 

Considerable researches have been using mathematical models for plant virus 
diseases to describe, analyze, and predict epidemics of plant diseases for the ul-
timate purposes of developing and testing control strategies and tactics for plant 
protection [12]-[19]. A mathematical model was proposed by Fishman et al. for 
the temporal spread of an epidemic in a closed plant population with periodic of 
the diseased plants [12]. Here, Chan and Jeger [20] considered a plant virus dis-
ease model:  
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The model is derived from the following assumptions. 
• The plant population was divided into susceptible S, latently infected E, in-

fectious I and post-infectious R categories. 
• There was natural mortality µ , which was not attributed to disease and was 

common to each category. The disease led to an additional mortality α  in 
the post-infectious category owing to the cumulative effect of the disease. 

• There was maximum plant population size K, defined in terms of agronomic 
considerations. The actual total population size was presented by  

( )N N S E I R= + + + . Recruitment to the population was by replanting at a 
rate proportional r to the difference between the actual number of plants 
present N and maximum population size K. 

• The rate of infection was determined by the product number of susceptible 
and infected plants, and a constant rate 1k  (plants per infectious plants per 
unit time) divided by K to give uniform dimensions for the rate parameters. 

• There were the conversion rates of disease progression 2k  and 3k , which 
were from latent to infectious and from infectious to post-infectious, respec-
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tively. 
The authors studied the disease management by roguing infected plants and 

replanting susceptible plants in model (1.1). And they also analyzed the case that 
the roguing was imposed at a constant proportional rate η  in the latent stage, 
infectious stage, or post-infectious stage with respect to system (1.1). 

In epidemiology, the latent period is the interval between the onset of spore 
germination and the appearance of the next spore generation [21]. Therefore, we 
consider that the plant still has a certain infectivity during the latent period. The 
importance of the latent period in model has been emphasized by Gumpert et al. 
[22]. A model was researched by Nakasuji et al. to depict the quantitative changes 
in pathogen, vector, and host plant populations with a latent period [23]. In ad-
dition, the case of the roguing is studied in their work by Chan et al. for latent 
plants [24]. Therefore, it is necessary to degrade both the latent plant and the in-
fected plant at the same time for system (1.1). 

However, because biological and environmental parameters are naturally sub-
ject to fluctuation in time, the effects of a periodically varying environment are 
considered as important selective forces in the system with a fluctuating envi-
ronment. As far as we know, almost references considered plant disease with 
both seasonality and human-to-human transmission. Occurrence of plant dis-
ease is typically seasonal due climatic factors, physical, and biological factor. Ther-
fore, it is interesting to formulate a more realistic mathematical model model 
with the seasonality of the changing environment (see [19] [20] [21] [22] [23] 
[25]). 

Based on the above factors, here we propose and analyze a more realistic ma-
thematical model as the following non-autonomous form of system (1.1):  
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 (1.2) 

where 4k  denotes the horizontal transmission rate by vectored transmission, 

1η  and 2η  denote the roguing (removing) rates of latently infected and infec-
tious plants respectively. Note that the variable R does not appear in the first 
three equations of system (1.2). This allows us to attack (1.2) by studying the 
subsystem: 
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with initial values  
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( ) ( ) ( )0 > 0, 0 0, 0 0.S E I≥ ≥                   (1.4) 

This paper is arranged in five parts. Section 2 will introduce preliminaries set-
ting and propositions, which we use to analyze the long-time behavior of system 
(1.3) in the following sections. The extinction conditions of the disease of system 
(1.3) will be given in Section 3. In Section 4, we will discuss the permanence of 
the infectious plants. Some of the corresponding conclusions in this paper are 
presented in Section 5. 

2. Preliminaries 

First, we give some assumptions as follows: 
(A1) Functions ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 4 1, , , , , ,r t K t t k t k t k t tµ η  and ( )2 tη  are pos-

itive, bounded and continuous on [ )0,+∞ . 
(A2) There exist constants ( )0, 1,2,3i iω > =  such that:  
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Next, we denote by ( )x t  and ( )y t  the solutions of:  

( ) ( ) ( ) ( ) ( )
d

,
d
x t

r t k t t x t
t

µ= −                  (2.1) 

and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 2 3

d
,

d
y t

r t k t t r t t t k t y t
t

µ η η= − + + + +    (2.2) 

respectively. From [[26], Lemma 2.1], we have the following results for system 
(2.1-2.2). 

