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Abstract 
We study the dynamics of a quantum dissipative system. Besides its linear 
coupling with a harmonic bath modelling the dissipation, we suppose that it 
is coupled with an oscillator with an interaction of the form 2 2s x . In our study, 
we integrate over the bath and the oscillator, extract the corresponding influ-
ence functionals and then solve the system’s sign problem. We apply the the-
ory to the case of a double well and study the time evolution of the expectation 
value of the position. 
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1. Introduction 

Path integral methods constitute an interesting and extended part of mathematical 
physics and there is considerable effort in their development [1]. The use of the 
central limit theorem in path integral methods is of interest as it leads to the so-
lution of the sign problem [2]-[12] appearing in quantum physics. That solution 
is applicable to various systems even beyond quantum mechanics (see the con-
clusions in [6]). 

Here, we study the dissipative dynamics of a quantum mechanical system, 
which is coupled with an oscillator via an interaction term of the form 2 2s x , 
where s is the coordinate of the system and x is one of the oscillators. The dissi-
pation on the system is modelled via coupling the system’s particle with a har-
monic heat bath of inverse temperature β . Proceeding we first path integrate 
over the bath and the oscillator and obtain a path integral expression for the re-
duced system’s density matrix, which includes the bath and oscillator’s influence 
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functionals. This kind of expression is well known to show a highly oscillatory 
phase leading to failure of numerical methods for their evaluation, namely the 
Monte Carlo method. That problem is known as the sign problem. We can solve 
that problem via extracting an alternative expression for the propagator called 
sign solved propagator where the oscillations are controlled. The whole method 
based on the use of the central limit theorem was developed by the author and 
was applied to other models in previous papers [2]-[12]. So, in that way, we can 
derive the time evolution of the system’s density matrix. In fact, here we study 
the time evolution of the position of a particle in a symmetric double well. We 
have chosen a double well potential as it incorporates tunnelling effects in the 
whole dynamics and behaves as a two-level system. In the final applications, we 
consider the particle interacting with only the harmonic bath, with only the os-
cillator or with both of them. Systems similar to the present one have been 
studied exhaustively. See for example [13] [14] [15] and references there. Other 
methods of study include the use of generalized Langevin equations or master 
equations [13]. However, the present path integral approach combined with the 
solution of the sign problem gives exact closed results from a fully quantum me-
chanical point of view. 

The present paper proceeds as follows. In Section 2, we give the system and its 
Hamiltonian, consider the path integral that describes it and further path inte-
grated over the bath and give the form of the corresponding influence functional. 
In Section 3, we derive the influence function of the interaction of the system 
with an oscillator. In Section 4, we solve the sign problem to study the time evo-
lution of the system’s density matrix. In Section 5, we give results of the theory 
in the case of a double well coupled with a bath, or with an oscillator or with both 
of them and suppose initially a Gaussian wavefunction. In Section 6, we present 
our conclusions and finally, in Appendix, we solve the sign problem in the case 
of a density matrix. 

2. Model Description 

Since in the present paper, we consider the dynamics of a particle coupled on the 
one hand with a harmonic bath, which models a dissipative environment and on 
the other with a harmonic oscillator, the full Hamiltonian has the form: 

 tot s osc bH H H H= + +  (1) 

sH  is the system’s Hamiltonian given by: 

 ( )
2

2
s

s
p

H V s
M

= +  (2) 

The oscillator’s one has the form: 

 
2

2 2 2 2
0

1 1
2 2 2osc
pH m x s x
m

ω λ= + +  (3) 

supposing time independent parameters and coupling of the form 2 2s x . That 
coupling can appear if we assume that the system deforms the oscillator’s poten-
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tial. Then, we obtain the present effective interaction. 
Finally, the harmonic bath’s Hamiltonian has the form: 

 
22

2
2

1
2 2

j j
b j j j

j j j j

p c s
H m x

m m
ω

ω

  
 = + −     

∑  (4) 

which has a linear coupling. s may be interpreted as a reaction coordinate cou-
pled to a large number of harmonic bath degrees of freedom. Equation (4) in-
cludes counterterms quadratic in s, which renormalize the system potential. That 
ensures that important potential features such as the barrier height do not change 
with the coupling strength. 

Quantum mechanical observables of the system can be obtaining after tracing 
the full density matrix ( )W t  over the bath and the oscillator. i.e. 

( ) ( ) ( )0 0d d, ; e 0 e
t t

tot toti H i H
red bath x bath xW s s t Tr Tr s W t s Tr Tr s W sτ τ−+ − + − + −∫ ∫= = (5) 

Moreover, we assume that the interaction of all the three subsystems is 
switched on at time 0t = . i.e. we assume that the density matrix at the initial 
time is: 

 ( ) ( ) ( ) ( )0 0 0 0s bath xW W W W=  (6) 

where ( )0sW  is the system’s initial density matrix, ( )0bathW  is the bath’s one 
and ( )0xW  the oscillator’s initial one. 

