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Abstract 
STMV beamforming algorithm needs inversion operation of matrix, and its 
engineering application is limited due to its huge computational cost. This 
paper proposed block iterative STMV algorithm based on one-phase regres-
sive filter, matrix inversion lemma and inversion of block matrix. The com-
putational cost is reduced approximately as 1/4 M times as original algorithm 
when array number is M. The simulation results show that this algorithm 
maintains high azimuth resolution and good performance of detecting mul-
ti-targets. Within 1 - 2 dB directional index and higher azimuth discrimina-
tion of block iterative STMV algorithm are achieved than STMV algorithm 
for sea trial data processing. And its good robustness lays the foundation of 
its engineering application. 
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1. Introduction 

The bearing spectrum estimation is very important in sonar and radar fields. The 
original algorithm of bearing spectrum estimation based on arrays is conventional 
beam-forming (CBF), whose azimuth resolution is restricted by space “Fourier 
threshold”, often termed “Rayleigh threshold” [1] [2]. There are many kinds of 
high-resolution bearing spectrum estimation algorithms since 1970s and Capon 
proposed the minimum variance distortion response (MVDR) beam-forming 
algorithm. MVDR has two manifestations when dealing with wide-band signals. 
One is incoherent signal-subspace processing method (ISM) proposed by Wax, 
whose azimuth resolution decreases when dealing with correlated sources. The 
other one is coherent signal-subspace processing method (CSM) proposed by 
Wang and Kaveh. Importing the beam-focused idea, this algorithm’s estimation 
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performance is better than ISM and can deal with correlated sources. Based on 
CSM, Krolik and Swinger proposed the steered minimum variance (STMV) al-
gorithm, which can obtain wide-band gains and can deal with correlated sources 
directly.  

Although STMV algorithm has good performance, it is not widely used for a 
long time because its huge computational cost has a high command for hard-
ware performance when solving inversion operation of matrix, which restricts its 
practical application. Swingler [3] proposed sub-array STMV algorithm. Papers 
[4] [5] [6] [7] make further research on sub-array STMV algorithm. Zhu [8] 
proposed iterative STMV algorithm based on one-phase regressive filter and ma-
trix inversion lemma which can reduce the computational cost to 2/M of STMV 
algorithm (M refer to array number) and meanwhile preserves perfectly the cha-
racters of STMV algorithm. Inspired by this idea, this paper proposes block iter-
ative STMV algorithm based on one-phase regressive filter, matrix inversion 
lemma and inversion of block matrix, which can reduce computational cost fur-
ther. Simulation experiments show that this iterative algorithm maintains high 
azimuth resolution of STMV and advantage of multi-targets detection, besides 
reducing computational cost markedly. The processing results of actual experi-
mental data are also verified this algorithm has a good stability.  

2. Steered Minimum Variance Beamforming 
2.1. Basic Principles of STMV Algorithm 

The basic principle of STMV based on STCM is keeping the response at the 
steered bearing angle θ  as 1 by rotating the beam and minimizing the total 
energy of output.  

Assuming that each array output is ( ) 1 2[ ( ), ( ), , ( )]T
Mx t x t x t x t=  . Corres-

pondingly, frequency domain output is ( )kX f . For CBF, according to the set-
ting azimuth, each array output is inserted the time-delay  

( ) ( )cos /m md cτ θ θ= , 0,..., 1m M= − . The output after time-delay is 

( ) ( ) ( ), ,k p k kY f T f X fθ θ=                     (1) 

where M is the array number, θ  is the bearing angle, d is the interval between 
the adjacent array, c is the acoustic speed,  

( ) ( ) ( ) ( )( )2 cos / 2 1 cos /, 1, , ,k kj f d c j f M d c
p kT f diag e eπ θ π θθ − =  


  is the steered matrix.  
Assuming that the weight vector of each array is 1 2[ , , , ]T