Lemma 2.1. 1) There exist constants 0m′ >  and 0M > , such that every pos-
itive solution of Equation (2.1), ( )x t , satisfies:  

( ) ( )0 lim inf lim sup .
t t

m x t x t M
→+∞ →+∞

′< ≤ ≤ ≤ < +∞  

2) There exist constants 0m >  and 1 0M > , such that every positive solu-
tion of Equation (2.2), ( )y t , satisfies:  

( ) ( ) 10 lim inf lim sup .
t t

m y t y t M
→+∞ →+∞

< ≤ ≤ ≤ < +∞  

3) The solution ( ) ( ) ( )( ), ,S t E t I t  of system (1.3) with initial value (1.4) ex-
ists, uniformly bounded and  

( ) ( ) ( )0, 0, 0S t E t I t> > >  

for all 0t > . 
Theorem 2.1. Suppose that (A1) and (A2) hold, then there must be constants 

0m >  and 0M >  satisfying  

( ) ( )* *0 lim inf lim sup .
t t

m N t N t M
→+∞ →+∞

< ≤ ≤ ≤ < +∞  

https://doi.org/10.4236/jamp.2020.810165


L. J. Xia et al. 
 

 

DOI: 10.4236/jamp.2020.810165 2201 Journal of Applied Mathematics and Physics 
 

Proof. Set ( ) ( ) ( )( ), ,S t E t I t  be any positive solution of system (1.3) with in-
itial conditions (1.4). We can see that ( ) ( ) ( ) ( )*N t S t E t I t= + +  means the 
size of total plants at time t for system (1.3). From system (1.3), we can get  

( ) ( ) ( ) ( ) ( )
*

*d
,

d
N t

r t k t t N t
t

µ≤ −  

for all 0t ≥ . By comparison theorem, we have that there exists constant 1 0T >  
such that  

( ) ( )* ,N t N t≤                        (2.3) 

for all 1t T≥ , where ( )N t  is the solution of (2.1) with the condition  
( ) ( )*

1 1x T N T= . On the other hand, from system (1.3), we can get  
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for all 2t T≥ , where ( )N t  is the solution of (2.2) with the condition  
( ) ( )*

2 2y T N T= . From inequalities (2.3) and (2.4), we can easily obtain  

( ) ( ) ( )* ,N t N t N t≤ ≤                     (2.5) 

for all 2t T≥ . From the above conclusions 1) and 2) of Lemma2.1 and inequality 
(2.5), we have  
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that is to say  
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The proof is completed. 
Next, we consider the following non-autonomous linear equation: 
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Lemma 2.2. Suppose that (A1) holds and there exist constants ( )0, 4,5i iω > =  
such that  
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then there exists 3 2T T> , such that ( ) ( )S t S t≥  for all 3t T≥ , where ( )S t  is 
the solution of system (2.7) with the condition ( ) ( )3 3Z T S T= . 

For 0p >  and 0t > , we define:  

https://doi.org/10.4236/jamp.2020.810165


L. J. Xia et al. 
 

 

DOI: 10.4236/jamp.2020.810165 2202 Journal of Applied Mathematics and Physics 
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1

4 2 1 3 2
1, 1 ,

pk
G p t k N t k t t k

t
t t t

K pt
η η

 
  
 


= + − + − + + 

 
 

and  

( ) ( ) ( ), ,W p t pE t I t= −                    (2.8) 

where ( ) ( ) ( )( ), ,S t E t I t  is any solution of system (1.3). We use the following 
lemmas in order to investigate the long-time behavior of system (1.3). 