The whole dynamics can be extracted via path integrating over the bath, the 
oscillator and the system. At first, we consider the integration over the bath. Its 
coordinates appear in the Hamiltonian (4). We assume it to be at inverse tem-
perature β . Then, according to standard methods [15], we can obtain a corre-
sponding influence functional in the form: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

2
2 2

2
0

exp d d

d
2

t t

t
j

j j j

I t t s t s t t t s t t t s t

c
i t s t s t

m

α α

ω

′
∗

 ′ ′′ ′ ′ ′ ′ ′′ ′′ ′ ′′ ′ ′′= − − − − −     


 ′ ′ ′ ′− −  

∫ ∫

∑∫
 (7) 

where we set: 

 
( ) ( ) ( )

( ) ( ) ( )

2

0

coth cos sin
2 2

1 d coth cos sin
2

j j
j j

j j j

c
t t i t

m

J t i t

ω β
α ω ω

ω

ωβω ω ω ω
∞

  
= −  

   
  = −    π

∑

∫
 (8) 

where ( )J ω  is the spectral density. It incorporates the characteristics of the bath 
pertaining to the dynamics of the reaction coordinate corresponding to the system. 

In the next section, we path integrate the oscillator Hamiltonian. 

3. Integration over the Oscillator 

We consider the Hamiltonian (3) of a harmonic oscillator of time independent 
frequencies and masses. We proceed to path integrate the Hamiltonian (3) via 
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standard methods. We set: 

 Qx
m

=  (9) 

 p mP=  (10) 

to obtain the free of mass terms Hamiltonian: 

 ( )
2

2 2 2 2
0 0

1 1
2 2 2

PH t Q s Qω= + + Γ  (11) 

where we set: 

 
m
λ

Γ =  (12) 

If ( ), , ;f iK x x t s  is the propagator corresponding to the Hamiltonian (3) and 

( )0 , , ;f iK Q Q t s  is the one corresponding to the Hamiltonian (11), then we can 
easily check that they obey the relation: 

 ( ) ( )0, , ; , , ;f i f iK x x t s mK Q Q t s=  (13) 

Therefore, we can concentrate our attention on the propagator of the Hamil-
tonian (11). It can be calculated via standard path integration. To proceed towards 
the integration, we perform the canonical transformation: 

 ( ),Q X s tρ=  (14) 

 
( )

1

,
PP
s tρ

=  (15) 

 ( )2d ,
d

s t
t
τ ρ−=  (16) 

The ρ  function depends on s through the differential Equation (32) (see 
below). i.e. s is supposed to be a function of time and to describe the coordinate 
of the double well. Moreover, during the present section’s evaluation, it is fixed. 
The above transformation is canonical since it preserves the Poisson brackets 
and therefore it preserves the volume element in phase space. As the present, 
transformation involves the generic time redefinition (16), we give more details.  
The 1N +  time slices discrete form of ( )0 , , ;f iK Q Q t s  involves the times 

nt nε=  0,1, , 1n N= + , where the time step is 
1

t
N

ε =
+

. Now, on integrating 

the path integral expression on the momentums, it becomes (see below as well): 

 ( ) [ ] ( )
1

2

0
1

1, , ; d exp
2

N
N

N
f i n

n
K Q Q t s Q iS

iε

+

=

   =     π ∏∫  (17) 

Then, under the transformations (14)-(16), the time step becomes  

( ) ( )1, ,n
n ns t s t
εσ

ρ ρ −

= , where we have symmetrised the expression in order to  

avoid any preference of the one time over the other. So, we conclude that the 
path differential measure takes the form: 
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[ ] ( ) ( ) ( )

( )
[ ]

1
1

1 2

1 2

1

2

1 1 11

1 1
2

1

1 1d , d
2 2 , ,

1 1 d
2

N
N N N

n n n n
n n nn n n

N N

n
n nnf i

Q s t X
i i s t s t

X
i

ρ
ε σ ρ ρ

σρ ρ

+
+

= = =−

+

= =

    =         

 
=  



π



π

π

∏ ∏ ∏

∏ ∏
 (18) 

and the discretized action appearing in Equation (17) is: 

 

( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

21
1 2 2 2 2

0
1

2 21
1 1 1

1 1

2 3 2 3 2 2
0 1 1

1 1
2 2 2

, ,
2 , 2 ,

1 1, , , ,
2 2

N
N n n

n n n
n

N
n n n n n n

n n n n n n

n n n n n n n n n

Q Q
S Q s Q

s X s X X X
s s

s s X s s s X

ε ω ε
ε

ρ τ ρ τ
σ ρ τ σ ρ τ σ

σ ω ρ τ ρ τ σ ρ τ ρ τ

+
−

=

+
− − −

= −

− −

 −
 = − − Γ
  


= + −


− − Γ 

∑

∑  (19) 

Therefore, on using the expansions  

( )
( )

( )
( )

( )
( )

( )
( ) ( )

2
2 3

2

, , , ,
1

, , 2 ,,
s s s s

O
s s ss
ρ τ ρ τ ρ τ ρ τ

σ σ σ
ρ τ σ ρ τ ρ τρ τ

 
= + − +  ±  

  

 , we find that the 

propagator ( )0 , , ;f iK Q Q t s  is related with the transformed one via: 

 ( )
( )

( )2
0 1 02

21, , ; exp , , ;
2

f i
f i f i f i

f if i

iK Q Q t s X X K X X s
ρ ρ

τ
ρ ρρ ρ

   = −      





 (20) 

where on switching to a phase space path integral, we get: 

( )

( ) ( )( ) ( ) ( )

1
0

2
2 2 4 2 2 4 21

1 0
0

, , ;
2

1 1exp d , , ,
2 2 2

f i
DPK X X s DX

Pi P X s s X s s X
τ

τ

τ ω τ ω ρ τ τ ρ τ

=

    × − + + + Γ   
     

π∫∫

∫ 



 (21) 

where we set: 

 ( ) ( )
( )

( )
( ) ( ) ( )

2

2 3, ,
, 2 , ,

, ,
s s

s s s
s s

ρ τ ρ τ
ω τ ρ τ ρ τ

ρ τ ρ τ

  
 = − =     

 

   (22) 

and we have used the notation: 

 ( ) ( ), ,s s tρ τ ρ=  (23) 

 ( ) ( ),
,

s t
s t

t
ρ

ρ
∂

=
∂

  (24) 

 ( ) ( ),
,

s
s

ρ τ
ρ τ

τ
∂

=
∂

  (25) 

Now, we impose constrain on ρ  by setting the global time-dependent term 
multiplying the 2X  terms in Equation (21) equal to a constant. i.e. 