Mw w w w=  , the 
output of array is  

( ) ( ) ( ) 2, , k
h

j f tH
p k k

k l
y t w T f X f e πθ θ

=

= ∑                (2) 

where, h is the highest frequency point, and l is the lowest one.  
The average power of array output is 

( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, ,

H

Hh h
H

p k k p k k
k l k l

P E y t y t

w E T f X f T f X f w

θ θ θ

θ θ
= =

 =  
   =    
    
∑ ∑ 

       (3) 
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Considering that ( )kX f  and ( )mX f  are uncorrelated when T is large 
enough and k m≠ . Therefore 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

, ,

, ,

, ,

Hh h
H

p k k p k k
k l k l

h h
H H H

p k k m p m
k l m l

h
H H H

p k k k p k
k l

H
stmv

P w E T f X f T f X f w

w E T f X f X f T f w

w T f E X f X f T f w

w R w

θ θ θ

θ θ

θ θ

θ

= =

= =

=

   =    
    
 =  
 

  =    
=

∑ ∑

∑∑

∑

 

 

 

    (4) 

Estimating the cross-spectral density matrix (CSDM) ( )kR f  using the fre-
quency domain output ( )n kX f  of N snapshots, shown as Equation (5) 

( ) ( ) ( ) ( ) ( )
1

N
H H

k k k n k n k
n

R f E X f X f X f X f
=

 = =  ∑           (5) 

Defining ( )stmvR θ  as the steered covariance matrix (STCM) corresponding 
to the bearing angle θ , shown as Equation (6) 

( ) ( ) ( ) ( ), ,
h

H
stmv p k k p k

k l
R T f R f T fθ θ θ

=

= ∑                 (6) 

The relationship between STCM and CSDM is also given by the formula.  
The best weight vector of beam-former is to keep the response as 1 at the spe-

cified direction, meanwhile minimize the power of array output, i.e. 

( )arg min

1

H
stmv

H
M

w w R w

w L

  =  
 =

                   (7) 

where, ML  is 1M ×  vector of ones. 
The weight vector can be obtained as Equation (8) by applying the method of 

Lagrange multiplier. 

( )
( )

1

1
stmv M

H
M stmv M

R L
w

L R L
θ
θ

−

−=                       (8) 

Substituting Equation (8) into Equation (4), 

 ( )
( )1

1
stmv H

M stmv M

P
L R L

θ
θ−=                    (9) 

STCM comprehensively utilizes information of each frequency and the matrix 
is invertible if the product of frequency points and snapshots is bigger than or-
der of the matrix.  

2.2. Principles of Iterative STMV Algorithm 

When STMV beams are formed, the average output in frequency domain can be 
obtained through summing up N outputs ( )n kX f  in frequency domain.  

( ) ( )
1

N

k n k
n

X f X f
=

= ∑                      (10) 
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Then STCM ( )stmvR θ  can be represented as 

( ) ( ) ( ) ( ) ( ), ,
h

H H
stmv p k k k p k

k l
R T f X f X f T fθ θ θ

=

= ∑            (11) 

Defining that ( ) ( ),p k kU T f X fθ=  , Equation (11) can be represented as 

( )
h

H
stmv

k l
R UUθ

=

= ∑                      (12) 

In this algorithm, the former data are utilized sufficiently and one-phase re-
gressive filter is used to integrate the covariance matrix ( )stmvR θ , then STCM 
ˆ ( )stmvR n  estimated by using the nth snapshot can be represented as 

( )ˆ ˆ 1 (1 )( )
h

H
stmv

k l
stmvR R n UUn α α

=

= − + − ∑             (13) 

By matrix inversion lemma, 
1 1

1 1
1( )

1

H
H

H

A xy AA xy A
y A x

− −
− −

−+ = −
+

                (14) 

Therefore, 1ˆ ( )stmvR n−  can be represented as 

( )

( ) ( ) ( )

( ) ( )
( ) ( )

1

1
1

1
1

1

1

1

ˆ ˆ[ 1 (1 ) ]

