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Abstract 
We obtain the quantized momentum eigenvalues, Pn, and the momentum ei-
genstates for the space-like Schrodinger equation, the Feinberg-Horodecki 
equation, with the improved deformed exponential-type potential which is 
constructed by temporal counterpart of the spatial form of these potentials. 
We also plot the variations of the improved deformed exponential-type po-
tential with its momentum eigenvalues for few quantized states against the 
screening parameter. 
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1. Introduction 

In studying any physical problem in quantum mechanics we seek to find the so-
lution of the resulting second-order differential equation. The time-dependent 
Schrödinger equation represents an example that describes quantum-mechanical 
phenomena, in which it dictates the dynamics of a quantum system. Solving this 
differential equation by means of any method results in the eigenvalues and ei-
genfunctions of that Schrödinger quantum system. However, the solution of the 
time-dependent Schrödinger equation analytically is exact and limited to certain 
problems of spatial coordinate problems [1] [2] [3] [4]. The Feinberg-Horodecki 
(FH) equation is an equivalent time-momentum equation to the energy-spatial 
coordinate Schrodinger equation which was derived by Horodecki [5] from the 
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relativistic Feinberg equation [6]. This equation has been demonstrated in a pos-
sibility of describing biological systems [7] [8] in terms of the time-like super-
symmetric quantum mechanics [9]. The spatial-like solution of the FH equation 
can be employed to test its relevance in different areas of science including 
physics, biology and medicine [7] [8]. Molski obtained the spatial-like states of 
the time-dependent Morse oscillator potential model in the framework of the FH 
equation for minimizing the time-energy uncertainty relation and showed that 
the results are useful for interpreting the formation of the specific growth pat-
terns during crystallization process and biological growth [7]. Furthermore, he 
solved the FH equation with anharmonic oscillators and obtained the space-like 
quantum supersymmetry for the sake of describing biological systems [8]. 

Recently, Bera and Sil found the exact solutions of the FH equation for the 
time-dependent Wei-Hua oscillator and Manning-Rosen potentials by the Niki-
forov-Uvarov (NU) method [10]. A simple form of a potential model [11] named 
Deng-Fan oscillator potential was introduced in 1957. This potential taking a 
general Morse potential mesa 1998 generalized has been studied for its energy 
spectrum and wave functions by [11] [12] [13] [14] and related to the Man-
ning-Rosen potential [15] [16] which is also called Eckart potential by some au-
thors [17] [18] [19] or anharmonic potential. This system is well-defined at 
boundaries where t = 0 and t = 1. The spatial-like Deng-Fan model is quantita-
tively very similar to Morse model with correct asymptotic behaviour when inter 
nuclear separation distance comes to zero [11] and correctly describes the spec-
trum of diatomic molecules and electromagnetic transition [20] [21] [22]. The FH 
equation is solved with the time-dependent Deng-Fan oscillator potential model to 
obtain the exact momentum states by means of the parametric NU method [23]. 

Recently, Altug and Sever have studied the FH equation with time-dependent 
Poschl-Teller potential and found its space-like coherent states [24]. We also 
studied the solutions of FH equation for time-dependent mass (TDM) harmonic 
oscillator quantum system. An appropriate interaction to time-dependent mass 
is chosen to obtain the correct spectrum of stationary energy. The related spec-
trum of Harmonic oscillator potential acting on the TDM stationary state ener-
gies is found [25]. The exact solutions of FH equation under time-dependent 
Tietz-Wei di-atomic molecular potential have been obtained. In particular, the 
quantized momentum eigenvalues and corresponding wave functions are found 
in framework of supersymmetric quantum mechanics [26]. The spectra of gen-
eral molecular potential (GMP) are obtained using asymptotic iteration method 
within the framework of non-relativistic quantum mechanics. The vibrational 
partition function is calculated in closed form and used to obtain thermody-
namic functions [27]. 