 ( ) ( )( ) ( )2 2 4, , , 1s Y s sω τ τ τ ρ τ+ =  (26) 

where we set: 
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 ( )( ) ( )2 2 2
0,Y s sτ τ ω τ= + Γ  (27) 

Further, the integration with respect the ( )1,X P  variables is performed and 
we find the propagator 

( ) ( ) ( ) ( )
( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

2 2
0

2 2

2 2

1, , ; exp
2 sin , 2

2
exp cos ,

2sin ,

f i
f i f i

f i f i

f f ii

f if i

s siK Q Q t s Q Q
i s s s t s s

Q Q QQi s t
s t s ss s

ρ ρ
ρ ρ ϕ ρ ρ

ϕ
ϕ ρ ρρ ρ

   = −      
    × + −         

π




 (28) 

where ( ),s tρ  is the solution of the differential equation: 

 ( ) ( )( ) ( )
( )

2
3

1, , ,
,

s t Y s t t s t
s t

ρ ρ
ρ

+ =  (29) 

and 

 ( )
( )2

0

1, d
,

t

s t
s

ϕ τ
ρ τ

′

′ = ∫  (30) 

In (28), we have set ( ) ( ),0i s sρ ρ=  and ( ) ( ),f s s tρ ρ= . 
So, finally, we can obtain the propagator ( ), , ;f iK x x t s  from Equations (9) 

and (10). It has the form: 

( ) ( ) ( ) ( )
( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

, , ; exp
2 sin , 2

2
exp cos ,

2sin ,

f i
f i f i

f i f i

f f ii

f if i

s sm imK x x t s x x
i s s s t s s

x x xxim s t
s t s ss s

ρ ρ
ρ ρ ϕ ρ ρ

ϕ
ϕ ρ ρρ ρ

   = −      
    × + −         

π




(31) 

The differential Equation (29) takes the form: 

 ( ) ( )
( )

2 2
0 3

1, ,
,

s t s s t
m s t
λρ ω ρ

ρ
 + + = 
 

  (32) 

and 

 ( )
( )2

0

d,
,

t

s t
s
τϕ

ρ τ

′

′ = ∫  (33) 

Therefore, the propagator can be derived from the system of Equations 
(31)-(33). We have to solve the differential Equation (32) with the variable s as 
parameter, evaluate Equation (33) and then apply (31). We notice that in Equa-
tions (3) and (31)-(33) instead of the square function ( )2s t  there could appear 
any function of s. 

Now, we assume that the harmonic oscillator is initially at the state: 

 ( ) ( )
1

20 0
4

exp
2

m m
x x

ω ω
δ   Φ = − −      π

 (34) 

Then, ( )0xW  in Equation (6) becomes: 

 ( )0xW = Φ Φ  (35) 
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and the influence functional describing the effect of the oscillator on the system is: 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

2
0 0

2 2

2 22 2
0

, d d d , , ; , , ;

2
exp sin , sin ,

1
sin , sin ,

, ,

sin , sin ,
exp

2

2

f i i f i f i i i

i i

f f

f f

i i

i

R s s x x x K x x t s K x x t s x x

s s
i m s t s t

s s

s t s t
U s s t T s T s T s T s

s s

s s t s s t
im

T s T s

ρ ρ
ω ω δ ϕ ϕ

ρ ρ

ϕ ϕ
ρ ρ

ρ ϕ ρ ϕδ ω

ρ

∗ ∗′ ′ ′ ′= Φ Φ

′
  ′= −  ′

×
′

′ ′ ′ ′+ −
′

 
  ′ ′ × −  ′ ′  

+

∫

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

sin , sin ,

sin , sin ,
, ,

i i i

f f f f

f f

s s s T s s T s
s t s t

s s s T s s T s
s t s t

U s s t T s T s T s T s
s s

ρ ρ ρ
ϕ ϕ

ρ ρ ρ ρ
ϕ ϕ

ρ ρ

 ′ ′ ′ ′
′ + +   ′ ′ ′ ′  

′ ′ ′ ′ ′+ − ′


 (36) 

where we set: 

( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

2

2

sin , cos ,
, , sin , sin ,

sin , cos ,

f f

f f f

f

s s s t s t
U s s t s t s t

s s s

s t s t
s

ρ ρ ϕ ϕ
ϕ ϕ

ρ ρ ρ

ϕ ϕ
ρ

′  ′
′ ′= − +  ′ 

′
−

′

 

 (37) 

and 

 ( ) ( ) ( ) ( ) ( )( ) ( )0cos , sin ,i i iT s s t s s i s s tϕ ρ ρ ω ρ ϕ= + − +  (38) 

 ( ) ( ) ( ) ( ) ( )( ) ( )0cos , sin ,i i iT s s t s s i s s tϕ ρ ρ ω ρ ϕ′ ′ ′ ′ ′ ′ ′= − +  (39) 

So, the effect of the bath on the system is described by the influence functional 
(7)-(8) while the effect of the oscillator by the influence functional (36). Now, we 
turn our attention to the system. 