ˆ[ 1 (1 ) (1 ) ]

(1 ) ( 1) ( 1)
( 1)

1 (1 ) ( 1)

( )
h

H
stmv

k l
h HH

stmv h h
k l

H
h h stmv

stmv H
h stmv h

stmv

stmv

R R n UU

R n UU U f U f

R h U f U f R h
R h

U f R h U f

n α α

α α α

α

α

−

=

−
−

=

−
−

−

−

−

= − + −

= − + − + −

− − −
= − −

+ − −

∑

∑             

             
 





  (15) 

where ( )
1

ˆ( 1) 1 (1 )
h

H
stmv

k l
stmvR h R n UUα α

−

=

− = − + − ∑ . Obviously, in order to solve  

1ˆ ( )stmvR n− , we should solve 1 ( 1)stmvR h− −  first. Noting that ( 1)stmvR h −  and 
ˆ ( )stmvR n  have the same form, hence in order to solve 1 ( 1)stmvR h− − , we should 

solve 1 ( 2)stmvR h− −  first. By analogy, we can solve 1ˆ ( )stmvR n−  by iterative as long 
as 1 ( )stmvR l−

  is solved. 1 ( )stmvR l−
  can be represented as 

( ) ( ) ( )
( ) ( )

( ) ( )

H 1

H 1

H 1

1

1
1

ˆ( ) [ 1 (1 ) ]
ˆ ˆ(1 ) ( 1) ( 1)1 ˆ[ ( 1) ]ˆ(1 ) ( 1)

stmv l l

l l stmv

l stmv l

stmv

stmv
stmv

R l R n U f U f

R n U f U f R n
R n

U f R n U f

α α

α
α α α

−

−

−

−

−
−

= − + −

− − −
= − −

+ − −



    (16) 

Utilizing Equations (15), (16) comprehensively, 1ˆ ( )stmvR n−  can be estimated 
by h l−  iterations. 

2.3. Principles of Block Iterative STMV Algorithm 
2.3.1. Inversion Algorithm of Block Matrix and Complexity Analysis 
In [9], the inversion formula of 2 2×  block matrix has been elaborated.  

Lemma Assuming that 11 12

12 22
H

A A
A

A A
 

=  
 

, 11A  and 22A  are m order Hermi-

tian matrices, 12A  is m order matrix, then 
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( ) ( ) ( )
( )( ) ( )

1 11 1 1 1 1 1
11 11 12 22 12 11 12 11 12 11 12 22 12 11 12

1
1 11 1 1

11 12 22 12 11 12 22 12 11 12

HH H

H
H H

A A A A A A A A A A A A A A A
A

A A A A A A A A A A

− −− − − − − −

−
− −− − −

 + − − − 
=  
 − − − 
 

(17) 

Noting that computing cost of multiplication is tens of times of add operation, 
so this paper only takes computational cost of multiplication into consideration. 
Assuming inversion computational cost of m order matrix, then inversion com-
putational cost of 2 2×  block matrix is 

( ) 3
2 2 4x C m m= +                        (18) 

Inversion formula and computational cost of n n×  block matrix is deduced 
below. 

Theorem 1. Assuming that 
11 12 13

12 22 23

13 23 33

H

H H

A A A
A A A A

A A A

 
 =  
  

, 11A , 22A  and 33A  are m 

order Hermitian matrices, 12A , 13A , 32A  and 33A  are m order matrix, then 

( )

1 1 1
111

1 1

H

H

A DE D DE
A

DE E

− − −

−

− −

 +
 =
 
 

                  (19) 

where ( )11 11
11 12 11 13,D A A A A− −= − − , 

( )

1 1
22 12 11 12 23 12 11 13

1 1
23 12 11 13 33 13 11 13

H H

HH H

A A A A A A A A
E

A A A A A A A A

− −

− −

 − −
 =
 − − 

, 

naming Equation (19) as “combination inversion formula”. 
Proof: Noting  

( )
( )

