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velling wave solutions of the higher order dispersive Cubic-quintic nonlinear

studied by using the two methods. Finally, the solitary wave solutions, singu-
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1. Introduction

The nonlinear PDE is an important model for describing the problems of Non-
linear phenomenon, such as hydrodynamics, plasma physics, chemical dynamics,
photobiology, solid physics, Marine and atmospheric phenomena, and so on. It
can be seen from these fields that the travelling wave solutions of nonlinear evo-
lution equations play an important role in the study. In order to find the exact
solutions of nonlinear partial differential Equations (PDEs), pioneers presented
the following these methods, such as the first integral method [1], Jacobi elliptic
function expansion method [2], F expansion method [3], exp-function method
[4], the Kudryashov method [5], the improved (G'/G)-expansion method [6],
the tanh-coth method [7], tanh-sech method [8], projective Riccati equation
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method [9], Kudryashov method [10], sine-cosine method [11], Hirota bilinear
method [12], bifurcation theory method of dynamic systems [13] and so on.

In this article, we consider the higher order dispersive Cubic-quintic nonli-
near Schrodinger Equation (NLSE), see [14] and the generalized nonlinear
Schrédinger Equation (GNLSE), see [15]:

iq, _%qtt N |q|2 q_i%qttt _%qmr +7, |q|4 q=0, (1)
and
i, —ru,, +c |u|2 u= i[(so +s, |u|2 )u} — s |u|4 u. 2)

where B,,05;,5,.71,72:15,C5,C5,8,,8, are real constants. g, u are complex func-
tions.

In 2014, Kudryashov [16] substantiated that the (G'/G)-expansion method
together with the linear ordinary differential equation
G"-AG"-uG=0,1,ueR is identical to the well-known tanh-method. Fur-
thermore, In 2014, Alam and Akbar [17] [18] researched extremely significant
extension of the (G'/G)-expansion method to receive exact travelling wave so-
lutions of nonlinear evolution equations, For the new mapping method, scholars
introduced this method, see [19] [20] [21], and gave the specific solving process
for nonlinear PDE.

For the higher order dispersive Cubic-quintic NLSE, In 2017, Zayed and No-
wehy [22] incorporated the solution Ansatz method with the Jacobi elliptic equ-
ation method to obtain several integrations denoted Jacobi elliptic function of
the equation. In 2017, Arshad, sedawy and Lu [23] used an improved direct al-
gebraic extension method to present bright and dark wave solutions and soliton
wave solutions of higher order dispersive Cubic-quintic NLSEs. In addition,
there is an amount of paper [24] [25] [26] where the various types of the equa-
tion are studied. For the GNLSE, In 2010, Geng and Li by using the dynamic
system method and bifurcation theory, studies the travelling wave solution of the
GNLSE and high order dispersion NLSE. the solitary wave solutions, kink and
reverse kink wave solutions and periodic wave solutions are obtained. In 2007,
Huang, Li and Zhang [27] through the study a class of nonlinear term six times
of first order nonlinear ODE and applies it to the GNLSE. New accurate travel-
ing wave solutions, such as light and dark isolated wave solutions, triangular pe-
riodic wave solutions and singular solutions are obtained. In addition, this
GNLSE was studied, see [28] [29] [30].

The rest of the article is organized as follows: Section 2, we mainly describe
the basic idea of the special kind of (G'/G)-expansion method and the new
mapping method briefly. In Section 3 and 4, we use these two methods to solve
two NLSEs in detail. Some conclusions are drawn in Section 4.

2. Introduction of Two Methods

Method 1: The special kind of (G'/G)-expansion method.
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Consider the general nonlinear PDE of the form:

P(u,ul,ux,u u, U u)m,---):O. (3)

xx 27t U xt 2

where Pis a polynomial in its arguments.

In order to transform the Equation (3) into an ODE, we suppose that

u(x,t)=u(&),&=x—ct. (4)
where c is a constant, then
0 0 0 0 0? , 0
5(')——C%(')’a(')—%(‘)’y(‘)—c o ()5 (5)

Step 1: According to above supposing, the Equation (3) has the following non-
linear ODE form:

Q(u,ué,ugé,u-):O. (6)

where the subscript denotes the derivation with respectto ¢&.