4. Solution of the System’s Sign Problem 

According to standard path integral methods, as well as the discussion in the 
previous sections, the system’s density matrix at time t is going to have the path 
integral representation: 

( )
( ) ( )

( ) ( ) ( ) ( )

1

0 0 0 1 2 0 1 2
0 1

1

1 1
1

, ;

d d
d d 0 , , , , , , , , , , ,

2 2

exp , ,

red

N N
sn sn

n n s N N
n n

N

sn n n sn n n s sn n s sn n
n

W s s t

p p
s s s W s h s s s s s s s s s s

i p s s p s s H p s H p sε ε

+ −

+
+ −

= =

+

− −
=

′  ′ ′ ′ ′ ′ ′=     
 ′ ′ ′ ′ ′ × − − − − +  

π

 

π∏ ∏∫ ∫

∑

  (40) 

where we have set 1Ns s++ = , 1Ns s−+′ =  and 
1

t
N

ε =
+

. 1N +  is the number  
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of time slices in the path integral and ( )0 1 2 0 1 2, , , , , , , , , , ,N Nh s s s s s s s s s s+ −′ ′ ′ ′
   is 

the influence functional which describes the possible interactions of the system. 
Expression (40) is highly oscillatory and therefore standard Monte Carlo tech-
niques fail to confront it. We can bypass the whole point if we interpret the 
Hamiltonians as random variables and apply the central limit theorem on the 
phase of Equation (40). In that way, we obtain an oscillation free expression 
called sign solved density matrix. 

Now, we observe that the influence functional has the form: 

 ( ) ( ) ( ), , ,h s s I s s R s s′ ′ ′=  (41) 

(see Equations (7), (8) and (36)). It has a product form as the bath and the har-
monic oscillator are not directly coupled. 

The bath influence functional ( ),I s s′  in its discrete form is: 

 ( ) ( )( )
1

, ,
0 0

, exp
N n

n n n n n n n n
n n

I s s s s s sζ ζ
+

∗
′ ′ ′ ′

′= =

 ′ ′ ′= − − −  
∑ ∑  (42) 

The matrix elements ,n nζ ′  are given in [15]. As we can observe there, 2N +  
of them, corresponding to n n′= , are of order ε  and the rest ones are of order 

2ε . So, for N large enough, there are positive constants such that: 

 
( )

1
, 2

2
1

n n
C n n

N
ζ ′ ′< ≠

+
 (43) 

 2
, 1n n

C
N

ζ <
+

 (44) 

Further, expression (31) is bounded and therefore its matrix elements are 
bounded as well. So, ( ),R s s′  is bounded. As we prove in Appendix, a the-
ory similar to the sign solved propagator theory of Ref. [7] and Ref. [12] applies. 
Eventually, we obtain the sign solved influence functional expression: 

 
( )

( ) { }
2 2

, ; lim , , , , , , , , , , ,

0 exp

red N
N N

s s s

W s s t h s s s s s s s s s s

s W s i H H t

+ − + + + + + − − − − −

→∞
+ +

+ −+ −

 
=   

 

 × − − 

 

 

 (45) 

Now, we observe that the primed and unprimed variables of h in Equation 
(45) and therefore of I and R have a diagonal form and therefore ( )s t s+=  and 
( )s t s−′ = . So, eventually, the influence functional given by Equations (7) and 

(8) takes the diagonal form: 

 ( ) ( ) ( ) ( )( ), ; expI s s t s s t s t sη η+ − + − + ∗ − = − − −   (46) 

where we set: 

 ( ) ( ) ( )1 21 1
1 12

0 1

1 d 2coth sin sin
2 2

J tt i t
ω ω β ω

η ω ω
ω

∞     = +    
    π ∫  (47) 

We have evaluated the time integrals as the position variables are diagonal. 
In the present paper, we use the ohmic spectral density: 
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 ( ) exp
c

J ωω γω
ω

 
= − 

 
 (48) 

where cω  is a cutoff frequency. 
Moreover, by setting cs  to correspond either to s+  or to s− , the propaga-

tor (31) becomes: 

( )

( )

2 2
2 2

20 0
2 2 2

0
2 2

2 2
0 0

, , ;

exp cos 2

2 sin 2sin

f i c

c c

c
f i f i

c c

K x x t s

s sm im sm m x x t x x
ms si t t

m m

λ λ
ω ω λ

ω
λ λ

ω ω

 
 + +       = + + −             + +         

π


(49) 

and according to Equation (36), the influence functional R has the diagonal form: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )

2
0 0

1 1 1 1 12 2

2 22 2
0

1 1

2 2
1 10

1 1

, 2 exp sin , sin ,

1

sin , sin ,
, ,

sin , sin ,
exp

2

2 sin
2

f f

i i

R s s i m s t s t

s t s t
U s s t T s T s T s T s

s s

s s t s s t
im

T s T s

T s T s
im

T s T s

ω ω δ ϕ ϕ

ϕ ϕ

ρ ρ

ρ ϕ ρ ϕδ ω

δ ω

+ − + −

+ −
+ − + − + −

− +

+ + − −

+ −

− +

+ −

 = − 

×

′ ′+ −


  
  × −
  ′ 


 ′
 + +
 ′ +

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )1 1 1 1 12 2

, sin ,

sin , sin ,
, ,

f f

s t s t

s t s t
U s s t T s T s T s T s

s s

ϕ ϕ

ϕ ϕ

ρ ρ

+ −

+ −
+ − + − + −

− +







′ ′ + −


 (50) 

where we set: 