( )

11 11
11 12 13 11 12 11 13

11
11 12 12 22 23

11 13 23 33
11 13

11
1 1

22 12 11 12 23 12 11 13

1
23 12 11 13 33

m m m
m

H H
m m m m m

H H
H m m m

m m

m m
H H

m
HH

m

I O O A A A I A A A A
A A I O A A A O I O

A A A O O I
A A O I

A O O
O A A A A A A A A

O A A A A A A

− −

−

−

− −

−

 
 − −  
   −    
       −  

= − −

− −

11 2

2
1

13 11 13

m m

m m
H

A O
O E

A A

×

×
−

 
     =     
 
 

 

Then, 

( )

1
11 2 21

2 2 2 2

1
211 2

1
2 2 22

1 1 1
11

1 1

m m m m m m
H

m m m m m m

m m m mm m
H

m m m mm m

H

H

I D A O I O
A

O I O E D I

I D I OA O
O I D IO E

A DE D DE

DE E

−
× ×−

× ×

−
××

−
× ×

− − −

− −

     
=      
     

    
=     
    
 +
 =
  

 

where, 1E−  can be derived by Equation (17). Then inversion computational 
cost of 3 3×  block matrix is 
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( ) 3
3 2 11x x C m m= + +                       (20) 

Theorem 2. Assuming that 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

H

H H

H H H

A A A A
A A A A

A
A A A A
A A A A

 
 
 =
 
 
 

, 11A , 22A , 33A  and 

44A  are m order Hermitian matrices, 12A , 13A , 14A , 23A , 24A  and 34A  are 
m order matrix, then 

( )
1 1 1

111
1 1

H

H
A DE D DE

A
DE E

− − −
−

− −

 +
=  
  

                 (21) 

where ( )11 11 11
11 12 11 13 11 14, ,D A A A A A A− − −= − − − , 

( )
( ) ( )

1 1 1
22 12 11 12 23 12 11 13 24 12 11 14

1 1 1
23 12 11 13 33 13 11 13 34 13 11 14

1 1 1
24 12 11 14 34 13 11 14 44 14 11 14

H H H

HH H H

H HH H H

A A A A A A A A A A A A

E A A A A A A A A A A A A

A A A A A A A A A A A A

− − −

− − −

− − −

 − − − 
 = − − −
 
 − − − 

 

The proof is the same as above, where, 1E−  can be derived by Equation (19). 
Then inversion computational cost of 4 4×  block matrix is 

( ) 3
4 3 21x x C m m= + +                     (22) 

Illustration: In order to derive inversion formula of n n×  block matrix, we 
can solve 1

11A−  first and then construct matrices D and E. Noting that E is 
( ) ( )1 1n n− × −  block matrix, 1E−  can be solved by applying inversion formula 
of ( ) ( )1 1n n− × −  block matrix. By analogy, we can solve 1A−  by applying “com-
bination inversion formula” finally. This process is basement of deriving inver-
sion computational cost of block matrix.  

In summary, we consider the general formula of inversion computational cost 
of n n×  block matrix. Inversion computational cost of n n×  block matrix is 

( ) ( ) ( )23 3
1

5 31 1
2 2n nx x C m n m n m−= + + − + −           (23) 

Combining Equations (18), (20) and (22), we can derive the general formula 

( ) ( ) ( ) ( )( )3 2 31 1 4 1 3 1
2nx nC m n n n m= + − + − + −         (24) 

2.3.2. Principles of Algorithm 
Assuming that U is segmented equally into K parts, calling iU , where 1, ,i K=  . 
The length of each segment is k M K= . Then STCM ( )stmvR θ  is segmented 
equally into K K×  parts, which order of each segment is k. Considering ( )stmvR θ  
is Hermitian matrix, then Equation (12) can be represented as 

( )