Step 2: Suppose that the Equation (6) has non-integer balance number N. the
solution of the Equation (6) can be written in the following special form, see [31]
[32] [33]:

”(§)=Q(EJN- (7)

where G(gg ) satisfies the linear ODE:
G"(£)+ 4G (£)+ uG (&) = 0. (8)

Step 3: Firstly, determining the balance number N by balancing the high order

derivative and the highest power of the nonlinear term in Equation (6).
Step 4: Then, substituting the Equations (7) and (8) into the Equation (6), and

G'(¢)

make the coefficients of l:—} all zero, and get a set of algebraic equations,

G(¢)

which can be solved by Maple software to find Q, A4, u,c .

G,
Step 5: Finally by solving Equation (8) for [%} ratio, the Equation (3)
exact solutions are obtained.
Method 2: The new mapping method.

Step 1: We suppose that the Equation (6) has the formal solution:
w(©)=F(p(¢)). ©)

where Fis an appropriate variable transformation, and (p(f ) satisfies the fol-
lowing equation:

B

Zot () + 5ot (8). (10)

9 (&)=6+ap’ (&)+ 3

where 6,a, [,y are arbitrary constant to be determined.
Step 2: It can be seen from the solution [34] that the Equation (9) has the for-

mal solutions with  #0.
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—Ottanh2 € —§J 35 6o
a
H,oc<0,ﬂ>0,;/—160!,5—27ﬂ. (11)
3,8 3+tz;1nh2 e ——(f
—acoth2 € —5} s oo
a
H ,a<0,5>0,y ~loa ,0 = 275 (12)
3ﬂ 3+coth2 e ——5
atan’| e §J 3,82 L6
a
P, (&)=4 { [ Hoc>0/)’<0 L6a ,0 = 275 (13)
38| 3—tan?| ¢, |%&
3
a cot? [e ?éJ 34 L6
a
%(5)—4 { ( = H,05>0,,B<0,;/—16a,é'—27ﬁ. (14)
3B|3—cot’| € ;5
-2a 35°
¢5(§)=\/—[l+tanh(e\/55)}a>0,7/=E,5=0. (15)
_ 2 _3
= 7 1+coth(e«/i§)} a>0,y—16a,5—0. (16)
—6asech’ «/75)
-,a>0,0=0. 17)
387 —day 1+etanh(f§)}
6aBcsch’ \/75)
—a>0,6=0. (18)
382 —day 1+ec0th(x/_§ﬂ
\/ —60:sech2 \/—§>
,a>0,7>0,06=0. (19)
38 +4e\Bay tanh f;;)
\/ 6acsch x/_cf)
(010 ,a>0,7>0,06=0. (20)
30 +4e 3a;/coth x/_éf)
_6asech2(\/$§) 0 .50 1)
P ) v b (daz) © <77 070
—6acsch? (\/Ef) 0 .50 2)
7 ()= prdeSaycom(Noag)
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€0 cosh(2x/E§)—3

0 (5) _, 3aesech(2\/;§) ’
a JO —3¢fsech (2Vaé)

¢13(§)=2\/ 3o ﬂ,a>0,Q>0,5=0. (23)

a>0,0>0,6=0. (24)

(5) _, 3asech® (e\/;:f)
7 2J0 ~(JJO +3)sech (V)

(5 3acsch’ (e«/gf)
785G + (O —3p)ese” (e

(5) ~ —3asech’ (ex/—_f)
(/717 - (\/> 3 )sech’ (e«/_.f)
Drs (5) = 2\/
3a

)
—3acsch? (e\/_ )
)
7 (£)= 2\/6 0 cos(2\/$§)—3ﬂ

a>0,5<0,y<0,0>0,6=0.(25)

a>0,8<0,y<0,0>0,6=0.(26)

,a<0,4>0,y<0,0>0,6=0.(27)

,a<0,8>0,y<0,0>0,6=0.(28)

(\/_+3,B csch? (e@f)

,a<0,0>0,0=0. (29)

3a

I
2\]6 Osin(ev-at)-3p

(5) _, 3ae sec(Z\/J(f)
P - \/é—kﬂ sec(2\/$§)

(9‘) _, 3aecsc(2x/$§)
P - \/5—3eﬂcsc(2\/$§)’

0y (&)= ,a<0,0>0,6=0. (30)

,a<0,0>0,6=0. (31)

a<0,0>0,06=0. (32)

) I 3a
\je -0 cos(Z\/gé)—3ﬂ

where Q=94 -48ay,e==1.
Step 3: Substituting the solutions (11) - (33) into Equation (9) to get the exact

D3 (5) =

,a<0,0>0,0=0. (33)

solutions of Equation (3).