 ( ) ( ) ( )
( )

( ) ( )
( )1 2 2

sin , cos , sin , cos ,
, ,

f f

s t s t s t s t
U s s t

s s

ϕ ϕ ϕ ϕ

ρ ρ

− + + −
+ −

+ −
= −  (51) 

and 

 ( ) ( ) ( ) ( )2
1 0cos , sin ,iT s s t i s s tϕ ω ρ ϕ+ + + += +  (52) 

 ( ) ( ) ( ) ( )2
1 0cos , sin ,iT s s t i s s tϕ ω ρ ϕ− − − −′ = −  (53) 

Here, 

 ( ) ( )
1

2 4
2
0

c
i c f c

s
s s

m
λ

ρ ρ ω
−

 
= = + 

 
 (54) 

and 

 ( )
2

2
0, c

c
s

s t t
m
λ

ϕ ω= +  (55) 
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Finally, we obtain: 

( ) ( ) ( ) ( ) { }, ; , ; , ; 0 expred s s sW s s t I s s t R s s t s W s i H H t+ −+ − + − + − + −  = − −  (56) 

In the next section, we proceed to an application. 

5. Application to a Symmetric Double Well 

In the present section, we proceed to an application of the above theory. We con-
sider the symmetric double well potential: 

 ( ) ( ) ( )
2

2 2
28

MV s s a s a
a
ω

= − +  (57) 

and assume to have prepared a Gaussian wave packet centered on the right well 
with wavefunction: 

 ( ) ( )
1

2
4

exp
2

M Ms s aω ω   Ψ = − − 
π    

 (58) 

and energy 0E . Due to tunneling, the level 0E  splits into the levels 1E  and 2E  
with corresponding wavefunctions: 

 ( ) ( ) ( )1
1
2

s s sΨ = Ψ +Ψ −    (59) 

 ( ) ( ) ( )2
1
2

s s sΨ = Ψ −Ψ −    (60) 

and energy differences: 

 
( ) 2

2

2

3

0 0 1 e M aM
E E E E a

M
ωω −

π
− = − =  (61) 

To apply the theory of the previous section, we use the initial density matrix: 

 ( )0sW = Ψ Ψ  (62) 

and insert it in Equation (56). 
Now, we are in position to generate the time evolution of the system’s density 

matrix. In that way, the evolution of the system’s observables under the prepara-
tion (58) can be studied. 

We consider the matrix elements: 

 ( ) ( ), ; , 1, 2ij i red jt W s s t i jβ + −= Ψ Ψ =  (63) 

Then, 

 ( ) ( )
2

, 1
red i ij j

i j
W t tβ

=

= Ψ Ψ∑  (64) 

In the expectation values in Equation (56), we choose as sampling functions 
the expressions (58)-(60), so that 0s s iH H E E+ −− = −  1,2i =  where the i 
is the same as in Equations (63) and (64). Then, ( )2 0 1 0E E E E− = − − = Ω . Ω  
is the tunnelling frequency. 

So, the expectation value of the position has the form: 
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 ( ) ( ) ( )( )12 21s t a t tβ β= +  (65) 

We observe that the expectation value of the position is closely related with 
the inversion of a corresponding two-level system. In fact, as we can conclude 
from the above analysis the present double well potential can be interpreted as a 
two-level system. 

Throughout the section, we consider the system initially in the state (62). 
In Figure 1, we plot the expectation value ( )s t  in the case of the system 

interacting with only the harmonic bath. So, we use the influence functional 
h I= . In that case, the matrix elements (63) are Gaussian and we obtain: 

 

( ) ( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

12 21 22

22

2 2
22

22

2
22

22

2

1 e
2 Re

Re
exp 2 exp 2

Re

2 Re
exp

Re

2 Re
exp

i t Mt t
M t t

t t
M a M a

M t t

M t t t M t
M a

M t t

M t t t M t
M a

ωβ β
ω η η

η η
ω ω

ω η η

ω η η η ω η
ω

ω η η

ω η η η ω η
ω

∗ Ω

∗

∗

= =
+ −   

  −      × − − + −    + −      
 + − + +   − −
 + −      

+ − + +  + −
( ) ( )( )22

ReM t tω η η

 
 
  + −       

 (66) 

As the time increases, the bath causes decrease of the amplitude of the tunnel-
ling oscillations. 

In Figure 2(a) and Figure 2(b), we consider the system interacting with just 
the oscillator. So, we use the influence functional h R= . At small times there 
appear extra oscillations, besides the tunnelling’s ones. Moreover, for fixed time 
the absolute value ( )s t  decreases as δ  increases (see the initial wavefunc-
tion (34) of the oscillator and the influence functional (50)). 

In Figure 3, we consider the full system. So, we use the influence functional 
h IR= . There appears a combination of the effects described in the cases in 
Figure 1 and Figure 2. Oscillations at small times and decrease of the amplitude 
as time increases. We should expect such a result as the full influence functional 
is the product of the influence functionals corresponding to the system’s interac-
tion with just the bath or the oscillator (see Equation (41)). 