Recently, we solved the FH equation with the time-dependent Kratzer plus 
screened Coulomb potential [28]; we solved FH equation with the time-dependent 
screened Kratzer-Hellmann potential model [29], and very recently we a general 
time-dependent potential [30]. In each case, we obtained the approximated ei-
gensolutions of momentum states and wave functions by means of the NU method. 
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The motivation of this work is to apply the NU method [31] for the general 
molecular potential having a certain time-dependence. The momentum eigen-
values, Pn, of the FH equation and the space-like coherent eigenvectors are obtained. 
The rest of this work is organized as follows: the NU method is briefly introduced in 
Section 2. The exact solution of the FH equation for the time-dependent general 
molecular potential is solved to obtain its quantized momentum states and ei-
genfunctions in Section 3. We generate the solutions of a few special potentials 
mainly found from our general form solution in Section 4. Finally we present 
our discussions and conclusions. 

2. Exact Solutions of the FH Equation for the  
Time-Dependent Improved Deformed  
Exponential-Type Potential  

The Nikiforov-Uvarov (NU) method (see Appendix) will be used to find the 
exact solutions of FH equation for the improved deformed exponential-type 
(IDEP) which results in momentum eigenvalues and their eigenstates. 

The time-dependent of the improved deformed exponential-type potential is 
given by [32] 
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where 0t  and α  are adjustable real potential parameters. q is a dimensionless 
parameter, eD  is the dissociation energy and et  the equilibrium time point. 
The IDEP is reduces to the improved Tietz potential if 2α  is replaced by α  
and 02e α− tq  by h. If the IDEP potential is substituted in FH equation, one ob-
tains  
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and  
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After comparing Equation (3) with Equation (A1), one obtains  
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when these values are substituted in equation  
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s k  (see NU method [28] [29] [30]), we get  
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As mentioned in the NU method, the discriminant under the square root, in 
Equation (12), has to be zero, so that the expression of ( )Π s  becomes the 
square root of a polynomial of the first degree. This condition can be written as  
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After solving this equation, we get  
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Then, for our purpose we assume that  
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Arranging this equation and solving it to get an expression for k which is given 
by the following,  
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where the expression between the parentheses is given by  
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where the parameters in this equation must be selected to let R be real and the 
results have physical meanings. If we substitute −k  into Equation (12) we get a 
possible expression for ( )Π s , which is given by  
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this solution satisfy the condition that the derivative of ( )τ s  is negative. 
Therefore, the expression of ( )τ s  which satisfies these conditions can be writ-
ten as  

 ( ) 1 1
11 2 2 .τ ζ ζ = − + − + 

 
s s s

R
                 (19) 

Now, substituting the values of ( )τ−′ s , ( )σ ′′ s , ( )−′Π s  and −k  into Equa-
tion (A2) and Equation (A3), we obtain  
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Now, from Equation (20) and Equation (21), we get the eigenvalues of the quan-
tized momentum as  
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where β , A and C are defined in Equation (4), Equation (7) and Equation (8) 
respectively. 

Due to the NU method used in getting the eigenvalues, the polynomial solu-
tions of the hypergeometric function ( )ny s  depend on the weight function 
( )ρ s  which can be determined by solving ( ) ( ) ( ) ( ) ( ) 0σ ρ σ τ ρ′ + − =  s s s s s  
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where nA  is the normalization constant. Solving Equation (24) gives the final 
form of the wave function in terms of the Jacobi polynomial ( ),α β

nP  as follows,  
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Substituting Equation (25) and Equation (26) in ( ) ( ) ( )ψ φ=n n ns s y s , one ob-
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tains,  
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1
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1 1 2 ,
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where nB  is the normalization constant.  

3. Numerical Results and Discussion  

We compute the momentum eigenvalues of time dependent improved deformed 
exponential-type potential for some diatomic molecules like CO, N2, H2 and LiH. 
This was done using the spectroscopic parameters displayed in Table 1. 

Figure 1 shows the variation of the time-dependent improved deformed ex-
ponential-type potential (IDEP) well for four different diatomic molecules at 
small times. Hence, this potential well changes from 20 eV to nearly 5 eV for the 
diatomic molecules H2 and LiH whereas it changes from 50 eV to 5 eV for N2 
diatomic molecule. However, CO diatomic molecule has a unique behavior; it 
varies from 5 eV to 10 eV. In Figure 2, we examined the variation of the quan-
tized momentum states Pn of IDEP against the screening parameter q for various 
diatomic molecules. It is seen that the momentum of the present potential model 
decreases monotonically from zero, for H2, N2 and LiH whereas for CO it shows 
different behavior as it decreases from −20 eV/c, against the screening parameter 
q for various values of states, n. Figure 3 shows the variation of Pn in the field of 
IDEP against the exponential parameter α  for various diatomic molecules. The 
diatomic molecules exhibit different features; for various values of n. It is ob-
vious from figure that Pn increases monotonically with increasing α  for CO  
 
Table 1. Spectroscopic parameters of the various diatomic molecules [32]. 

