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Abstract 
The special kind of ( )G G′ -expansion method and the new mapping me-
thod are easy and significant mathematical methods. In this paper, exact tra-
velling wave solutions of the higher order dispersive Cubic-quintic nonlinear 
Schrödinger equation and the generalized nonlinear Schrödinger equation are 
studied by using the two methods. Finally, the solitary wave solutions, singu-
lar soliton solutions, bright and dark soliton solutions and periodic solutions 
of the two nonlinear Schrödinger equations are obtained. The results show 
that this method is effective for solving exact solutions of nonlinear partial 
differential equations. 
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1. Introduction 

The nonlinear PDE is an important model for describing the problems of Non-
linear phenomenon, such as hydrodynamics, plasma physics, chemical dynamics, 
photobiology, solid physics, Marine and atmospheric phenomena, and so on. It 
can be seen from these fields that the travelling wave solutions of nonlinear evo-
lution equations play an important role in the study. In order to find the exact 
solutions of nonlinear partial differential Equations (PDEs), pioneers presented 
the following these methods, such as the first integral method [1], Jacobi elliptic 
function expansion method [2], F expansion method [3], exp-function method 
[4], the Kudryashov method [5], the improved ( )G G′ -expansion method [6], 
the tanh-coth method [7], tanh-sech method [8], projective Riccati equation 
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method [9], Kudryashov method [10], sine-cosine method [11], Hirota bilinear 
method [12], bifurcation theory method of dynamic systems [13] and so on. 

In this article, we consider the higher order dispersive Cubic-quintic nonli-
near Schrödinger Equation (NLSE), see [14] and the generalized nonlinear 
Schrödinger Equation (GNLSE), see [15]: 

2 432 4
1 2 0,

2 6 24Z tt t t t t t t tiq q q q i q q q q
ββ β

γ γ− + − − + =           (1) 

and 

( )2 2 4
2 3 0 2 5 .t x x

x
iu r u c u u i s s u u c u u − + = + −  

           (2) 

where 2 3 4 1 2 2 3 5 0 2, , , , , , , , ,r c c s sβ β β γ γ  are real constants. q, u are complex func-
tions. 

In 2014, Kudryashov [16] substantiated that the ( )G G′ -expansion method 
together with the linear ordinary differential equation  

0, ,G G Gλ µ λ µ′′ ′− − = ∈ℜ  is identical to the well-known tanh-method. Fur-
thermore, In 2014, Alam and Akbar [17] [18] researched extremely significant 
extension of the ( )G G′ -expansion method to receive exact travelling wave so-
lutions of nonlinear evolution equations, For the new mapping method, scholars 
introduced this method, see [19] [20] [21], and gave the specific solving process 
for nonlinear PDE. 

For the higher order dispersive Cubic-quintic NLSE, In 2017, Zayed and No-
wehy [22] incorporated the solution Ansatz method with the Jacobi elliptic equ-
ation method to obtain several integrations denoted Jacobi elliptic function of 
the equation. In 2017, Arshad, sedawy and Lu [23] used an improved direct al-
gebraic extension method to present bright and dark wave solutions and soliton 
wave solutions of higher order dispersive Cubic-quintic NLSEs. In addition, 
there is an amount of paper [24] [25] [26] where the various types of the equa-
tion are studied. For the GNLSE, In 2010, Geng and Li by using the dynamic 
system method and bifurcation theory, studies the travelling wave solution of the 
GNLSE and high order dispersion NLSE. the solitary wave solutions, kink and 
reverse kink wave solutions and periodic wave solutions are obtained. In 2007, 
Huang, Li and Zhang [27] through the study a class of nonlinear term six times 
of first order nonlinear ODE and applies it to the GNLSE. New accurate travel-
ing wave solutions, such as light and dark isolated wave solutions, triangular pe-
riodic wave solutions and singular solutions are obtained. In addition, this 
GNLSE was studied, see [28] [29] [30]. 

The rest of the article is organized as follows: Section 2, we mainly describe 
the basic idea of the special kind of ( )G G′ -expansion method and the new 
mapping method briefly. In Section 3 and 4, we use these two methods to solve 
two NLSEs in detail. Some conclusions are drawn in Section 4. 