6. Conclusions 

In the present paper, we study the dynamics of a quantum mechanical system 
interacting linearly with a bath and quadratically with an oscillator. In our study, 
we use influence functional methods derived previously and concerning the in-
teraction of systems with baths as well as methods on the dynamics of oscillators 
and combine them with methods on the solution of the sign problem due to the 
author. As an application, we have considered a symmetric double well interact-
ing with a bath or with an oscillator, or with both of them, and study the time evo-
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lution of the relevant density matrix. We focus on a double well potential as it 
incorporates tunnelling effects on the whole dynamics and behaves as a two-level 
system. 

 

 
Figure 1. Mean position of the dissipative double well system. We use 0.06γ =  (solid), 

0.4γ =  (dashed) and 0.7γ =  (dotted). We have set: 1.0ω = , 1.0M = , 2.0a = , 

8.0cω = Ω , 1
2.5

β =
Ω

. Here, according to Equation (61), 0.020667Ω = . 

 

 

(a) 
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(b) 

Figure 2. Mean position of a double well system coupled with an oscillator. In (a), we 
consider the mean position as a function of tΩ ; while in (b), we consider the position as 
a function of δ  for certain values of tΩ . We use: 1.0ω = , 1.0M = , 2.0a = , 

0 1.0ω = , 1.0m = , 0.1λ = . Here, according to Equation (61), 0.020667Ω = . 
 

 

Figure 3. Mean position in the following cases. A double well: Dashed-dotted. A dissi-
pative double well: Solid. A double well coupled with an oscillator: Dotted. A double 
well coupled with a harmonic bath and an oscillator: Dashed. The parameters have the 
values: 1.0ω = , 1.0M = , 2.0a = , 0.0δ = , 0 1.0ω = , 1.0m = , 0.1λ = , 0.5γ = , 

8.0cω = Ω , 1
2.5

β =
Ω

. Here, according to Equation (61), 0.020667Ω = . 
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In conclusion, the present methods are capable for giving closed expressions on 
various systems’ density matrix time evolution and therefore interesting relevant 
dynamical information can be gained. 
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Appendix: Sign Solved Density Matrix 

According to the solution of the sign problem for expression (40), 

( )
( ) ( )

( ) ( ) ( ) ( )

1

0 0 0 1 2 0 1 2
0 1

1

1 1
1

2

, ;

d d
d d 0 , , , , , , , , , , ,

2 2

exp , ,

, , , , ,

red

N N
sn sn

n n s N N
n n

N

sn n n sn n n s sn n s sn n
n

N

W s s t

p p
s s s W s h s s s s s s s s s s

i p s s p s s H p s H p s

h s s s s s

ε ε

+ −

+
+ −

= =

+

− −
=

+ + + + +

+

′  ′ ′ ′ ′ ′ ′=     
 ′ ′ ′ ′ ′ × − − − − +  

π

 

≅

π∏ ∏∫ ∫

∑

 





( ) { }
( )

( ) ( ) ( ) ( ) ( )

2

0 1 2 0 1 2
0

1 1

0 0 1 1 1 1
1 1

, , , , , , 0 exp

1 d d , , , , , , , , , , ,
1

0 , , , ,

s s s
N

N

n n N N
n

N N

s n n n n n n n n
n n

s s s s s s W s i H H t

s s h s s s s s s s s s s
N

s W s f s s f s s i g s s g s s

+ −− − − − − + −

+

+ −

=

+ +

− − − −
= =

 
 − −    

 

 ′ ′ ′ ′ ′+  +
 ′ ′ ′ ′ ′ ′ ′   × −     

∏ ∫

∏ ∏





 

(A1) 

We have used the functions: 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2 2 2 2

22 2 2 2 2 2
1

2

2 2 2 2 2 2

,
1

2 2 sin cos cos sin

1exp sin cos cos sin
2

2 sin cos cos sin

n n

V s s s s

m s s s s n n

n

V s s s s

f s s

t t t H t H t H t H

t t H t H t H t H s s

s

t t t H t H t H t H

σ

σ

σ

−

+ − + −

+ − + −
−

+ − + −

=
 π π +  


  × − + −   



− 

 +    

(A2) 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2 2 2 2

22 2 2 2 2 2
1

2

2 2 2 2 2 2

,
1

2 2 sin sin cos cos

1exp sin sin cos cos
2

2 sin sin cos cos

n n

V s s s s

m s s s s n n

n

V s s s s

g s s

t t t H t H t H t H

t t H t H t H t H s s

s

t t t H t H t H t H

σ

σ

σ

−

+ − + −

+ − + −
−

+ − + −

=
 π π +  


  × − + −   



− 

 +    

 (A3) 

In (A2) and (A3), we use appropriate sampling functions. In the primed f and 
g in (A1), we use a primed sampling function for the variances. 