Molecule De (eV) te (ns) μ (a.m.u) t0 (ns) q 

CO 10.84514471 1.1283 6.860586000 1.128300118 −0.6544806294 

N2 9.9051 1.0970 7.0034 1.097000113 −0.3543700921 

H2 4.7446 0.7416 0.5039 0.7416001485 −0.3236073943 

LiH 2.5155 1.5955 0.8801 1.595500403 −0.3326882575 

 

 
Figure 1. Improved deformed exponential-type potential (IDEP) for diatomic molecules. 

The parameters used are presented in Table 1, and ( ) 10.5 nsα −= . 
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Figure 2. FH quantized momentum eigenvalues for the improved deformed exponen-
tial-type potential plotted vs q for diatomic molecules. The parameters used are presented 

in Table 1, and ( ) 10.5 nsα −= . 

 

 
Figure 3. FH quantized momentum eigenvalues for the improved deformed exponen-
tial-type potential plotted vs α  for diatomic molecules. The parameters used are pre-
sented in Table 1. 

 
and N2 when particle is subjected to the aforementioned system. The reverse 
case happens with H2 and LiH diatomic molecules where nP  decreases mono-
tonically from a value close to zero with increasing α . 

Finally, Figure 4 shows the behavior of Pn against state n for various diatomic 
molecules subjected to the field of IDEP with various values of α . It is seen that 
Pn for H2 and LiH decreases monotonically from zero with increasing n. Howev-
er, in the case of CO and N2 diatomic molecules, it is seen that Pn decreases 
slightly linearly with increasing n.  

4. Conclusion 

We solved the Feinberg-Horodecki (FH) equation for the time-dependent im-
proved deformed exponential-type potential via Nikiforov-Uvarov (NU) method. 
We got the exact quantized momentum eigenvalues solution of the FH equation. 
It is therefore, worth mentioning that the method is elegant and powerful. Our 
results can be applied in biophysics and other branches of physics. We find that 
our analytical results are in good agreement with other findings in literature. We 
have shown the behaviors of the improved deformed exponential-type potential  
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Figure 4. FH quantized momentum eigenvalues for the improved deformed exponen-
tial-type potential plotted vs n for diatomic molecules. The parameters used are presented 
in Table 1. 
 
against screening parameters. Further, taking spectroscopic values for the poten-
tial parameters, we plotted the quantized momentum of few states against the 
screening parameter for diatomic molecules. Our results are good agreements 
with the energy bound states.  
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Appendix: Methodology 

The Nikiforov-Uvarov (NU) [31] method is an efficient technique usually em-
ployed to reduce the second-order differential equation into a general form of a 
hypergeometric type equation. Therefore, any second order differential equation 
can be transformed, via an appropriate coordinate transformation ( )=s s t , in-
to a standard form:  

 ( ) ( )
( ) ( ) ( )

( )
( )2 0,

τ σ
ψ ψ ψ

σ σ
′′ ′+ + =

 

n n n

s s
s s s

s s
             (A1) 

where ( )σ s  and ( )σ s  are polynomials, at most second-order, and ( )τ s  is 
of a first-order polynomial. To follow the method in details the reader is advised 
to follow [28] [29] [30] [31]. The eigenvalues equation can be found simply by 
solving the Equation (A2) and Equation (A3). Where  

 ( ) ( ) ( )
1

,
2

λ λ τ σ
−

′ ′′= = − −n

n n
n s s                (A2) 

and  

 ( ) ,λ λ ′= = +Πn k s                        (A3) 

with 0,1,2,= n , and ( )τ s  is a polynomial with a negative first derivative to 
generate an appropriate solution for the hypergeometric equation. And Further, 
( )Π s  is a polynomial which depends on the transformation function s(t) and k 

should be determined to calculate ( )Π s , for which the discriminant under the 
square root is set to zero, in order to let ( )Π s  to be a first order polynomial.  
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