1 1 1 2 1

1 2 2 2 2

1 2

h h h
H H H

K
i l i l i l

Hh h h
H H H

K
stmv i l i l i l

H Hh h h
H H H
K K K K

i l i l i l

U U U U U U

U U U U U UR

U U U U U U

θ

= = =

= = =

= = =

 
 
 
  
  =   
 
    
    
    

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑





   



     (25) 
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Assuming that STCM ˆ ( )stmvR n  estimated by using the nth snapshot is seg-
mented equally into K K×  parts, calling ˆ ( )ij

stmvR n , where , 1,...,i j K= . Con-
sidering ˆ ( )stmvR n  is Hermitian matrix, then Equation (13) can be represented 
as 

( )

( ) ( )

( )

11 12 1

12 22 2

1 2

11 12 1

12 22

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( 1) ( 1) ( 1)

( 1) ( 1)

K
stmv stmv stmv

H K
stmv stmv stmv

H HK K KK
stmv stmv stmv

K
stmv stmv stmv

H

stmv stmv stm

R R R

R R R

R R R

R R R

R R R

n n n

n n n

n n n

n n n

n n
α

 
 
 
 
 
 
 
 

=

− − −

− −





   







( ) ( )

( )

2

1 2

1 1 1 2 1

1 2 2 2 2

1 2

ˆ ˆ ˆ

1

( 1)

( 1) ( 1) ( 1)

K
v

H HK K KK
stmv stmv stmv

h h h
H H H

K
i l i l i l

Hh h h
H H H

K
i l i l i l

H Hh h h
H H H
K K K K

i l i l i l

R R R

U U U U U U

U U U U U U

U U U U U U

n

n n n

α

= = =

= = =

= = =

 
 
 
 
 
 
 
 




 
 + −  


   
   
   

−

− − −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

   







   











 
 
 
 

      (26) 

Applying inversion formula of block matrix equation to solving 1ˆ ( )stmvR n− , the 
basic principle is  

1) Solving ( ) 111ˆ ( )stmvR n
−

 by iterative Equations (15) and (16); 
2) Constructing matrices 

( ) ( )( )1 111 12 11 1ˆ ˆ ˆ ˆ( ) ( ),..., ( ) ( )K
stmv stmv stmv stmvD R R R Rn n n n

− −
= − −        (27) 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 122 12 11 12 2 12 11 1

1 12 12 11 1 1 11 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

H HK K
stmv stmv stmv stmv stmv stmv stmv stmv

HH HK K KK K K
stmv stmv stmv stmv stmv stmv stmv stmv

R R R R R R R R

E

R R R R R R R R

n n n n n n n n

n n n n n n n n

− −

− −

=

− −

− −



  



 
 
 
 
 
 
  

 (28) 

3) Applying inversion formula of block matrix to solving 1E−  recursively; 
4) Applying “combination inversion formula” to solving 1 ( )stmvR θ− .  

3. Analysis of Complexity 
3.1. Complexity of Classic STMV Algorithm 

Assuming that array number is M, the bandwidth of signal is B and CSDM is es-
timated by the frequency domain output of N snapshots. The computational cost 
of STMV is mainly focused on two parts as follows:  
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1) The CSDM is estimated with Equation (5). It should be multiplied 2M  
times at each frequency point, and 2M NB  times of multiplication operation is 
necessary in all; 

2) The following calculation is necessary for each beam while estimating spa-
tial spectrum:  

a) The STCM is estimated with Equation (6). It should be multiplied 22M  
times at each frequency point, and 22M B  times of multiplication operation is 
necessary in all; 

b) The inversion operation of STCM needs 3M  times of multiplication op-
eration, then it should be multiplied 2M M+  times while estimating spatial 
spectrum with Equation (9).  