In calculations, we are interested in integrals of the form  

( ) ( ) ( )1 2d d , ;reds s s W s s t s+ − ∗ + + − −Θ Θ∫∫ , where 1Θ , 2Θ  are appropriate func-
tions. So, we consider the expression ℘  corresponding to the term in Equation 
(A1) involving the , ,f f g′  and g ′  functions after that integration. We intent 
to prove that only the diagonal term in the last expression in Equation (A1) can 
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give the exact result as N →∞  because ℘  tends to zero. Then, we obtain 
Equation (45). To prove that, we diagonalize and integrate the Gaussian products  

( ) ( ) ( )
1

1 1
1

, , ,
N

n n n n
n

f s s f s s I s s
+

− −
=

′ ′ ′ ′  ∏  and ( ) ( ) ( )
1

1 1
1

, , ,
N

n n n n
n

g s s g s s I s s
+

− −
=

′ ′ ′ ′  ∏ . We 

notice that according to Equation (50) the R is bounded (see Equation (41)). 
According to Equations (42)-(44), the bath influence functional ( ),I s s′  has 

the form: 

 ( ) ( )( )
1

, ,
0 0

, exp
N n

n n n n n n n n
n n

I s s s s s sζ ζ
+

∗
′ ′ ′ ′

′= =

 ′ ′ ′= − − −  
∑ ∑  (A4) 

where for N large enough, 

 
( )

1
, 2

2
1

n n
C n n

N
ζ ′ ′< ≠

+
 (A5) 

 2
, 1n n

C
N

ζ <
+

 (A6) 

We want to bound the expression ℘  appropriately. We proceed via per-
forming on the terms composed of the f functions, the change of variables: 

 
( )1

n
n

s
s

tγ
→  (A7) 

and similarly, the change of variables: 

 
( )2

n
n

s
s

tγ
→  (A8) 

on the terms composed of the g functions. 
We have set: 

{ } ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

1
2

sin cos cos sin

sin sin cos cos

2

s s s s

m

s s s s

t H t H t H t H
t

t H t H t H t H
t

σ

γ

+ − + −

+ − + −

  +    
 
  +     = (A9) 

Similar primed transformations apply to the case of primed variables. 
Then, we obtain: 

[ ] ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1 13 3 2 2

2 3
2 2 2 2 2

1
1 1 0 0

1 2
0 1 1 1 1

2 2 2 2
1 0 1 0 1 2

2

2

1

sin cos cos sin

1 d d 0
1

exp

N

N NN N N
V m V m

N

s s s s

N
N N

n n s
n

N

t t

t t H t H t H t H

s s s ss s W
t t t tN

s s s s M

σ σ σ σ

γ γ γ γ

ϕ ϕ ρ

+

+ ++ + +
′

+
+ − + −

+
∗ + +

=

+ −

℘ ≤
′      

×
 +  

   ′ ′ ′× Θ Θ        ′ ′+    

′ ′× + + +

π

+

∏ ∫



 ( ) T 1 T
4 1 1 1 1 1,2 4 1

1,
1 ab N abM

N
β β ρ ρ ρ+ +

 ′ + 
+ 



  
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[ ] ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1 13 3 2 2

2 3
2 2 2 2 2

1
1 1 0 0

1 2
0 2 2 2 2

2 2 2 2
2 0 2 0 1 2

2

2

1

sin sin cos cos

1 d d 0
1

exp

N

N NN N N
V m V m

N

s s s s

N
N N

n n s
n

N

t t

t t H t H t H t H

s s s ss s W
t t t tN

s s s s M

σ σ σ σ

γ γ γ γ

ϕ ϕ ρ

+

+ ++ + +
′

+
+ − + −

+
∗ + +

=

+ −
+

+
′      

×
 +  

   ′ ′ ′× Θ Θ        ′ ′+    

′ ′

π

× + + + +

∏ ∫



 ( ) T 1 T
4 2 2 1 1 2,2 4 1

1,
1 ab N abM

N
β β ρ ρ ρ+

 ′ + + 



  

(A10) 

1
2

ϕ 
 
 

 and 1
2

ϕ 
 
 

′  are appropriate time dependent functions. We have set: 

 ( )1 0 1 2 0 1 2, , , , , , , , , , ,N Ns s s s s s s s s sρ + −′ ′ ′ ′=


   (A11) 

and 

 ( )1 0 1 2 0 1 2, , , , , , , , , , ,ab N Ns s s s s s s s s sρ + −′ ′ ′ ′=


 
 (A12) 

where 1Ns s++ = , 1Ns s−+′ = . The matrices in Equation (A10) correspond to the 
symmetric matrices: 

 { } { }
{ }

{ }

2 1
2

2 4 1 1
2 2

2 1
2

0

,

0

N

N

N

M

M

M

β

β β

β

+

+

+

  
  

    ′ =       ′    





 

 (A13) 

where we set: 

 
{ } { }1
2

12 2

1 if 1
if

0 otherwise

N

ij

i j
i jM ββ+

= ±
    ==       




 (A14) 

and similarly for the primed variables. Moreover, 

 
{ }

{ } { }
( )

1 1
2 2

1
2

2

1
2 4

1

 if  or 2

 otherwise 
1

N
ij

C i j i j N

M
C

N

γ γ
+

 = = ± +
  =  
  


+



 (A15) 

{ }
( )

1
2

tβ  has the form: 

{ }
( )

( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1
2

2
2 2 2 2

2 2 4
2

2 2 2 2

12
sin cos cos sin

sin sin cos cos

s s s s

m V

s s s s

t
t H t H t H t H

t t
t H t H t H t H

β

σ σ

+ − + −

+ − + −

= − −
 +  
 
 +  

 (A16) 

Depending on the s being primed, unprimed or mixed we use primed, un-
primed or mixed variables in the coefficients (A15) of the quadratic forms in 
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Equation (A10). For example, for the term corresponding to i js s′  in Equation 

(A10), we use in the expression (A15) the product { } { }1 1
2 2

γ γ ′ . 