2. Introduction of Two Methods 

Method 1: The special kind of ( )G G′ -expansion method. 
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Consider the general nonlinear PDE of the form:  

( ), , , , , , , 0.t x x x t t xt x x xP u u u u u u u =                    (3) 

where P is a polynomial in its arguments. 
In order to transform the Equation (3) into an ODE, we suppose that 

( ) ( ), , .u x t u x ctξ ξ= = −                        (4) 

where c is a constant, then 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2 2, , , .c c

t x tξ ξ ξ
∂ ∂ ∂ ∂ ∂ ∂

⋅ = − ⋅ ⋅ = ⋅ ⋅ = ⋅
∂ ∂ ∂ ∂ ∂ ∂

           (5) 

Step 1: According to above supposing, the Equation (3) has the following non-
linear ODE form: 

( ), , , 0.Q u u uξ ξξ =
                        (6) 

where the subscript denotes the derivation with respect to ξ . 
Step 2: Suppose that the Equation (6) has non-integer balance number N. the 

solution of the Equation (6) can be written in the following special form, see [31] 
[32] [33]: 

( ) .
NGu

G
ξ

′ = Ω 
 

                        (7) 

where ( )G ξ  satisfies the linear ODE: 

( ) ( ) ( ) 0.G G Gξ λ ξ µ ξ′′ ′+ + =                   (8) 

Step 3: Firstly, determining the balance number N by balancing the high order 
derivative and the highest power of the nonlinear term in Equation (6). 

Step 4: Then, substituting the Equations (7) and (8) into the Equation (6), and 

make the coefficients of 
( )
( )

G
G

ξ
ξ

′ 
 
  

 all zero, and get a set of algebraic equations, 

which can be solved by Maple software to find , , ,cλ µΩ . 

Step 5: Finally by solving Equation (8) for 
( )
( )

G
G

ξ
ξ

′ 
 
  

 ratio, the Equation (3) 

exact solutions are obtained. 
Method 2: The new mapping method. 
Step 1: We suppose that the Equation (6) has the formal solution:  

( ) ( )( ).u Fξ ϕ ξ=                        (9) 

where F is an appropriate variable transformation, and ( )ϕ ξ  satisfies the fol-
lowing equation: 

( ) ( ) ( ) ( )2 2 4 6 .
2 3
β γϕ ξ δ αϕ ξ ϕ ξ ϕ ξ′ = + + +            (10) 

where , , ,δ α β γ  are arbitrary constant to be determined. 
Step 2: It can be seen from the solution [34] that the Equation (9) has the for-

mal solutions with 0γ ≠ . 
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( )

2
2 2

1
2

tanh
3 3 164 , 0, 0, , .

16 27
3 3 tanh

3

αα ξ
β αϕ ξ α β γ δ
α βαβ ξ

 
− −  

 = < > = =
  
+ −      




 

 (11) 

( )

2
2 2

2
2

coth
3 3 164 , 0, 0, , .

16 27
3 3 coth

3

αα ξ
β αϕ ξ α β γ δ
α βαβ ξ

 
− −  

 = < > = =
  
+ −      





  (12) 

( )

2
2 2

3
2

tan
3 3 164 , 0, 0, , .

16 27
3 3 tan

3

αα ξ
β αϕ ξ α β γ δ
α βαβ ξ

 
  
 = > < = =

  
−      





   (13) 

( )

2
2 2

4
2

cot
3 3 164 , 0, 0, , .

16 27
3 3 cot

3

αα ξ
β αϕ ξ α β γ δ
α βαβ ξ

 
  
 = > < = =

  
−      





   (14) 

( ) ( )
2

5
2 31 tanh , 0, , 0.

16
α βϕ ξ αξ α γ δ
β α
−  = + > = =         (15) 

( ) ( )
2

6
2 31 coth , 0, , 0.

16
α βϕ ξ αξ α γ δ
β α
−  = + > = =         (16) 

( )
( )

( )

2

7 2
2

6 sech
, 0, 0.

3 4 1 tanh

αβ αξ
ϕ ξ α δ

β αγ αξ

−
= > =

 − + 
        (17) 

( )
( )

( )

2

8 2
2

6 csch
, 0, 0.