In summary, assuming the beam number is L, then the total times of multip-
lication operation is 

( )2 3 22 1NM B M B M M L + + + +               (29) 

3.2. Complexity of Iterative STMV Algorithm 

Assuming that array number is M, the bandwidth of signal is B. The computa-
tional cost of iterative STMV algorithm is mainly focused on two parts as fol-
lows: 

1) It should be multiplied by 2M  times at each frequency point when utiliz-
ing ( ) ( ),p k kU T f X fθ=   to solve U. 2M B  times of multiplication operation 
is necessary in all; 

2) Each iteration operation needs 23M M+  times of multiplication opera-
tion at each frequency point when solving 1ˆ ( )stmvR n−  according to Equations 
(15) and (16). ( )23M M B+  times of multiplication operation is necessary in 
all, then it should be multiplied 2M M+  times while estimating spatial spec-
trum with Equation (9).  

In summary, assuming the beam number is L, then the total times of multip-
lication operation is 

( ) ( )2 4 1 1M B M B L + + +                  (30) 

3.3. Complexity of Block Iterative STMV Algorithm 

Assuming that array number is M, the bandwidth of signal is B and U is seg-
mented equally into K parts, calling iU  which length is k M K= , where 

1, ,i K=  . The computational cost of block iterative STMV algorithm is mainly 
focused on five parts as follows: 

1) It should be multiplied by 2M  times at each frequency point when utiliz-
ing ( ) ( ),p k kU T f X fθ=   to solve U. 2M B  times of multiplication operation 
is necessary in all; 

2) Each iteration operation needs 23k k+  times of multiplication operation 
at each frequency point when solving ( ) 111ˆ ( )stmvR n

−
 according to Equations (15) 

and (16). ( )23k k B+  times of multiplication operation is necessary in all; 
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3) In order to construct matrices D and E, it needs to solve 12 1ˆ ˆ( ),..., ( )K
stmv stmvR Rn n , 

22 2ˆ ˆ( ),..., ( )K
stmv stmvR Rn n , 33 3ˆ ˆ( ),..., ( )K

stmv stmvR Rn n , …, ˆ ( )KK
stmvR n . 

( ) 21
1

2
K K

k B
+ 

− 
 

 

times of multiplication operation is necessary in all; 
4) Applying inversion formula of block matrix to solving 1E−  recursively, It 

should be multiplied by ( ) ( ) ( ) ( ) ( )( )3 2 311 2 4 2 3 2
2

K C k K K K k− + − + − + −  
times; 

5) Applying “combination inversion formula” to solving 1 ( )stmvR θ− , It should 
be multiplied by ( ) ( )2 3 31 1K k K k− + −  times. Then it should be multiplied 

2M M+  times while estimating spatial spectrum with Equation (9).  
In summary, assuming the beam number is L, then the total times of multip-

lication operation is 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 2 2

3 2 23 3 3 2

1
3 1 1

2

1 2 4 2 3 2 1 1
2

K K
M B k k B k B K C k L

K K K k K k K k M M L

 + 
+ + + − + −     

 + − + − + − + − + − + + 
 

(31) 

where, the computational cost of k order inverse matrix is ( )C k , where ( ) 3C k k= . 
Considering k M K=  meanwhile, Equation (31) can be simplified to 

2 3 2
2 2

3 1 2 1 1 1
2 2 2 2

M B MB M M M L
K KK K

    + + + + − + +    
    

    (32) 

Illustration: In fact, considering ( ),p kT f θ  is diagonal matrix, the computa-
tional cost can be reduced to MB when utilizing ( ) ( ),p k kU T f X fθ=   to solve 
U. Now, the total times of multiplication operation  

2 3 2
2 2

1 1 2 1 1 11
2 2 2 2

M B MB M M M L
K KK K

      + + + + + − + +      
      

  (33) 

Assuming that the bandwidth of signal Hz5 kB =  and a beam is formed 
every two degrees. That’s to say, it should estimate spatial spectrum at 91L =  
beams. The snapshot is 4N = , 20K = . Then, the ratio of computational cost 
between the STMV algorithm and block iterative algorithm for various array 
number M are shown in Figure 1. 

