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Abstract 
In this paper, we considered the equality problem of weighted Bajraktarević 
means with weighted quasi-arithmetic means. Using the method of substituting 
for functions, we first transform the equality problem into solving an equiva-
lent functional equation. We obtain the necessary and sufficient conditions for 
the equality equation. 
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1. Introduction 

Let I ⊆   be a nonempty open interval. The weighted quasi-arithmetic mean 
2:A I Iϕ →  is defined by: 

( ) ( ) ( ) ( )( )1
; , : 1 , , ,ϕ λ ϕ λϕ λ ϕ−= + − ∈A x y x y x y I

 
where ( )0,1λ ∈  and : Iϕ →   is a continuous strictly monotone function. 

Let ,t s +∈ , the weighted two-variable Bajraktarević mean 2
, :f gB I I→  is 

defined by: 

( ) ( ) ( )
( ) ( )

1

, ; , , : , , ,
−  + 

= ∈    +   
f g t s

tf x sf yfB x y x y I
g tg x sg y  

where , :f g I →   are two continuous functions such that g is nowhere zero 

on I and the ratio function f
g

 is strictly monotone on I. 

The research on the equality of Bajraktarević means has experienced a long 
history. As early as 1958, Bajraktarević [1] solved the equality of n-variable qua-
si-arithmetic means with weight function for a fixed 3n ≥ , and got the neces-
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sary and sufficient condition under twice differentiable assumption. Aczél and 
Daróczy [2] obtained the same result without differentiability conditions when 
the equality holds for all 2n ≥ , n∈ . The case of fixed 2n =  is much more 
difficult and allows considerably more solutions. Losonczi [3] got 32 new families 
of solution under the six-time differentiable supposition. Several new characte-
rizations of the equality of two-variable Bajraktarević means have been obtained 
by Losonczi, Páles and Zakaria in [4] under the same regularity assumptions. Re-
cently, Páles and Zakaria [5] obtained the same conclusion under only first-order 
differentiability. Grünwald and Páles [6] considered the equality problem of ge-
neralized Bajraktarević means. 

We say that two pairs of functions ( ) 2, :f g I →   and ( ) 2, :h k I →   are 
equivalent if there exist constants , , ,a b c d  with ad cd≠  such that: 

 , ,h af bg k cf dg= + = +  (1) 

and it can be written by ( ) ( ), ~ ,f g h k . 
We will consider the equality problem of weighted Bajraktarević mean to 

weighted quasi-arithmetic means, that is: 

 ( ) ( ), ; , ,, , , , ,G F t s hB x y A x y x y Iλ= ∈  (2) 

Applying G/H to the both sides of (2) and substituting 1:f F h−= 
,  

1:g G h−= 
 and : g

f
ϕ = , we get an equivalent formulation of (2) as follows: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 , , .tf x sf y x y tf x x sf y y x y Iϕ λ λ ϕ ϕ+ ⋅ + − = + ∈  (3) 

For the case 
1 ,
2

t sλ = = , this equation was considered and solved in [7] un-

der strict monotonicity and continuity of ϕ  and in [8] under continuity of ϕ , 
respectively. For the case 1λ = = −t s , this equation was solved in [9]. 

2. Some Necessary Conditions 

Lemma 1. Let : Iϕ →   be a strictly monotone function, :f I →   be an 
arbitrary function, and ,t s +∈ , ( )0,1λ ∈ . Assume that the functional Equa-
tion (3) holds, then either f is identically zero, or f is nowhere zero, f and ϕ  are 
infinitely many times differentiable and there exists a nonzero constant γ ∈  
such that: 

 ,f µϕ γ′ =  (4) 

where 

 
( )

( )( ) ( )
1

: 0, .
1
s t

t s
λ λ

µ
λ λ

+ −
= ∈ +∞

− +
 (5) 

Proof. If f is identically zero, then (3) holds. Now, we assume that there exists 
a point y0 such that f does not vanish at y0. Then, for x I∈  with 0x y≠ , the 
convex combination ( ) 01x yλ λ+ −  is strictly between the values x and y0. 
Therefore, by the strict monotonicity of ϕ , we have that  
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( )( ) ( )( ) ( ) ( )( )( )0 0 01 1 0x y x y x yϕ λ λ ϕ ϕ ϕ λ λ+ − − ⋅ − + − > . Then, it follows 
from (3), that 

 ( ) ( )
( ) ( )( )

( )( ) ( )
0 0

0
0

1
.