Lemma 2.3. If there exist positive constants 0p >  and 1 3T T′≥  such that 
( ), 0G p t <  for all 1t T ′≥ , then there exists 2 1T T′ ′≥  such that either ( ), 0W p t >  

for all 2t T ′≥  or ( ), 0W p t ≤  for all 2t T ′≥ . 
Proof. Suppose that there does not exist 2 1T T′ ′≥  such that either ( ), 0W p t >  

for all 2t T ′≥  or ( ), 0W p t ≤  for all 2t T ′≥  hold. Then there necessarily exists 
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Substituting (2.10) into (2.11) we can get  
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From 3) of Lemma 2.1, we have ( ), 0G p s > , which is a contradiction.   

3. Extinction of Infectious Plants 

In this section, we obtain conditions for the extinction of infectious plants of 
system (1.3). 

Theorem 3.1. If there exist positive constants 0, 0pλ > >  and 1 3T T′≥  such 
that 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )1

1 4 2 1, : lim sup d 0,
t

tt
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∫ (3.1) 
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( ) ( ) ( ) ( ) ( )( )2
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∫     (3.2) 

and ( ), 0G p t <  for all 1t T ′≥ , then the infectious plants of system (1.3) is ex-
tinct. 

Proof. From Lemma 2.3, we only have to consider the following two cases. 
1) ( ) ( )pE t tI>  for all 2t T ′≥ . 
2) ( ) ( )pE t tI≤  for all 2t T ′≥ . 
First we consider the case 1). From the second equation of system (1.3), we 

can get  
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for all 2t T ′≥ . From (3.1) we see that there exist constants 1 0δ >  and 3 2T T′ ′>  
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for all 4t T ′≥ . From (3.5) and (3.6), we have ( )lim 0
t

I t
→+∞

= .   

4. Permanence of Infectious Plants 

In this section, we obtain sufficient conditions for the permanence of system 
(1.3). 

Theorem 4.1. If there exist constants 0, 0pλ > >  and 1 3T T′≥  such that 
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pk s
R p k s N s s k s s s

K s
λ

λ µ η
+

→+∞

  = + − + + > 
  

∫ (4.1) 

( ) ( ) ( ) ( ) ( )( )2
2 3 2, : lim inf d 0,

t

tt

k s
R p s k s s s

p
λ

λ µ η
+∗

→+∞

  = − + + > 
  

∫     (4.2) 

and ( ), 0G p t <  for all 1t T ′≥ , then the infectious plants of system (1.3) is 
permanent. 

Before we give the proof of Theorem 4.1, we introduce the following lemma. 
Lemma 4.1. If there exist constants 0, 0pλ > >  and 1 3T T′≥  such that (4.1), 

(4.2) and ( ), 0G p t <  hold for all 1t T ′≥ , then ( ), 0W p t ≤  for all 2 1t T T′ ′≥ ≥ , 
where 2T ′  is given as in lemma 2.3. 

Proof. From Lemma 2.3 we have only two cases, ( ), 0W p t >  for all 2t T ′≥  
or ( ), 0W p t ≤  for all 2t T ′≥ . Suppose that ( ), 0W p t >  for all 2t T ′≥ . Then 
we have ( ) ( )E t I t p>  for all 2t T ′≥ . It follows from the third equation of 
system (1.3) that 

( ) ( ) ( ) ( ) ( ) ( )( )2
3 2

d
d
I t k t

I t t k t t
t p

µ η
  > − + + 
  

 

for all 2t T ′≥ . Hence, we have 

( ) ( ) ( ) ( ) ( ) ( )( )
2

2
2 3 2exp d ,

t

T

k s
I t I T t k s s s

p
µ η

′

   ′> − + +      
∫      (4.3) 

for all 2t T ′≥ . From the equality (4.2), we see that there exist constants 0η′ >  
and 0T >  such that 

( ) ( ) ( ) ( )( )2
3 2 d ,

t

t

k s
s k s s s

p
λ

µ η η
+    ′− + + > 
  

∫           (4.4) 

for all t T≥ . Since the inequality (4.3) holds for all ( )2max ,t T T′≥ , it follows 
from (4.4) that ( )lim

t
I t

→+∞
= +∞ . This contradicts with the boundedness of I, stated 

in 3) of Lemma 2.1. 
Here, we use Lemmas 4.1 in order to prove Theorem 4.1. 
Proof. (Proof of Theorem 4.1). For simplicity, let :m m= −   and :M M= +  , 

where 0>  is a constant. From the inequality (2.6) of Theorem 2.1, we can see 
that for any 0> , there exists 3T T≥  such that 