The computational cost of iterative algorithm proposed in paper [8] is ap-
proximately 2 M  times of computational cost of STMV algorithm when Equ-
ation (30) is divided by Equation (29). For the same of analysis, Equations (29),  

(33) can be simplified to 32M BL , 
( )2 3 2

2 2

M B M L M BL
K

+
+ . If we take L N   

and B M  both into consideration, then the ratio of computational cost of 
two algorithms is 

( )2 3 2

3

11 12 2
4 42

M B M L M BL M
K B K

M MM BL

+
+ + +

= ≈            (34) 

https://doi.org/10.4236/jamp.2020.87103


D. Z. Zhu et al. 
 

 

DOI: 10.4236/jamp.2020.87103 1355 Journal of Applied Mathematics and Physics 
 

 
Figure 1. Ratio of computational cost of two algorithms. 

 

The computational cost of the algorithm proposed in this paper is 1 4M  
times of the computational cost of original algorithm, and 1/8 times of the 
computational cost of iterative algorithm. The computational cost drops dra-
matically when 5M  .  

4. Simulation and Analysis 
4.1. Azimuth Resolution 

The simulation conditions are listed as follows. Two sources signals and back-
ground noise defined over the same frequency band 0.05 fs - 0.25 fs are Gaussian 
white noise which are independent with each other. The signal-to-noise ratio 
(SNR) of each source is 0 dB, sampling frequency is fs and sound speed is 1500 
m/s. The receiver is a uniformly spaced linear array of 48 sensors with in-
ter-element spacing of d, corresponding to the maximum frequency. The length 
of each snapshot is 0. 8 s and the integration time of beam-former is 3.2 s, where 

2 3α = . The bearing angles of two sources are assumed in two conditions: 80˚ 
and 88˚, 80˚ and 84˚. The spatial spectrum estimated by STMV algorithm and 
block iterative STMV algorithm ( 6K = ) are shown in Figure 2. In the condition 
of their bearing angles lied at 80˚ and 84˚, both of the above algorithms are si-
mulated independently for 5 times and the results are shown in Figure 3. 

It is seen from the simulation results that compared to STMV algorithm, there 
is no significant change both on azimuth resolution and main lobe width for 
block iterative STMV algorithm. The only change is that the side lobe fluctuate 
slightly. In summary, the azimuth resolution of block iterative STMV algorithm 
has no significant decrement while the computational cost reduced sharply.  

4.2. Ability of Detecting Weak Source 

The simulation conditions are listed as follows. There is an interference lied at 
the bearing angle 100˚ with SNR = 5 dB, and weak target source lied at the bear-
ing angle 80˚. The simulation is in two conditions: SNR = −15 dB and SNR = 
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−20 dB, other parameters are the same as former. The spatial spectrum estimated 
by STMV algorithm and block iterative STMV algorithm are shown in Figure 4. 
In the condition of SNR = −20 dB, both of the above algorithms are simulated 
independently for 5 times and the results are shown in Figure 5.  

 

  
(a)                                       (b) 

Figure 2. Comparison of two algorithms on spatial spectrum. (a) Two sources lie at 80˚ 
and 88˚; (b) Two sources lie at 80˚ and 84˚. 
 

  
(a)                                       (b) 

Figure 3. Comparison of two algorithms on spatial spectrum. (a) STMV algorithm; (b) 
Block iterative STMV algorithm. 

 

  
(a)                                       (b) 

Figure 4. Comparison of two algorithms on spatial spectrum in different SNR. (a) SNR = 
5 dB and −15 dB; (b) SNR = 4 dB and −20 dB. 
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(a)                                       (b) 

Figure 5. Comparison of two algorithms on spatial spectrum. (a) STMV algorithm; (b) 
Block iterative STMV algorithm. 
 

It is seen from the simulation results that block iterative STMV algorithm in-
herits the ability to detect weak target source of STMV algorithm while decreasing 
the computational cost dramatically. Moreover, because the side lobe of spatial 
spectrum is stationary, the weak target source can be detected clearly. This algo-
rithm can realize detection of weak target source in strong coherent interference. 