3 4 1 coth

αβ αξ
ϕ ξ α δ

β αγ αξ
= > =

 − + 
        (18) 

( )
( )

( )
2

9

6 sech
, 0, 0, 0.

3 4 3 tanh

α αξ
ϕ ξ α γ δ

β αγ αξ

−
= > > =

+ 
       (19) 

( )
( )

( )
2

10

6 csch
, 0, 0, 0.

3 4 3 coth

α αξ
ϕ ξ α γ δ

β αγ αξ
= > > =

+ 
       (20) 

( )
( )

( )
2

11

6 sech
, 0, 0, 0.

3 4 3 tanh

α αξ
ϕ ξ α γ δ

β αγ αξ

− −
= < > =

+ − −
      (21) 

( )
( )

( )
2

12

6 csch
, 0, 0, 0.

3 4 3 coth

α αξ
ϕ ξ α γ δ

β αγ αξ

− −
= < > =

+ − −
      (22) 
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( ) ( )13
32 , 0, 0, 0.

cosh 2 3
Q

Q
αϕ ξ α δ
αξ β

= > > =
−

       (23) 

( )
( )

( )14

3 sech 2
2 , 0, 0, 0.

3 sech 2
Q

Q

α αξ
ϕ ξ α δ

β αξ
= > > =

−




       (24) 

( )
( )

( ) ( )
2

15 2

3 sech
2 , 0, 0, 0, 0, 0.

2 3 sech
Q

Q Q

α αξ
ϕ ξ α β γ δ

β αξ
= > < < > =

− +




(25) 

( )
( )

( ) ( )
2

16 2

3 csch
2 , 0, 0, 0, 0, 0.

2 3 csch
Q

Q Q

α αξ
ϕ ξ α β γ δ

β αξ
= > < < > =

+ −




(26) 

( )
( )

( ) ( )
2

17 2

3 sech
2 , 0, 0, 0, 0, 0.

2 3 sech
Q

Q Q

α αξ
ϕ ξ α β γ δ

β αξ

− −
= < > < > =

− − −




(27) 

( )
( )

( ) ( )
2

18 2

3 csch
2 , 0, 0, 0, 0, 0.

2 3 csch
Q

Q Q

α αξ
ϕ ξ α β γ δ

β αξ

− −
= < > < > =

− + −




(28) 

( ) ( )19
32 , 0, 0, 0.

cos 2 3
Q

Q
αϕ ξ α δ
αξ β

= < > =
− −

         (29) 

( ) ( )20
32 , 0, 0, 0.

sin 3
Q

Q
αϕ ξ α δ
αξ β

= < > =
− − 

         (30) 

( )
( )

( )21

3 sec 2
2 , 0, 0, 0.

3 sec 2
Q

Q

α αξ
ϕ ξ α δ

β αξ

−
= < > =

− −




         (31) 

( )
( )

( )22

3 csc 2
2 , 0, 0, 0.

3 csc 2
Q

Q

α αξ
ϕ ξ α δ

β αξ

−
= < > =

− −




         (32) 

( ) ( )23
32 , 0, 0, 0.

cos 2 3
Q

Q
αϕ ξ α δ
αξ β

= < > =
− −

         (33) 

where 29 48 , 1Q β αγ= − = ± . 
Step 3: Substituting the solutions (11) - (33) into Equation (9) to get the exact 

solutions of Equation (3). 

3. Application of the Special Kind of ( )′G G -Expansion  
Method 

In this section, we apply the special kind of ( )G G′ -expansion method to solve 
the two higher order NLSE. 