( ) ( ) ( )* ,m N t N t N t M< ≤ ≤ <                  (4.5) 

for all t T≥ . The inequality (4.1) implies that for sufficiently small 0η′ > , there 
exists 1T T′≥  such that 
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( )
( ) ( ) ( ) ( ) ( ) ( )( )1

4 2 1 d ,
t

t

pk s
k s N s s k s s s

K s
λ

µ η η
+     ′+ − + + >      
∫      (4.6) 

for all 1t T ′≥ . We define  

( ) ( ) ( )

( ) ( ) ( )

1 1 4 4
0 0 0

3 3 2 2 00 0

: sup , : sup , : sup ,

: sup , : sup , : inf .
t t t

tt t

k k t k k t t

k k t t K K t

µ µ

η η

+ + +

≥ ≥ ≥

+ + −

≥≥ ≥

= = =

= = =
 

From (4.5) and (4.6), we see that for positive constants η η′<  and 2 1T T′ ′≥  
there exist small ( )0 1,2i i> = , such that 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )1

4 1 2 2 1 d ,
t

t

pk s
k s N s k s k s s s

K s
λ

µ η η
+    + − − − + + >      
∫ 

   (4.7) 

and  

( ) 1 2 ,N t k m− − >

                      (4.8) 

hold for all 2t T ′≥ , where 1 4
3: 1

k kk M
pK

ω
+ +

−

 
= + + 

 


 . From (A2), 2  can be 

chosen sufficiently small such that  

( )
( )

( ) ( ) ( ) ( )( )3 1 4
2 1 2 1 d .

t

t

k s k s
M s k s s s

K s p
ω

µ η η
+    + − + + < −      
∫    (4.9) 

hold for all 2t T ′≥ . 
First, we claim that  

( ) 2lim sup .
t

I t
→+∞

>   

In fact, if it is not true, then there exists 3 2T T′ ′≥  such that  

( ) 2 ,I t ≤                          (4.10) 

for all 3t T ′≥ . Now, we only have to consider two cases as follows: 
1) ( ) 1E t ≥   for all 3t T ′≥ . 

2) There exists an 1 3s T ′≥  such that ( )1 1E s <  . 

First we consider the case 1). From (4.5) and (4.10) and Lemma 4.1, we have  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )
( )

( ) ( ) ( ) ( )( )

3

3

3

3 1 4

2 1

1 4 *
3

1 2 1

1 4
3 2 1 2 1

d

d

d

t

T

t

T

t

T

I s
E t E T k s S s k s S s E s

K s

s k s s E s s

k s k s
E T I s N s E s I s

K s p

s k s s s

k s k s
E T M s k s s s

K s p

µ η

µ η

µ η

′

′

′

′= + +



− + + 


  ′≤ + + − −     


− + + 


   ′≤ + + − + +      

∫

∫

∫ 



 
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for all 3t T ′≥ . Thus, from (4.9), we have ( )lim
t

E t
→+∞

= −∞ , which contradicts 
with 3) of Lemma 2.1. 

Next we consider the case 2). Suppose that there exists an 2 1s s>  such that 

( ) 1 4
2 1 3 2

k kE s M
pK

ω
+ +

−

 
> + + 

 
  . Then, we see that there necessarily exists an 

( )3 1 2,s s s∈  such that ( )3 1E s =   and ( ) 1E t >   for all ( ]3 2,t s s∈ . Let n be 

an integer such that ( ) )2 3 3 3 3, 1s s n s nω ω∈ + + + . Then from (4.9), we obtain  

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

{ } ( )
( )

( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( )( )

2

3

3 3 2

3 3 3

2

3 3

1 4
1 3 2 2

3 1 4

2 1

1 4
1 2 2 1 1

1 4
1 2 2 1 1

d

d

s

s

s n s

s s n

s

s n

k kM E s
pK

I s
E s k s S s k s S s E s

K s

s k s s E s s

k s k s
M s k s s s

K s p

k s k s
M s k s s

K s p

ω

ω

ω

ω

µ η

µ η

µ η

+ +

−

+

+

+

 
+ + < 

 
= + +



− + + 


   < + + + − + +      

 < + + − + +  
 

∫

∫ ∫

∫







 