5. The Sea Trial Data Analysis 

The sea trial data is analyzed to verify the adaptation and stability of the block 
iterative STMV algorithm. The trial frame is shown in Figure 6, a uniformly 
spaced linear array of 48 sensors is towed behind the towboat sailing straightly, 
whose original course is 0˚. The target 2 originally lies at about bearing angle 75˚ 
and sails in the direction of 0˚. The target 4 sails in the direction of array. During 
the experiment, shipping is busy and compared to targets 2, 4, targets 1, 3 are far 
away from the towboat whose radiated noise is weak. 

The spatial spectrum estimated with STMV algorithm and the block iterative 
STMV algorithm after the data filtered with a differential whiten filter is shown 
in Figure 7, Figure 8.  

It is not hard to see that there are five targets from Figure 7, where the target 
at bearing angle about 20˚ is towboat. For the reason that target (i.e. target 3) at 
bearing angle about 100˚ is far away from the towboat, its bearing changes slow-
ly. Target (i.e. target 1) at bearing angle about 80˚ whose bearing change fast has 
bearing crossing with target 3 at about 40 s, but these two targets can be discri-
minated during the short time before or after the crossing moment, which proves 
further the high azimuth resolution character of block iterative STMV algorithm. 
Besides, from Figure 8, we can see that there are two weak targets at bearing an-
gle about 65˚, whose bearings are first close, then far away.  

In order to further illustrate the ability to detect weak target, the spatial spec-
trum of the 27th, the 45th and the 126st moment are shown as Figures 9-11. Al-
though the SNR of target 2, and target 4 is about 20 dB lower than target 1 and 
target 3, these two weak targets still can be detected validly. 
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Figure 6. Trail frame. 

 

 
Figure 7. Diagram of STMV. 

 

 
Figure 8. Diagram of block iterative STMV. 
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Figure 9. Spatial spectrum at 27 s. 

 

 
Figure 10. Spatial spectrum at 45 s. 

 

 
Figure 11. Spatial spectrum at 126 s. 
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Multi-targets with strong and weak SNR can be detected with block iterative 
STMV algorithm in Figures 9-11. The directional index within 1 - 2 dB for 
targets and higher azimuth discrimination are improved than STMV, and the 
power on background azimuth without target is suppressed about 1dB. It’s due 
to the matrixes are added first in Equation (5) for STMV algorithm and the spec-
trum are added first in Equation (10) for block iterative STMV algorithm for the 
continuum sequence, the correlation of target’s radial signal is utilized for block 
iterative STMV algorithm and better performance is achieved. Both of the target 
signal background noise are Gaussian noise which without any correlation in 
simulation, so the same results can’t be obtained in Figure 4 and Figure 5. 

6. Conclusion 

First, the computational cost of STMV algorithm and iterative STMV algorithm 
is analyzed and their application in practical engineering is restricted due to 
huge computational cost. This paper proposed block iterative STMV algorithm 
based on one-phase regressive filter, matrix inversion lemma and inversion of 
block matrix and analyzed its computational cost, which is 1/4 M times of com-
putational cost of STMV algorithm. This algorithm maintains high azimuth res-
olution and advantage of weak target detection of STMV algorithm showed by 
simulation results. The computational cost is reduced by about 140 times if this 
algorithm is used to analyze the sea trail data of a uniformly spaced linear array 
of 48 sensors. Meanwhile this algorithm can validly detect weak targets when sev-
eral targets with very large power difference and approximate bearing angles pre-
sented. The performance of block iterative STMV algorithm which has the di-
rectional index within 1 - 2 dB for targets, the higher azimuth discrimination 
and the background azimuth power suppress about 1 dB is improved than STMV 
algorithm. It also has good robustness when processing sea trial data, which lays 
the foundation of its engineering application. 
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