3. Application of the Special Kind of (G'/G)-Expansion
Method

In this section, we apply the special kind of (G'/G)-expansion method to solve
the two higher order NLSE.
Firstly, for Equation (1). We suppose that the Equation (1) has the following

solution:
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q(Z,t)= go(é‘)e"(iz_”’t). (34)

where £=pZ—vt.And p,v,A,w are real parameters, go(§) is real function.
Substituting Equation (34) into Equation (1), and putting imaginary and real
part are zero respectively:

(B, —,B4w)v3go’"+(6p —6B,yw—3Byw’ + fow’ )go' =0, (35)

BVio™ + (—6ﬂ4vzw2 +128 0 w+128,7 )(p"

(36)
+(-128,W + 242 4B + Bw' ) p—247,0° —247,0° =0.

Differentiating Equation (35) once, and substituting the resultant equation
into Equation (36), we let k, =(B,— B,w)v’, k, =6p—6Byw=3Bvw’ + fow’,
ky =—6B°W +128°w+128v*  and  k, =—128,w* +24A 48w + Bw' .
then we can get

o' - 24y,k, s 24yk o+ kyk,
kiks = Bv'k, ks = Bv'k, kiky = Bv'k,

p=0. (37)

Multiplying (37) by ¢'(&) and integrating once with respect to &, we have
the auxiliary equation:
9" (8) =0, + 0,07 (&) +0.0" (§)+ 0,0 (£), (38)
kyky _ 12yk _ 87,k
4 > 0-4 - 4 > 66 - 4 b
kiky — Bk, kiky — Bk, kiky — Bk,
and ¢ is the integral constant.

where o, =2¢, 0, =~

Secondly, for Equation (2), We suppose that the Equation (2) has the follow-

ing solution:
u(x,t)= go(ff)e"(x’”"). (39)

where £=x—At.And A,® arereal parameters.
Substituting Equation (39) into Equation (2), and putting real and imaginary

part are zero respectively:
(272 —ﬂ—s0)¢'—332¢)2¢’:0, (40)
r2(0”+(w+so_72)(0+(c3+Sz)(03+Cs(05:0~ (41)

Integrating Equation (40) once, and substituting the resultant equation into
Equation (41),

"

o4 O =4

Sp+Sg =0 (42)
n 6 n
Multiplying (42) by ¢'(£) and integrating once with respect to &, we have
the auxiliary equation:

9" (8) =0y +0,0" (&) +0.0" (§)+ 0,0 (£), (43)
If we make again o, =2¢, 0, :—m, o, =—c—3, o, =—C—5, and
r 2r, 3r,

¢ is the integral constant.
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Then, Observed Equations (38) and (43), to find the exact solutions of the
them, we only need to discuss one of these equations. Next, we will give the
solving process of the Equation (38).

Now we will use the special (G'/G) expansion method to solve Equation

(38), therefore, according to Section 2 as follows: Balancing ¢'> with ¢°

yields N = %, then Equation (38) solution has the following solution:

(&) :Q(%T' (44)

where Q is the constant to be determined, G(ff) satisfy Equation (8), Subs-
tituting Equation (44) and Equation (8) into Equation (38), we get the following

1 1 3
_lm(ijz _lgﬂ(ij : _lQ(£j2
2 G 2 G 2 \G

!’ !’ 2 !’ 3
=0, +0,Q (Qj +o0,0 (Sj +0,Q° (—j .
G G G

By comparing the power coefficient of the Equation (45), we can get the alge-

equation:

2

(45)

braic equations:

o

o] gt
G'Y 1

(Ej :Zgzlz—i- Qu=o0,0
-1

(%) :%szz =0 (46)
N3

(%) :%Q2 =0,Q°

G'Y 1

(Ej 2592120'494

Using Maple solving them, we can obtain the following coefficients:

2
4=0,0,=0,0,= L2200 = 4 ;% (47)
4 20, P

Then, the new exact solution of Equation (38) is:

9(¢)= {%[ Q exp(-48) )H;_ (48)

4y, Q, +Q, exp(—ﬂf

where, Q, and €, are arbitrary integral constants and &= pZ —vt.
In particular, If we choose €, =, =1, then we can get the dark soliton solu-

tions of Equation (38):
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[ kik :

If we choose Q) =Q, =-1, then we can get the singular soliton solutions

Equation (38):
_ 3y, —kk, :
p(&)= {—472 (licoth[é }—k1k3 e B] ) (50)

kk,

—————<0,and
kiky — Bk,

where satisfy the constraint condition: y,y, >0,

E=pZ—vt.