  

  

( )
( )

( )2

3 3

1 4 1 4
1 2 1 2 3

d

d
s

s n

s

k s k s k kM s M
K s p pKω

ω
+ +

−+




  
   

< + + < + +       
∫     

 

which is a contradiction. Therefore, we see that  

( ) 1 4
1 2 3

k kE t M
pK

ω
+ +

−

 
≤ + + 

 
                   (4.11) 

for all 1t s≥ . Now, from Lemma 4.1, there exists 4 1T s≥  such that  
( ) ( ) ( ), 0W p t pE t I t= − ≤  for all 4t T≥ . So we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 4 2 1

1 4 2 1

1
4 2 1

1
4 1 2 2 1

d
d

( )
.

( )

E t I t
k t S t k t S t E t t k t t E t

t K t

E t
pk t S t k t S t E t t k t t E t

K t

pk t
E t k t N t E t I t t k t t

K t

pk tE t k t N t k t k t t
K t

µ η

µ η

µ η

µ η

= + − + +

≥ + − + +

   ≥ + − − − + +      
   ≥ + − − − + +  
   

 

 

It follows from (4.10) and (4.11), we have ( ) ( ) 1 2E t I t k+ ≤ +    for all 4t T≥ . 
Hence, we can get  

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

4

1
4 4 1 2

2 1

exp

d .

t

T

pk s
E t E T k s N s k

K s

s k s s sµ η

  ≥ + − −    


− + + 
 

∫  
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It follows from (4.7) that ( )lim
t

E t
→+∞

= +∞  and this contradicts with the boun-
dedness of ( )E t , stated in 3) of Lemma 2.1. 

Thus, we see that our claim ( ) 2lim sup
t

I t
→+∞

>   is true. 
Next, we prove  

( ) 1lim inf ,
t

I t I
→+∞

≥  

where ( )( )3 2 22
1 2e 0

k C
I

µ η λ+ + +− + +
= >  is a constant given in the following. For con-

venience, we let ϕ  be the least common multiple of 3ω  and λ . From inequa-
lities (4.7)-(4.9) and assumption (A2), we see that there exist constants ( )3 2T T ′≥  
and 2 1λ ω≥ , which is an integral multiple of ϕ , and * 0η >  such that  

( )
( )

( ) ( ) ( ) ( )( )3 1 4
2 2 1 1 d ,

t

t

k s k s
M s k s s s M

K s p
λ

µ η
+    + − + + < −      
∫        (4.12) 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )3 1 *

4 1 2 2 1 d ,
t

t

pk s
k s N s k s k s s s

K s
λ

µ η η
+    + − − − + + >      
∫   (4.13) 

( )
( )

3 1 *d ,
t

t

k s
s

K s
λ

η
+

>∫                     (4.14) 

for all 3t T≥  and 3 2λ λ≥  and 3λ  is an integral multiple of ϕ . Let 0C >  
be an integer multiple of 2λ  satisfying  

( ) *
2 2 1 2* 1

2 1 3 2 4
1e e

C
k km M k

pK

ηλ µ η λη ν ω
+ + + +

− + + +
−

 
> + + 

 
           (4.15) 

where ( )2 3 22
2 2: e

kλ µ η
ν

+ + +− + +
=  . It follows from ( ) 2lim sup

t
I t

→+∞
>   that there are 

only two possibilities as follows: 
1) ( ) 2I t ≥   for all 4 3t T T≥ ∃ ≥ . 
2) ( )I t  oscillates about 2  for large 3t T≥ . 
In case 1), we have ( ) 2 1lim inf

t
I t I

→+∞
≥ ≥ . In case 2), there necessarily exist 

two constants ( )1 2 3 2 1,t t T t t≥ ≥  such that 

( ) ( )
( ) ( )

1 2 2

2 1 2

,

, for all , .