1
y x ysf x f y

t x y x
ϕ ϕ λ λ

ϕ λ λ ϕ

− + −
= ⋅ ⋅

+ − −
 (6) 

This implies that ( )f x  is nonzero for all x I∈ , furthermore, ( )f x  has the 
same sign as ( )0f y , i.e. the sign of f is constant. 

In what follows, we prove that, at every point of I, the function f is continuous 
at every point where ϕ  is continuous. Denote by Dϕ  the set of discontinuity 
point of ϕ . Then, the monotonicity of ϕ  implies that Dϕ  is countable. 

Let 0x I∈  be fixed. Then, ( )0 1x Iλ λ+ −  is a subinterval of I, hence, \I Dϕ  
intersects ( )0 1x Iλ λ+ − . There, exists an element 0y I∈  such that  

( )0 01 \x y I Dϕλ λ+ − ∈ . Thus, ϕ  is continuous at ( )0 01x yλ λ+ − . Therefore, 
(6) yields that f is continuous at 0x . Hence, f is continuous almost everywhere. 
On the other hand, f is bounded an every compact subinterval of I, it follows that 
f is Riemann integrable on every compact subinterval of I. 

Let 
10
2

Iα< <  and ( ) ( ):I I Iα α α= − ∩ + . Then, Iα  is an nonempty in-

terval and [ ],I Iα α α+ − ⊆ . Let u Iα∈ , [ ],v α α∈ −  and substituting  

( ): 1x u vλ= − −  and :y u vλ= +  into (3), we obtain that: 

( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )
1

1 1 ,

λ λ ϕ

λ ϕ λ λ ϕ λ

− − + +

= − − − − + + +

tf u v sf u v u

tf u v u v sf u v u v
 

holds for all u Iα∈  and for all [ ],v α α∈ − . 
Integrating both sides of the above equation on [ ],v α α∈ − , it follows that: 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )

1 d

1 1 d d .

α

α
α α

α α

ϕ λ λ

λ ϕ λ λ ϕ λ

−

− −

− − + +

= − − − − + + +

∫

∫ ∫

u tf u v sf u v v

t f u v u v v s f u v u v v
 

After simple change of the variable transformations, for all u Iα∈ , we get: 

 ( ) ( )
( )

( )
( )1 1

1 11 1
u u u u

u u u u

t s t su f f f f
λ α λα λ α λα

λ α λα λ α λα
ϕ ϕ ϕ

λ λ λ λ
+ − + + − +

− − − − − −

 + = ⋅ + ⋅ − − ∫ ∫ ∫ ∫  (7) 

Hence, ϕ  is continuously differentiable on Iα . Since 
10
2

Iα< <  is arbi-

trary, it follows that ϕ  is continuously differentiable and f is continuous on 

0
I Iαα >

=


. By (6), the continuous differentiability of ϕ  implies that f is also 

continuously differentiable. 
Now, we show that ϕ  and f are twice continuously differentiable. Differen-

tiating (3) with respect to x, we have: 

 
( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( )
1 1

, , .

x y tf x sf y t x y f x

tf x x x y I

λϕ λ λ ϕ λ λ

ϕ

′ ′+ − ⋅ + + + − ⋅

′ ′= ∈
 (8) 

Substituting ( ): 1x u vλ= − −  and :y u vλ= +  into the above equation and in-
tegrating both sides on [ ],v α α∈ − , we get: 
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( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 d

1 d 1 d , .

α

α

α α
αα α

λϕ λ λ

ϕ λ ϕ λ

−

− −

′ − − + +

′′= − − − + − − ∈

∫

∫ ∫

u tf u v sf u v v

t u f u v v t f u v v u I
 

After similar change of the variable transformations as (7), for all u Iα∈ , we 
obtain: 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

1

1

1 1

1 1

1

1 1

λ α λα

λ α λα

λ α λ α

λ α λ α

λϕ
λ λ

ϕ ϕ
λ λ

+ − +

− − −

+ − + −

− − − −

 ′ + − 

′′= − +
− −

∫ ∫

∫ ∫

u u

u u

u u

u u

t su f f

t tu f f
 

Thus, ϕ  is twice continuously differentiable on Iα  and hence on I. Then, 
by (6), this result implied that f is two times continuously differentiable on I. 