Now, we study the matrices (A13, A14). We observe that on the one hand, 

 { } { } { } { }2 4 2 21 1 1 1
2 2 2 2

det , det detN N NM M Mβ β β β+ + +

          
′ ′=                         

  

 (A17) 

and on the other for each determinant, 

 
{ }

{ }
1
2

1
2

2 2det
2N NM U
β

β+ +

     =           



 (A18) 

{ }1
2

2 2NU
β

+

 
 
 
 
 

 is a Chebyshev polynomial of the second kind of order 2N + . 

More particularly let the numbers ( )
2

n
Nξ
∗
+ , 0, , 1n N= + , be the roots of the 

equation ( )2 0NU x+ = . They are simple, real roots and ( ) ( )2 1,1n
Nξ
∗
+ ∈ − ,  

0, , 1n N= + . Then, the eigenvalues of the matrices 
{ } { }1 1
2 2

2 4 ,NM β β+

 
′ 

 



 are 

going to be given by the expressions: 

 
{ }
( ) ( )

{ }
( )

11
22

2 4
22 0, , 1N n

Nn t n Nλ ξ β∗ + ∗
+= − + = +  (A19) 

 
{ }
( ) ( )

{ } ( )1
2

2 4 2
2 1

2
2 2, , 2 3N n N

Nn t n N Nλ ξ β∗ + ∗ − −
+ ′= − + = + +  (A20) 

Further, the diagonal quadratic forms ( ) ( ) { } { }1
2

2 2 2 2
0 01

2
s s s sϕ ϕ+ − ′ ′+ + +  can be 

diagonalized simultaneously with the quadratic forms corresponding to the ma-

trices 
{ } { }1
2

2 4 1
2

,NM β β+

 
′ 

 



. So, we conclude that the eigenvalues of the quadratic 

forms: 

 ( ) ( ) { } { } { } { }1 1
2 2

2 2 2 2 T
0 0 1 2 4 11 1

2 2
,Ns s s s Mϕ ϕ ρ β β ρ+ −

+

 
′ ′ ′+ + + +  

 



   (A21) 

are going to have the form: 

 
{ }
( )

{ }
( )

{ }
( )

11 1
22 2

2 4
2 42 0, , 1N n

n N t n Nλ ξ β+
+= − + = +  (A22) 

 
{ }
( )

{ }
( )

{ } ( )1 1
2 2

2 4
2 4 1

2
2 2, , 2 3N n

n N t n N Nλ ξ β+
+ ′= − + = + +  (A23) 

where 
{ }
( )
1
2

2 4
n

Nξ +  are appropriate real numbers with 
{ }
( )
1
2

2 4 1n
Nξ + > − . 

Further, for N large enough, the expressions corresponding to the matrices 

{ }1
2

1
2 4

1
1 NM

N ++



 in (A10) are perturbation terms. So, eventually the full matrices 
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on the two exponentials will have eigenvalues: 

 
{ }
( )

{ }
( )

{ } ( )1 1
2 2

2 4
2 4 1

2

12 0, , 1
1

N n
n N t O n N

N
µ ξ β+

+
 = − + + = + + 

  (A24) 

 
{ }
( )

{ }
( )

{ }
( )

11 1
22 2

2 4
2 4

12 2, , 2 3
1

N n
n N t O n N N

N
µ ξ β+

+
 ′= − + + = + + + 

  (A25) 

According to the whole above discussion after a Gaussian integration, we ob-
tain: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

3 2 2 2 2 2
1

1 1

2 4 2 40 0
1, 1, 2

3 2 2 2 2 2
2

1

2 40
2,

2 sin cos cos sin

1 1 1
1 2 2

2 sin sin cos cos

1 1 1
1 2 2

V V s s s s

N N

N Nn n
n n N

V V s s s s

N

Nn
n

b t t t t H t H t H t H

N

b t t t t H t H t H t H

N

σ σ

σ σ

+ − + −
′

+ +

+ += =
+ +

+ − + −
′

+

+=

℘ ≤ +

    
        + ′ Λ Λ    

+ +

 
 

π

π π

π

π + Λ 

∏ ∏

∏ ( )

1

2 40
2, 2

N

Nn
n N

+

+=
+ +

  
    ′ Λ  π 

∏

(A26) 

where we set: 

 

{ }
( )

{ }
( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1
2 2

2 4 2 2 4
2 4

2
2 2 2 2

2
2 2 2 2

1 2 1

sin cos cos sin

sin sin cos cos

1 ,  0, , 1
1

N n
m Vn N

s s s s

s s s s

t t

t H t H t H t H

t H t H t H t H

O n N
N

ξ σ σ+
+

+ − + −

+ − + −

 
Λ = + +  

 
 +  × 
 +  
 + = + + 



 (A27) 

 

{ }
( )

{ }
( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1
2 2

2 4 2 2 4
2 4

2
2 2 2 2

2
2 2 2 2

1 2 1

sin cos cos sin

sin sin cos cos

1 ,  2, ,2 3
1

N n
m Vn N

s s s s

s s s s

t t

t H t H t H t H

t H t H t H t H

O n N N
N

ξ σ σ+
′+

+ − + −

+ − + −

 
′ ′Λ = + +  

 
 +  × 
 +  
 + = + + + 



 (A28) 

The constants 1b , 2b  depend on the form of the functions ( )1 sΘ  and 
( )2 sΘ  as well as ( )0 00ss W s′ . 

Finally, we infer that since the terms in the curly brackets in Equation (A26) 
tend to zero as N →∞ , the first term in eq. (A1) is exact as N →∞  and cor-
responds to the sign solved time evolution of the density matrix. 
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