I t I t

I t t t t

= =


< ∈




 

a) Suppose that 2 1 22t t C λ− ≤ + . Then, from (1.3) we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2 3 2

3 2

d
d
I t

k t E t t k t t I t
t

t k t t I t

µ η

µ η

= − + +

≥ − + +
        (4.16) 

Hence, we obtain  

( ) ( ) ( ) ( ) ( )( )( ) ( )( )3 2 2

1

2
1 3 2 2 1exp d e : ,

t k C

t
I t I t s k s s s I

µ η λ
µ η

+ + +− + + +
≥ − + + ≥ =∫  (4.17) 

for all ( )1 2,t t t∈ .  
b) Suppose that 2 1 22t t C λ− > + . Then, from (4.16), we have  

( ) ( )( )3 2 22
2 1e :

k C
I t I

µ η λ+ + +− + + +
≥ =  
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for all ( )1 1 2, 2t t t C λ∈ + + . Now, we are in a position to show that ( ) 1I t I≥  for 
all [ )1 2 22 ,t t C tλ∈ + + . Suppose that ( ) 1E t ≥   for all [ ]1 1 2,t t t λ∈ + . Then, from 
(4.12), we have  

( )

( ) ( )
( )

( ) ( ) ( ) ( )( )1 2

1

1 2

1 4
1 2 2 1 1 d

0

t

t

E t

k s k s
E t M s k s s s

K s p

M M

λ

λ

µ η
+

+

   ≤ + + − + +      
< − =

∫ 

 

   

which is a contradiction. Therefore, there exists an [ ]4 1 1 2,s t t λ∈ +  such that 

( )4 1E s <  . Then, as is in the proof of ( ) 2lim sup
t

I t
→+∞

>  , we can show that 

( ) 1 4
1 2 3

k kE t M
pK

ω
+ +

−

 
≤ + + 

 
   for all 4t s≥ . Thus we have  

( ) 1 4
1 2 3

k kE t M
pK

ω
+ +

−

 
≤ + + 

 
                   (4.18) 

for all 1 2 4t t sλ≥ + ≥ . From (4.16), we have  

( ) ( )2 3 22
2 2e ,

k
I t

λ µ η
ν

+ + +− + +
≥ =                    (4.19) 

for all [ ]1 1 2, 2t t t λ∈ + . Thus, from (4.8), (4.18), (4.19), we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( )
( ) ( )( ) ( ) ( )

( )
( ) ( ) ( )

1 4 2 1

1 2 1

1
2 1

1
1 2 2 2 1

1
2 2 1

d
d

E t I t
k t S t k t S t E t t k t t E t

t K t

I t
k t S t t k t t E t

K t

k t
N t E t I t I t t k t t E t

K t

k t
N t k k E t

K t

k t
m k E t

K t

µ η

µ η

µ η

ν µ η

ν µ η

+ + +

+ + +

= + − + +

≥ − + +

≥ − − − + +

≥ − − − + +

≥ − + +





 

 

for all [ ]1 2 1 2, 2t t tλ λ∈ + + . Hence, from (4.14), we have  

( ) ( )( ) ( ) ( )( )

( )
( )

( )

( )( ) ( )
( )

( )

( )

2 1 1 2 2 1 1 2

1 2 2 1

1 2

1 22 1 1 2 2 1

1 2

2 2 1

2
1 2 1 2

2 1
2

22 1
2

*
2

2 e e

e d

e e d

e

k t k t

t k s

t

tk t k s

t

k

E t E t

k s
m s

K s

k s
m s

K s

m

µ η λ µ η λ

λ µ η

λ

λµ η λ µ η

λ

λ µ η

λ λ

ν

ν

ν η

+ + + + + +

+ + +

+ + + + + +

+ + +

− + + + + + +

+ + +

+

+− + + + + +

+

− + +


+ ≥ +


+ 


≥

≥

∫

∫







    (4.20) 

Now we suppose that there exists a 0 0t >  such that ( )0 1 2 22 ,t t C tλ∈ + + , 
( )0 1I t I=  and ( ) 1I t I≥  for all [ ]1 0,t t t∈ . Note that from Lemma 4.1. without 

loss of generality, we can assume that 1t  is so large that  
( ) ( ) ( ), 0W p t pE t I t= − ≤  for all 1 22t t λ≥ + . Then, from (4.18), we have  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 4 2 1