Firstly, for Equation (1). We suppose that the Equation (1) has the following 
solution:  
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( ) ( ) ( ), e .i Z wtq Z t λϕ ξ −=                       (34) 

where pZ vtξ = − . And , , ,p v wλ  are real parameters, ( )ϕ ξ  is real function. 
Substituting Equation (34) into Equation (1), and putting imaginary and real 

part are zero respectively: 

( ) ( )3 2 3
3 4 2 3 46 6 3 0,w v p vw vw vwβ β ϕ β β β ϕ′′′ ′− + − − + =         (35) 

( )
( )

4 2 2 2 2
4 4 3 2

2 3 4 3 5
2 3 4 1 2

6 12 12

12 24 4 24 24 0.

v '''' v w v w v

w w w

β ϕ β β β ϕ

β λ β β ϕ γ ϕ γ ϕ

′′+ − + +

+ − + − + − − =
      (36) 

Differentiating Equation (35) once, and substituting the resultant equation 
into Equation (36), we let ( ) 3

1 3 4k w vβ β= − , 2 3
2 2 3 46 6 3k p vw vw vwβ β β= − − + , 

2 2 2 2
3 4 3 26 12 12k v w v w vβ β β= − + +  and 2 3 4

4 2 3 412 24 4k w w wβ λ β β= − + − + . 
then we can get 

5 32 1 1 1 4 1
4 4 4

1 3 4 2 1 3 4 2 1 3 4 2

24 24
0.

k k k k
k k v k k k v k k k v k

γ γ
ϕ ϕ ϕ ϕ

β β β
′′ − − + =

− − −
     (37) 

Multiplying (37) by ( )ϕ ξ′  and integrating once with respect to ξ , we have 
the auxiliary equation: 

( ) ( ) ( ) ( )2 2 4 6
0 2 4 6 ,ϕ ξ σ σ ϕ ξ σ ϕ ξ σ ϕ ξ′ = + + +             (38) 

where 0 12σ =  , 4 1
2 4

1 3 4 2

k k
k k v k

σ
β

= −
−

, 1 1
4 4

1 3 4 2

12 k
k k v k

γ
σ

β
=

−
, 2 1

6 4
1 3 4 2

8 k
k k v k

γ
σ

β
=

−
, 

and 1  is the integral constant. 

Secondly, for Equation (2), We suppose that the Equation (2) has the follow-
ing solution:  

( ) ( ) ( ), e .i x tu x t ωϕ ξ −=                      (39) 

where x tξ λ= − . And ,λ ω  are real parameters. 
Substituting Equation (39) into Equation (2), and putting real and imaginary 

part are zero respectively: 

( ) 2
2 0 22 3 0,s sγ λ ϕ ϕ ϕ′ ′− − − =                 (40) 

( ) ( ) 3 5
2 0 2 3 2 5 0.r s c s cϕ ω γ ϕ ϕ ϕ′′ + + − + + + =           (41) 

Integrating Equation (40) once, and substituting the resultant equation into 
Equation (41), 

3 53 52

2 2 2

0.
c c

r r r
ω γ λ

ϕ ϕ ϕ ϕ
+ −′′ + + + =               (42) 

Multiplying (42) by ( )ϕ ξ′  and integrating once with respect to ξ , we have 
the auxiliary equation: 

( ) ( ) ( ) ( )2 2 4 6
0 2 4 6 ,ϕ ξ σ σ ϕ ξ σ ϕ ξ σ ϕ ξ′ = + + +             (43) 

If we make again 0 12σ =  , 2
2

2r
ω γ λ

σ
+ −

= − , 3
4

22
c
r

σ = − , 5
6

23
c
r

σ = − , and 

1  is the integral constant. 
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Then, Observed Equations (38) and (43), to find the exact solutions of the 
them, we only need to discuss one of these equations. Next, we will give the 
solving process of the Equation (38). 

Now we will use the special ( )G G′  expansion method to solve Equation 
(38), therefore, according to Section 2 as follows: Balancing 2ϕ′  with 6ϕ   

yields 1
2

N = , then Equation (38) solution has the following solution:  

( ) ( )
( )

1
2

.
G
G

ξ
ψ ξ

ξ
′ 

= Ω  
 

                     (44) 

where Ω  is the constant to be determined, ( )G ξ  satisfy Equation (8), Subs-
tituting Equation (44) and Equation (8) into Equation (38), we get the following 
equation: 

21 1 3
2 2 2

2 3
2 4 6

0 2 4 6

1 1 1
2 2 2

.