To prove that ϕ  and f are infinitely many times differentiable, differentiate 
(8) with respect to y, we get: 

 
( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )
1 1

1 1 0.

x y tf x sf y

x y sf y tf x

λ λϕ λ λ

ϕ λ λ λ λ

′′− + − ⋅ +

′ ′ ′+ + − + − =
 (9) 

Substituting :y x= , we get: 

 ( )( ) ( )( )1 1 0,t s f s t fλ λ ϕ λ λ ϕ′′ ′ ′− + + + − =  (10) 

which is equivalent with 

( ) 0,f µϕ ′′ =  

where 
( )

( )( )
1

: 0
1
s t

t s
λ λ

µ
λ λ

+ −
= >

− +
. 

Hence, there exists a real constant γ  such that f µϕ γ′ = . If γ  were zero, 
then this equation would imply that ϕ′  is identically zero, which contradicts the 
strict monotonicity of ϕ . As a consequence, (4) holds. Finally, using (4) and (6) 
repeatedly, we get that ϕ  and f are infinitely many times differentiable.   

Lemma 2. Let : Iϕ →   be a strictly monotone function, :f I →   be a 
non-identically-zero function, and ,t s +∈ , ( )0,1λ ∈ . If ( ), fϕ  solves (3), 

then we have t
t s

λ =
+

. And what’s more, µ  defined by (5) equals 2. 

Proof. Differentiating (9) with respect to x, we obtain: 

 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )2

2 1 1

1 1

1 1 0

sf y tf x x y

tf x x y

tf x sf y x y

λ λ λ ϕ λ λ

λ ϕ λ λ

λ λ ϕ λ λ

′ ′ ′′+ − ⋅ + −

′′ ′+ − ⋅ + −

′′′+ − + ⋅ + − =

 (11) 

Inserting :y x= , it follows that: 

 ( )( ) ( )( ) ( )22 1 1 1 0.t s f t s f tfλ λ λ ϕ λ λ ϕ λ ϕ′ ′′ ′′′ ′′ ′− + + − + + − =  (12) 

On the other hand, differentiating (9) with respect to x, we obtain: 

 
( )( ) ( )( )
( )( ) ( )( )
1 1

1 1 0.

t s s t f

t s f s t f

λ λ λ λ ϕ

λ λ ϕ λ λ ϕ

′ ′′− + + + −

′′′ ′′ ′+ − + + + − =
 (13) 
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Combing (12) and (13), we conclude that: 

 ( ) ( )( ) ( )( )221 1 0.t s t f s t fλ λ λ ϕ λ λ ϕ′ ′′ ′′ ′− + − + − − =  (14) 

Firstly, we assume: 

 ( ) ( )( ) ( )221 0, 1 0,t s t s tλ λ λ λ λ− + − ≠ − − ≠  (15) 

then Equation (14) can be rewritten by: 

 ,f
f

ϕ τ
ϕ
′′ ′′
=

′ ′
 (16) 

where ( )
( ) ( )( )

2 21
: 0

1
t s
t s t

λ λ
τ

λ λ λ
− −

= ≠
− + −

. 

Integrating the above equation, we obtain that there exists a constant  

{ }1 \ 0c ∈  such that: 

 1 .c f τϕ′ ′=  (17) 

By (17) and (4), letting 
1

1

0k
c

τ
γ 

= ≠ 
 

, we get: 

.f kf
µ
τ

−
′ =  

Solving the above equation, we get there exist constants 1 3,k k ∈  with 1 0k ≠  
such that: 

 ( )
( )

1

2 3

e , 0,

, 0,

kxk
f x

k x k
τ

µ τ

µ τ

µ τ+

 + == 
+ + ≠

 (18) 

where 2 :k k
τ

µ τµ τ
τ

++ = ⋅ 
 

. 