1
4 2 1

1
4 1 2 2 1

d
d

E t I t
k t S t k t S t E t t k t t E t

t K t

pk t
E t k t N t E t I t t k t t

K t

pk t
E t k t N t k t k t t

K t

µ η

µ η

µ η

= + − + +

   ≥ + − − − + +      
   ≥ + − − − + +      

 

 

for all ( )1 2 22 ,t t tλ∈ + . Thus, from (4.13) and (4.20), we have  

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( )

0

1 2

*
2 2 1 2

1
0 1 2 4 1 22

2 1

*
2

2 exp

d

e e

t

t

C
k

pk s
E t E t k s N s k

K t

s k s s s

m

λ

ηλ µ η λ

λ

µ η

η ν
+ + +

+

− +

  ≥ + + − −    


− + + 
 

≥

∫ 



 

 

Thus, from (4.18), we have  

( ) *
2 2 1 2* 1

2 1 3 2 4
1e e

C
k km M k

pK

ηλ µ η λη ν ω
+ + + +

− + + +
−

 
≤ + + 

 
    

which contradicts with (4.15). Therefore, ( ) 1I t I≥  for all [ )1 2 22 ,t t C tλ∈ + + , 
which implies ( ) 1lim

t
I t I

→+∞
≥ . 

Since ( ) ( ) ( )*lim sup lim sup lim sup
t t t

I t N t N t M
→+∞ →+∞ →+∞

≤ ≤ ≤ < +∞ , the infectious 
plants of system (1.3) is permanent. 

From limiting system of system (1.3), we can easily see if the infectious plants 
persist, then system (1.3) will be lasting.   

5. Conclusions 

A more objective and meaningful plant virus model with roguing is proposed 
and analyzed. The model shows rich and complex dynamics. The weaker integral 
form conditions for permanence and extinction of the model are investigated by 
constructing auxiliary functions. 

Note: If the conclusion of Lemma 2.3 does not hold, we still have another sit-
uation for (2.8); then there is 1s T′ ′≥  such that  

( ) ( )d ,
, 0 and 0.

d
W p s

W p s
s

′
′ = <  

Accordingly, we can construct an auxiliary function  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1

4 2 1 3 2
1, 1 ,

qk t
G q t k t S t k t t k t t

K t q
η η

   
= + − + − + +       

 

where 0q >  and 0t > . 
Therefore, we have the following similar conclusions for the persistence and 

extinction of diseases in this section: 
Conclusion 5.1. If there are positive constants 0, 0qλ > >  and 1 3T T′′≥  such 

https://doi.org/10.4236/jamp.2020.810165


L. J. Xia et al. 
 

 

DOI: 10.4236/jamp.2020.810165 2210 Journal of Applied Mathematics and Physics 
 

that 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )1

1 4 2 1, : lim sup d 0,
t

tt

qk s
R q k s N s s k s s s

K s
λ

λ µ η
+

→+∞

  = + − + + < 
  

∫ (5.1) 

( ) ( ) ( ) ( ) ( )( )2
1 3 2, : lim sup d 0,

t

tt

k s
R q s k s s s

q
λ

λ µ η
+∗

→+∞

  = − + + < 
  

∫     (5.2) 

and ( ), 0G q t >  for all 1t T ′′≥ ; then the infectious plants of system (1.3) is ex-
tinct. 

Conclusion 5.2. If there are constants 0, 0qλ > >  and 1 3T T′′≥  such that 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )1

2 4 2 1, : lim inf d 0,
t

tt

qk s
R q k s N s s k s s s

K s
λ

λ µ η
+

→+∞

  = + − + + > 
  

∫ (5.3) 

( ) ( ) ( ) ( ) ( )( )2
2 3 2, : lim inf d 0,

t

tt

k s
R q s k s s s

q
λ

λ µ η
+∗

→+∞

  = − + + > 
  

∫     (5.4) 

and ( ), 0G q t >  for all 1t T ′′≥ ; then the infectious plants of system (1.3) is 
permanent. 
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