G G G
G G G

G G G
G G G

λ µ

σ σ σ σ

− ′ ′ ′      − Ω − Ω − Ω      
       

′ ′ ′     = + Ω + Ω + Ω     
     

         (45) 

By comparing the power coefficient of the Equation (45), we can get the alge-
braic equations: 

0
2

0

1
2 2 2 2

2

1
2 2

3
2 6

6

2
2 4

4

1:
2

1 1:
4 2

1: 0
4

1:
4

1:
2

G
G

G
G

G
G

G
G

G
G

λµ σ

λ µ σ

µ

σ

λ σ

−

 ′  Ω = 
 


′  Ω + Ω = Ω  
 ′  Ω = 
 
 ′  Ω = Ω  

 ′  Ω = Ω 
 

               (46) 

Using Maple solving them, we can obtain the following coefficients:  
2

2 2 4
0 2

4 6

10, 0, , , .
4 2

σλµ σ σ λ λ
σ σ

= = = Ω = =            (47) 

Then, the new exact solution of Equation (38) is:  

( ) ( )
( )

1
2

11

2 0 1

exp3
.

4 exp
λξγ

ϕ ξ
γ λξ

  Ω −
=    Ω +Ω −   

             (48) 

where, 0Ω  and 1Ω  are arbitrary integral constants and pZ vtξ = − . 
In particular, If we choose 0 1 1Ω = Ω = , then we can get the dark soliton solu-

tions of Equation (38):  
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( )

1
2

1 1 4
4

2 1 3 4 2

3
1 tanh .

4
k k

k k v k
γ

ϕ ξ ξ
γ β

   −
 = ±    −    

            (49) 

If we choose 0 1 1Ω = Ω = − , then we can get the singular soliton solutions 
Equation (38): 

( )

1
2

1 1 4
4

2 1 3 4 2

3
1 coth .

4
k k

k k v k
γ

ϕ ξ ξ
γ β

   −
 = ±    −    

            (50) 

where satisfy the constraint condition: 1 2 0γ γ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
, and  

pZ vtξ = − . 

4. Application of the New Mapping Method 

In this section, we apply the new mapping method to solve the two higher order 
NLSE. 

Firstly, we rewrite the Equation (38) to take the following form: 

( ) ( ) ( ) ( )2 2 4 6
0 ,

2 3
β γϕ ξ δ αϕ ξ ϕ ξ ϕ ξ′ = + + +             (51) 

where 0 12δ =  , 4 1
4

1 3 4 2

k k
k k v k

α
β

= −
−

, 1 1
4

1 3 4 2

24 k
k k v k

γ
β

β
=

−
, 2 1

4
1 3 4 2

24 k
k k v k

γ
γ

β
=

−
, 1  

is the integral constant. 
According to Section 2, the method is applied to Equation (51), then the solu-

tion of Equation (51) is obtained as follows: 

1) If 
2 23 160, 0, ,

16 27
β αα β γ δ
α β

< > = = , Then, we derive from Equation (11) 

and Equation (12) that Equation (51) has the solitary wave solutions: 

( )
( )

( )

1
2

2 1 4
4

1 3 4 2
4

1
2 1 4

4
1 3 4 2

tanh
32

,
9

3 tanh
3

k k
k k v kk

k k
k k v k

ξ
β

ϕ ξ
γ

ξ
β

   
   −
   −   =       + −   −    

        (52) 

and 

( )
( )

( )

1
2

2 1 4
4

1 3 4 2
4

1
2 1 4

4
1 3 4 2

coth
32

,
9

3 coth
3

k k
k k v kk

k k
k k v k

ξ
β

ϕ ξ
γ

ξ
β

   
   −
   −   =       + −   −    

        (53) 

where satisfy the constraint condition: 1 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
, 

2

1
16
54
α
β

= , 

and pZ vtξ = − . 
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2) If 
2 23 160, 0, ,

16 27
β αα β γ δ
α β

> < = = , Then, we derive from Equation (13) 

and Equation (14) that Equation (51) has the periodic solutions:  

( )
( )

( )

1
2

2 1 4
4

1 3 4 2
4

1
2 1 4

4
1 3 4 2

tan
32

,
9

3 tanh
3

k k
k k v kk

k k
k k v k

ξ
β

ϕ ξ
γ

ξ
β

   
   
   −   = −      −   −    

          (54) 

and 

( )
( )

( )

1
2

2 1 4
4

1 3 4 2
4

1
2 1 4

4
1 3 4 2

cot
32

,
9

3 cot
3

k k
k k v kk

k k
k k v k

ξ
β

ϕ ξ
γ

ξ
β

   
   
   −   = −      −   −    

           (55) 

where satisfy the constraint condition: 1 4 0kγ < , 1 4
4

1 3 4 2

0
k k

k k v kβ
>

−
, 

2

1
16
54
α
β

= , 

and pZ vtξ = − . 