Using (4) and (18), we obtain that there exist constants 1 2,b b ∈  such that: 

 ( )
( )

1 1

1

2 3 2

e , 0,

, 0,

kxa b
x

a x k b

µ

µτ
µ τ

µ τ
ϕ

µ τ

−

−
+

 + + =
= 
 + + + ≠

 (19) 

where ( )1 1:a kk µγ µ= − , 2 2: 1a k µ µτγ
µ τ

  
= −  +  

. 

For the case 0µ τ+ = , substituting (18) and (19) into (3), we obtain: 

 ( )( ) ( ) ( ) ( )1 1 1e e e e e .k x y kx kykx kyt s t sµ λ λ µ µ− + − − −+ = +  (20) 

Comparing the coefficients of x after we make Taylor expansion of the above 
equation, we can get that: 

( ) ,λ= +t t s  
which leads to contradictions with (15). 

Similarly, for the case 0µ τ+ ≠ , substituting (18) and (19) into (3) and com-
paring the coefficients, we can get: 
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1,µτ
µ τ

=
+  

that is ( ) 2 2x a bϕ = + , which leads to contradictions with the assumption of ϕ  
strictly monotone function. 

Secondly, we assume: 

 ( ) ( )( ) ( )221 0, 1 0,t s t s tλ λ λ λ λ− + − ≠ − − =  (21) 

then Equation (14) can be rewritten by: 
 0.f ϕ′ ′′ =  (22) 

Combing (4) and (25), it leads to 0f ϕ′ ′′= = . Therefore, there exits , ,a b c∈  
with 0a ≠  such that: 

( ) ( ), , .ϕ= = + ∈f x c x ax b x I  
Substituting the above equations into (3) and comparing the coefficients of x, 

we obtain: 

( ) ,λ= +t t s  
which leads to contradictions with (21). 

Thirdly, we assume: 

 ( ) ( )( ) ( )221 0, 1 0,t s t s tλ λ λ λ λ− + − = − − ≠  (23) 

that is: 

 , ,t t s
t s

λ = ≠
+

 (24) 

then Equation (14) can be rewritten by: 
 0.f ϕ′′ ′ =  (25) 

Using (5), (24) leads to 2µ = . Due to (4), ϕ′  is nowhere zero. Therefore, 
0f ′′ =  on I. Then, there exist ,a b∈  such that: 

 ( ) ( ) , .f x a x b x I= + ∈  (26) 

Using (4) and 2µ = , we get there exist 1c ∈  such that: 

 ( ) ( ) 1
1 1,x a x b cϕ −= + +  (27) 

where 2
1 :a aγ −= − . 

When ,f ϕ  satisfy (26) and (27), respectively, it is easy to verify that (3) is 
valid. 

Finally, for the case: 

 ( ) ( )( ) ( )221 0, 1 0,t s t s tλ λ λ λ λ− + − = − − =  (28) 

it holds that 
1
2

λ =  and s t=  which lead to 2µ =  from (5).   

3. Main Results 

Using Lemma 2 and Theorem 5 in [9], we get the following. 
Theorem 1. Let : Iϕ →   be a strictly monotone function, :f I →   be a 
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non-identically-zero function, and ,t s +∈ , ( )0,1λ ∈ . Then, (3) holds if and 

only if t
t s

λ =
+

, f is nowhere zero and there exists p∈  with 1 0
2

pλ − = 
 

 

such that: 

 ( ) ( ), ~ , ,p pf f S Cϕ⋅  (29) 

where 

( )
( )

( )
( )

( )

( )

sin , 0, cos , 0,

: , 0, and : 1, 0,

sinh , 0, cosh , 0.

 − < − <
  = = = = 
 

> >  

p p

px p px p

S x x p C x p

px p px p
 

Corollary 1. Let ,t s +∈ , ( )0,1λ ∈ , and let , :G F I →   be two conti-

nuous functions such that g is nowhere zero on I and the ratio function f
g

 is 

strictly monotone on I, :h I →   be a continuous strictly monotone function. 

Then, (2) holds if and only if 
λ =

+
t

t s  and there exists p∈  with  
1 0
2

pλ − = 
 

 such that: 

 ( ) ( ), ~ , .p pF G S h C h 
 (30) 
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