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Abstract 
Further to the investigation of the critical properties of the Potts model with q 
= 3 and 8 states in one dimension (1D) on directed small-world networks 
reported by Aquino and Lima, which presents, in fact, a second-order phase 
transition with a new set of critical exponents, in addition to what was re-
ported in Sumour and Lima in studying Ising model on non-local directed 
small-world for several values of probability 0 < P < 1. In this paper the be-
havior of two models discussed previously, will be re-examined to study 
differences between their behavior on directed small-world networks for 
networks of different values of probability P = 0.1, 0.2, 0.3, 0.4 and 0.5 with 
different lattice sizes L = 10, 20, 30, 40, and 50 to compare between the im-
portant physical variables between Ising and Potts models on the directed 
small-world networks. We found in our paper that is a phase transitions in 
both Ising and Potts models depending essentially on the probability P. 
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1. Introduction 

Networks of coupled dynamics systems have been used to numerically model 
many self-organizing systems, such as biological oscillators, neural networks, 
spatial games and genetic control networks [1] and the references therein. With 
resourceful computing fascicles using modeling techniques such as Monte Carlo 
codes [2], the simulation of the small-world networks become doable [3] [4] 
showed that the Ising model and Potts Model on a small-world (SW) network 
presents a phase transition well defined at a finite temperature. [2] studied the 
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Potts model with q = 3 and 4 states on directed small-world networks (DSWN) 
as a function of temperature. [5] covered the Potts model for q = 4 and had 
found a first-order phase transition for values of the rewiring probability P = 0.1 
and P = 0.9 that agree with the [6]. 

In the directed small world networks, each node is randomly reconnected 
with n edges with probability P. In this paper, we employed values of probability 
as (P = 0.01, 0.2, 0.3, 0.4, 0.5), and the lattice size (L = 10, 20, 30, 40, 50), and 
adopted values from both Ising and Potts model in purpose of comparison be-
tween them.  

According to reference [7], Potts model in two-dimension (2D) presents a 
phase transition at finite temperature T, for any number of states q > 1, and as in 
reference [8]. Ising model on non-local directed small-world lattices has a 
second-order phase transition with new critical exponents dependent on p (0 < p 
< 1). 

Most of all of researches in Ising and Potts models studied the magnetization, 
susceptibility, fourth-order Binder Cumulant, and energy. All of these parame-
ters were studied as a function of temperature. There parameters are determined 
and analyzed for both models [4] [8] to study the similarities and differences 
between them. The behavior of these models on the directed small-world net-
works for networks is covered. 

2. Model and Simulations 

In our simulations, values and shapes are adopted as in [9] these parameters are 
doable. We start our simulations for different values of L and P as follows: L = 10, 
20, and 40 and probability P = 0.1, 0.2, 0.3, 0.4, & 0.5, with magnetization as a 
function of temperature (0 to 4) in Kelvin. As a case study P = 0.3, was chosen to 
be plotted herein. We shall now define all parameters on the two models as de-
fined in statistical physics as listed below:  

2.1. Ising Model on Non-Local Directed Small-World Networks 

For Ising model we considered here the molar magnetization m, as 

iim Lσ= ∑ , where iσ  is a spin variable at each node of the network, and L is 
the length of a linear chain where. 

,
av

m m =                            (1) 

the susceptibility 

( ) 22

av

LT m m
T

χ  = −                      (2) 

and the fourth-order Binder Cumulant 

( )
4

4 21
3
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m
U T

m

 
 = −
 
 

                     (3) 

In the above equations ...  stand for thermodynamic averages and [ ]... av  
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for averages over different realizations. To calculate the exponents of these mod-
els, we apply the finite-size scaling (FSS) theory [10]. We expect, for large system 
sizes, an asymptotic FSS behavior of the form: 

( )[ ]1 ,v
mm L f xβ−= +                     (4) 

( )[ ]1 ,vL f xγ
χχ = +                      (5) 

where β  and γ  are the usual critical exponents, and ( )if x  are FSS func-
tions with 

( ) 1 ,v
cx T T L= −                        (6) 

being the scaling variable. The dots in the brackets [ ]1+  indicate corrections 
to scaling terms. We calculated the error bars from the fluctuations among the 
different realizations. Therefore, from the size dependence of M and χ , we ob-
tain the exponents ratios vβ  and vγ , respectively. The susceptibility at its 
maximum also scales as vLγ   

Moreover, the value of q for which χ  has a maximum, ( )max
c cT T Lχ =  

scales with the lattice size as: 

( ) 1 v
C CT L T bL−= +                      (7) 

where b is a non-universal constant.  
The correlation length exponent 1/v can be estimated from Equation (7). 

2.2. Potts Model on Non-Local Directed Small-World Networs 

For Potts model as in reference [8], we use the energy per spin, e = E/N, and the 
magnetization per spin, m = M/N with [ ]( ) ( )max 1iM q n N q= − − , were eva-
luated. Here in N≤  denotes the number of spins with “orientation” 1, ,i q=  . 
From the energy measurements, we can compute the average energy, specific 
heat, and energetic cumulant. 