4. Application of the New Mapping Method

In this section, we apply the new mapping method to solve the two higher order
NLSE.
Firstly, we rewrite the Equation (38) to take the following form:

s

0% (£)=0,+ar’ (£)+ 70 (£)+L0° (), (51)
k,k 24,k 24y, k
where J, =2¢, a=—+, = }/”4 > V= 72 14 > 6
kiky = Bk, kiky — Bk, kiky — Bk,

is the integral constant.
According to Section 2, the method is applied to Equation (51), then the solu-

tion of Equation (51) is obtained as follows:

2 2
1) If a<0,8> 0,7/:%,5: 16a , Then, we derive from Equation (11)
16a 278
and Equation (12) that Equation (51) has the solitary wave solutions:
1
kk 1|?
tanh’ 5\/_3(1{]( 1 ; ” )
2k 115 = PyV Ky
0(&)=15." , (52)
e kk
3+tanh’| & -
3(kiky = 'y )
and
1
i kk 1|*
coth? £ _+
2%, 3(kiky - Bk, )
o(&)=13" : (53)
e kk
3+coth’| & -
3(kiky - Bk, )
kik. 160’
where satisfy the constraint condition: yk, >0, ———=——<0, ¢ = ba ,
ki, — vk, 545
and &=pZ-vt.
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2 1 2
) If a>0,p<0,y=5 5162
16a’" 278

and Equation (14) that Equation (51) has the periodic solutions:

, Then, we derive from Equation (13)

1

i 12
tan®| & 3(kkklk;4k)
2k 115 = PV Ky
o(&)=1-" : (54)
2 kk
3—tanh’| & Y
3(kky - By )
and
1
I kk 1|2
C0t2 5 |—44
2k, 3(k1k3 - By kz)
o(&)=1-5" : (55)
97 kk
3—cot?| & |
4
3(kkey = Bk, )
k k 2
where satisfy the constraint condition: y,k, <0, + >0, ¢= 16_a ,
kk, — Bk, 548
and &=pZ-vt.

35
3NIf a>0,y=
) 4 16

,0 =0, Then, we derive from Equation (15) and Equation

(16) that Equation (51) has the Dark soliton solutions:

and the singular soliton solutions:

k [ Kk :

kk,
—_— >
kiky = Bk,

where satisfy the constraint condition: »,k, >0, 0, =0,

and £=pZ-vt.
4)If a>0,0=0, Then, we derive from Equation (17) and Equation (18) that

Equation (51) has the solitary wave solutions:

3y,k,sech’| & —L“Z‘
kiks = B,v°k,

p(&)= , (58)

2
, kk
367> +| 27, k,| 1+etanh -4
7 7> 4( € (‘f k1k3—ﬂ4v4k2jJ

and the singular soliton solutions:

0=
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N —

—3;/1k4csch2[§ ,—W)
kky = Byv°k,
(&)=

)
f kK.
36y +| 2y,k, | 1+ecoth| & [-—4
N 72 4( (é k1k3—,34v4k2 ]]
. . . kik,
where satisfy the constraint condition: yk, <0, y,k, >0, ——————<0,
kky = pyv7k,

=0, e=xl,and &=pZ-vt.