3) If 
230, , 0

16
βα γ δ
α

> = = , Then, we derive from Equation (15) and Equation 

(16) that Equation (51) has the Dark soliton solutions:  

( )

1
2

4 1 4
4

1 1 3 4 2

1 tanh .
12

k k k
k k v k

ϕ ξ ξ
γ β

   
 = ±    −    

             (56) 

and the singular soliton solutions: 

( )

1
2

4 1 4
4

1 1 3 4 2

1 coth .
12

k k k
k k v k

ϕ ξ ξ
γ β

   
 = ±    −    

             (57) 

where satisfy the constraint condition: 1 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
>

−
, 1 0= ,  

and pZ vtξ = − . 

4) If 0, 0α δ> = , Then, we derive from Equation (17) and Equation (18) that 
Equation (51) has the solitary wave solutions: 

( )

1
2

2 1 4
1 4 4

1 3 4 2

2

2 1 4
1 2 4 4

1 3 4 2

3 sech
,

36 2 1 tanh

k kk
k k v k

k kk
k k v k

γ ξ
β

ϕ ξ

γ γ ξ
β

 
  

−   −  =  
     + + −      −     



     (58) 

and the singular soliton solutions: 
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( )

1
2

2 1 4
1 4 4

1 3 4 2

2

2 1 4
1 2 4 4

1 3 4 2

3 csch
,

36 2 1 coth

k kk
k k v k

k kk
k k v k

γ ξ
β

ϕ ξ

γ γ ξ
β

 
  

− −   −  =  
     + + −      −     



     (59) 

where satisfy the constraint condition: 1 4 0kγ < , 2 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
,  

1 0= , 1= ± , and pZ vtξ = − . 

5) If 0, 0, 0α γ δ> > = , Then, we derive from Equation (19) and Equation 
(20) that Equation (51) has the solitary wave solutions:  

( )

1
2

2 1 4
4 4

1 3 4 2

1 4
1 2 4 4

1 3 4 2

sech
,

12 4 2 tanh

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ ξ
β

  
−   −  =  

  + − −   −  


       (60) 

and 

( )

1
2

2 1 4
4 4

1 3 4 2

1 4
1 2 4 4

1 3 4 2

csch
,

12 4 2 coth

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ ξ
β

  
− −   −  =  

  + − −   −  


       (61) 

where the Equation (60) satisfy the constraint condition: 1 0γ > , 4 0k > ,  

2 4 0kγ < , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
, 1 0= , 1= ± , and pZ vtξ = − . 

where the Equation (61) satisfy the constraint condition: 1 0γ > , 4 0k < ,  

2 4 0kγ < , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
, 1 0= , 1= ± , and pZ vtξ = − . 

6) If 0, 0, 0α γ δ< > = , Then, we derive from Equation (21) and Equation 
(22) that Equation (51) has the periodic solutions:  

( )

1
2

2 1 4
4 4

1 3 4 2

1 4
1 2 4 4

1 3 4 2

sec
,

12 4 2 tan

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ ξ
β

  
   −  =  

  +    −  


         (62) 

and 

( )

1
2

2 1 4
4 4

1 3 4 2

1 4
1 2 4 4

1 3 4 2

csc
,

12 4 2 cot

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ ξ
β

  
   −  =  

  +    −  


         (63) 

where satisfy the constraint condition: 1 0γ > , 4 0k > , 2 4 0kγ > ,  
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1 4
4

1 3 4 2

0
k k

k k v kβ
>

−
, 1 0= , 1= ± , and pZ vtξ = − . 