( ) 
av

u T e=                            (8) 

( ) ( )22
2 avav

NC T e e
T

 = −                       (9) 
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                   (10) 

Similarly, we can derive from the magnetization measurements the average 
magnetization, the susceptibility, and the fourth-order magnetic Cumulant, 

( )
av

m T m =                        (11) 
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In order to calculate the exponents for this model, we applied the finite-size 
scaling (FSS) theory, and for large system sizes we got [9] 

( ) ( )[ ]1reg CC C T L f xα ν= + + ,                (14) 

( )[ ]1mav
m L f xβ ν−  = +   ,                (15) 

( ) ( )[ ]1reg T L f xγ ν
χχ χ= + + ,               (16) 

where Creg(T) and χreg(T) are regular temperature dependent background terms. 
ν, α, β, and γ are the usual critical exponents, and fi(x), with i = C, m, χ, p, are 
FSS functions with 

( ) 1x K Kc L ν= −                      (17) 

being the scaling variable, and K = J/kBT. We calculated the error bars from 
the fluctuations among the different realizations. Note that these errors contain 
both the average thermodynamic error for a given realization, and the theoreti-
cal variance for infinitely accurate thermodynamic averages which are caused by 
the variation of the quenched random geometry of the networks. 

For both Ising and Potts models from the magnetization, we can investigate 
other measures such as the average magnetization, susceptibility and the 
fourth-order Binder Cumulant, for probability p = 0.5 to 1. and for Potts model 
the phase transition is always first order. For probability p = 0.5 to 1 and for Is-
ing, the code doesn’t work well. And for both models and p = 1 the networks are 
not a small world, they are a complex network.  

3. Results and Discussion 

When all plots and probability values are done, the magnetization behavior 
shows a very small change. On the other hand, when the size of L = 10, 20, and 
40 the changes in Figure 1 show that the magnetization of Potts model (left plots 
in Figure 1) decayed faster than Ising model (right plot in Figure 1), the values 
of magnetization varies slowly with temperatures after 2.1 kelvin. 

Also, we determined the “flatness” of the curves of Potts and Ising model as 
(−0.76), and (−2.87) respectively, and we find that Ising and Potts model illu-
strates a continuous phase transition and the decay behavior of magnetization 
which agrees with magnetization universality. 

Moreover, we plot the susceptibility as function of temperature (0 to 4) in 
Klein for L = 10, 20, and 40 and probability = 0.1, 0.2, 0.3, 0.4, 0.5, a case study of 
is presented as P = 0.3, and we take the log scale for the y-axis because there is 
variation in values. Figure 2 shows a shift in the peak as the lattice size (L) in-
creases, the peak of L = 40 is taking the maximum peak of all values, and for Is-
ing model the average peak is at 2.5 while for Potts model is at 1.1, and the shape 
of the peak for Potts model more sharp than the Ising model.  

Figure 3 shows the behavior of energy versus temperature (0 to 4 ) for L = 10, 
20, and 40 and probability = 0.1, 0.2, 0.3, 0.4, 0.5, P = 0.3 is again our sample plot, 
we can see a typical behavior attesting for a first-order phase transition in the 
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range of all P values, and we see a variation at the beginning point of Ising model 
at x-axis = 1.39363, but Potts model at 0.575685 and intersection at the point (x 
= 2.8783, y = −0.844846 and we noticed that the energy of Potts model after 
temperature of 2 Kelvin becomes more stable than the Ising model after T = 2.5 
Kelvin. 

Figure 4 shows the Fourth-order Binder Cumulant (U4) as a function of 
Temperature (0 to 4) for several lattice sizes L = 10, 20, and 40 and probability = 
0.1, 0.2, 0.3, 0.4, & 0.5 and we plot as a sample P = 0.5. Also, we notice a conti-
nuous phase transition for all values. We notice that for Potts model at L = 40 
there is a sharp peak concave down at 1.9 temperature. 

The actual values of the magnetization for each L to Ising and Potts model for 
the probability P = 0.3 as shown in Table 1, from these values we get Figure 5 
which shows the difference between the values of magnetization of Ising and 
Potts model with lattice size for sample probability P = 0.3. Also, we can clearly 
see that the exponent is, within the errors, independent of P, in agreement with 
universality ideas [8].  

In Table 1 and from our simulation that used huge computing time and space, 
the magnetization values for both Ising and Potts Model for three Lattices sizes 
(10, 20 and 40) is tabulated in Table 1.  

Figure 5 shows that the values of magnetization of Ising model is larger and 
varies with the magnetization of the Potts model, but the values of magnetiza-
tion of Potts model is stable.  

 
Table 1. The values of magnetization for Ising and Potts model with different lattice sizes 
(L). 

Magnetization for Potts Magnetization for Ising L 

0.11721970000000800 0.90832949499980631 10 

5.83670812499994876E-002 0.91423680999999635 20 

2.92451515624998562E-002 0.914494221875002 40 

 

 
Figure 1. Magnetization versus temperature for sizes L = 10, 20, and 40 with 
rewiring probability p = 0.3. 
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Figure 2. Susceptibility versus temperature for sizes L = 10, 
20, and 40 with rewiring probability p = 0.3. 

 

 
Figure 3. Shows the behavior of energy versus temperature (0 to 4) 
for L = 10, 20, and 40 and probability = 0.1, 0.2, 0.3, 0.4, 0.5, P = 0.3. 

 

 
Figure 4. Fourth-order Binder Cumulant (U4) temperature 
for sizes L = 10, 20, and 40 with rewiring probability p = 0.5. 

 

 
Figure 5. Lattice size (L) versus Magnetization (M) for sizes L 
= 10, 20, and 40 with rewiring probability p = 0.3. 
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4. Conclusion 

The Potts and Ising models are studied for different Lattice sizes and different 
probability on non-local directed small-world networks, including long-range 
interaction between spins depending on the probability P. We found a phase 
transitions in both Ising and Potts models depending essentially on the proba-
bility P. This behavior is the influence of long-range interactions that occur in 
the presence of P directed bonds and also the number of the Potts model states 
on the directed SW network. The change in the universality of these models can 
be described as the influence of directed non local interactions that occur with 
the presence of P directed bonds [11]. 
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