5)If «>0,y>0,0=0, Then, we derive from Equation (19) and Equation
(20) that Equation (51) has the solitary wave solutions:

k,sech’ (5 —k‘k“4]
¢(§) _ kiky — Bk,

o] —

; (60)
kk
12y, +4e\/%tanh[§ ’_kllg—lﬂiv%]
and
1
_k4csch2[§ _kkflgv“kj 2
9(¢)= e (61)

, kk
12}/1 +4€w,—2}/2k4 Coth(é —m]
173 4 2

where the Equation (60) satisfy the constraint condition: y, >0, k, >0,
kk,

k, <0, —————<0, ¢=0, e=*l,and &=pZ—vt.
Vaky k1k3—/34v4k2 1 S=p

where the Equation (61) satisfy the constraint condition: y, >0, k, <0,

kk,

k,<0,—————<0, ¢=0, e=xl,and &=pZ—t.
VaKy k1k3—,34v4k2 1 E=p

6) If ¢<0,y>0,0=0, Then, we derive from Equation (21) and Equation
(22) that Equation (51) has the periodic solutions:

k,sec’| & /L“
kiky — Bk,
(&)= — , (62)
12y, +4e 27k, t /'74
V1T ALY Ky an{f k1k3—ﬁ4v4k2j

ks °S°2[‘f\/kkk'§4k]
- B,
(&)= — kzk , (63)
12y, +4e(2y,k, cot {$
Vi Yeun [f k]k3—ﬂ4v4k2]

where satisfy the constraint condition: », >0, k, >0, y,k, >0,

N —

and

=
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p(&)=

p(¢&)=

kk,
ks = Bv'k,
7)If >0,0>0,0=0, Then, we derive from Equation (23) and Equation
(24) that Equation (51) has the bright soliton solutions:

k.k
—k,sech| 28 |-———F——
kiky = B,vk,

>0, ¢=0, e=%xl,and &=pZ-vt.

=

7e)= = : (64)
2977 +2y,k, —6ey;sech| 26 [-—4
kiky = Byv 'k,
i s cps k1k4
where satisfy the constraint condition: k, <0, y,k, >0, ——————<0,
kiky — Bk,

=0, e=xl,and &=pZ-vt.
8)If ¢>0,6<0,y<0,0>0,0=0, Then, we derive from Equation (25) and
Equation (26) that Equation (51) has the bright soliton solutions:

—k,sech’ [ef /—klk““J
kiky = p,v'k,

[

, (65)
477 + 275k, | 2077 + 213k, + 6, [sech? | e S
kiky = Bk,
and the singular soliton solutions:
1
2
—k,csch? (ef /—WJ
kiky — Bk, . (66)

4,972 + 27k, +[2\/9}/12 +2y,k, —67/1}csch2 [ef f—kkk‘g%]
115~ PaV Ky

kk
where satisfy the constraint condition: &, <0, 7k, >0, ———+——<0
ks — Bk,
=0, e=xl,and &=pZ—vr.

NI a<0,4>0,y<0,0>0,0=0, Then, we derive from Equation (27) and

Equation (28) that Equation (51) has the periodic solutions:

k,sec’| €& L“A‘
kiky = Bk,

S

p(¢)= , (67)
4\/9;/12 +2y,k, —[2\/9712 +2y,k, —671}5602 el kK
kky _ﬁ4v4k2
and
1
2
by ose” [egx/kkkl?ztk]
-Bv
o(§)= R , (68)

Ik
409,212 k—[292+2 k +6 ]cscze S L7 B
\/ 7 Yeun \/ Vi oun 7 g k]k3—ﬂ4v4k2
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kk,

— >0,
kiky — Bk,

where satisfy the constraint condition: &, >0, y,k, >0,

=0, e=xl,and &=pZ—vr.
10) If @ <0,0>0,6=0, Then, we derive from Equation (29) and Equation
(30) that Equation (51) has the periodic solutions:

—k, sec (25 klk“}

N =

ki, — Bk
@(5): s =Py 2kk ’ (69)
24971 +2y,k, —6¢y, sec(2§ 144}
kiky =Bk,
and
L
2
o2 [ B
- By
0(£)= = . (70
2977 + 27k, —6epk csc| 28 |4
kiky — Bk,
. . . kk,
where satisfy the constraint condition: k, <0, y,k, >0, —————>0,
kiky = Byv'k,

=0, e=xl,and &=pZ-vt.

5. Conclusion

The special kind of (G'/ G) -expansion, the new mapping method successfully
solved the higher order dispersion nonlinear schrodinger equation and the ge-
neralized nonlinear schrodinger equation, and new exact travelling wave solu-
tions are obtained. It includes the solitary wave solutions, singular soliton solu-
tions, bright and dark soliton solutions and periodic solutions. Compared with
other methods, it is an effective method to solve the exact traveling wave solu-

tion, therefore, this method can be extended to solve other nonlinear PDEs.
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