7) If 0, 0, 0Qα δ> > = , Then, we derive from Equation (23) and Equation 
(24) that Equation (51) has the bright soliton solutions:  

( )

1
2

1 4
4 4

1 3 4 2

2 1 4
1 2 4 1 4

1 3 4 2

sech 2
,

2 9 2 6 sech 2

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ γ ξ
β

  
− −   −  =  

  + − −   −  


      (64) 

where satisfy the constraint condition: 4 0k < , 2 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
,  

1 0= , 1= ± , and pZ vtξ = − . 

8) If 0, 0, 0, 0, 0Qα β γ δ> < < > = , Then, we derive from Equation (25) and 
Equation (26) that Equation (51) has the bright soliton solutions:  

( )

1
2

2 1 4
4 4

1 3 4 2

2 2 2 1 4
1 2 4 1 2 4 1 4

1 3 4 2

sech
,

4 9 2 2 9 2 6 sech

k kk
k k v k

k kk k
k k v k

ξ
β

ϕ ξ

γ γ γ γ γ ξ
β

  
− −   −  =  

   + − + + −       −  





 (65) 

and the singular soliton solutions: 

( )

1
2

2 1 4
4 4

1 3 4 2

2 2 2 1 4
1 2 4 1 2 4 1 4

1 3 4 2

csch
,

4 9 2 2 9 2 6 csch

k kk
k k v k

k kk k
k k v k

ξ
β

ϕ ξ

γ γ γ γ γ ξ
β

  
− −   −  =  

   + + + − −       −  





 (66) 

where satisfy the constraint condition: 4 0k < , 2 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
<

−
,  

1 0= , 1= ± , and pZ vtξ = − . 

9) If 0, 0, 0, 0, 0Qα β γ δ< > < > = , Then, we derive from Equation (27) and 
Equation (28) that Equation (51) has the periodic solutions:  

( )

1
2

2 1 4
4 4

1 3 4 2

2 2 2 1 4
1 2 4 1 2 4 1 4

1 3 4 2

sec
,

4 9 2 2 9 2 6 sec

k kk
k k v k

k kk k
k k v k

ξ
β

ϕ ξ

γ γ γ γ γ ξ
β

  
   −  =  

   + − + −        −  





(67) 

and 

( )

1
2

2 1 4
4 4

1 3 4 2

2 2 2 1 4
1 2 4 1 2 4 1 4

1 3 4 2

csc
,

4 9 2 2 9 2 6 csc

k kk
k k v k

k kk k
k k v k

ξ
β

ϕ ξ

γ γ γ γ γ ξ
β

  
   −  =  

   + − + +        −  





(68) 
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where satisfy the constraint condition: 4 0k > , 2 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
>

−
,  

1 0= , 1= ± , and pZ vtξ = − . 

10) If 0, 0, 0Qα δ< > = , Then, we derive from Equation (29) and Equation 
(30) that Equation (51) has the periodic solutions: 

( )

1
2

1 4
4 4

1 3 4 2

2 1 4
1 2 4 1 4

1 3 4 2

sec 2
,

2 9 2 6 sec 2

k kk
k k v k

k kk
k k v k

ξ
β

ϕ ξ

γ γ γ ξ
β

  
−   −  =  

  + −    −  


      (69) 

and 

( )

1
2

1 4
4 4

1 3 4 2

2 4
1 2 4 1 1 4

1 3 4 2

csc 2
,

2 9 2 6 csc 2

k kk
k k v k

kk k
k k v k

ξ
β

ϕ ξ

γ γ γ ξ
β

  
−   −  =  

  + −    −  


     (70) 

where satisfy the constraint condition: 4 0k < , 2 4 0kγ > , 1 4
4

1 3 4 2

0
k k

k k v kβ
>

−
,  

1 0= , 1= ± , and pZ vtξ = − . 

5. Conclusion 

The special kind of ( )G G′ -expansion, the new mapping method successfully 
solved the higher order dispersion nonlinear schrodinger equation and the ge-
neralized nonlinear schrodinger equation, and new exact travelling wave solu-
tions are obtained. It includes the solitary wave solutions, singular soliton solu-
tions, bright and dark soliton solutions and periodic solutions. Compared with 
other methods, it is an effective method to solve the exact traveling wave solu-
tion, therefore, this method can be extended to solve other nonlinear PDEs. 
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