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[ONom

The study of the & -sphere interactions in quantum mechanics has interested
many authors since the twentieth century both from the mathematical point of
view and for their applications in modeling of physical phenomena [1]-[6]. In
nuclear physics, the delta shell interaction has been applied in a calculation of the
energy levels of isotopes of Pb, Sn and Ni, Po 210, and nuclei belonging to the
82-neutron shell [7]. In Ref. [8], the authors show that the effective two-nucleon
interaction in 2 s 12-1 d 32-shell nuclei can be well approximated by a delta func-
tion, which acts only at the nuclear surface. The application in solid state physics
and molecular physics may be found respectively in Ref. [9] and Ref. [10].

These studies have used the Von Neumann formalism of self-adjoint exten-

sions of symmetric linear operators in Hilbert space [11] [12]. In Ref. [13], the
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authors have built a rigorous mathematical model based on the self-adjoint ex-
tensions of symmetric operators in the Hilbert space defining the s -sphere in-
teractions in non-relativistic quantum mechanics.

In relativistic quantum mechanics, Dittrich et al study Dirac operator with a
contact interaction supported by a sphere by restricting their attention to the
operators that are rotationally and space-reflection symmetric. They define the
self-adjoint extensions of the Dirac radial operator and discuss spectral properties.

In the continuation of this work, other researches were made in this field, thus
enriching the knowledge of the basic properties of Dirac operator with a & shell
potential [14] [15] [16] [17] [18].

To the best of our knowledge, the study of §'-sphere interactions using the
theory of self-adjoint extensions of symmetric operators in the Hilbert space be-
gan in the twentieth century [19]. And so far, little work has been done in this
area both in relativistic and non-relativistic quantum mechanics [20] [21]. Yet
these interactions are exactly solvable models and their systematic study allows
us to better understand their properties.

In Ref. [21] and Ref. [22], authors study the one and N parameters models of
relativistic ¢’ -sphere interactions called the first and the second kind. For these
models, their work provides basic properties and discusses the stationary scatter-
ing theory. Nevertheless, in Ref. [23], using the theory mentioned above, the au-
thors introduced in a different way than in the previous case a rigorous mathe-
matical definition of ¢’-sphere interactions. But, in Ref. [23], the study of the ba-
sic properties of relativistic ¢'-sphere interactions was missing. This is the aim
of this paper. In addition, as indicated in Ref. [24], the study of the 2 N parame-
ters models that unify the N parameters models of ¢'-sphere interactions of the
first and the second kind allows us to better understand the dynamic of the per-
turbed physical system in term of scattering data. Therefore, we discuss the basic
properties of two-parameter models of relativistic J; -sphere and J; -sphere plus
Coulomb interactions in three space dimensions using the theory of the self-adjoint
extensions of symmetric closed operators in Hilbert space, where J; interaction
denotes ¢’ interaction of the second kind.

The paper is organised as follows. In Section 2, we provide a mathematical de-
finition of the Hamiltonian describing the two-parameter models of relativistic
d; -sphere interactions and obtain new results on the resolvent equation, the spec-
tral properties and the scattering data (scattering matrix, amplitude, length and
the differential scattering cross section). In Section 3, we generalize the results of
Section 2 to the case of a two-parameter relativistic ¢, -sphere interaction plus a

Coulomb interaction.

2. The 6;-Sphere Interaction

2.1. The Definition of the Hamiltonian

In this section, we discuss the properties of the ¢ -sphere interaction of second

kind called “J; -sphere interaction”. Using the theory of self-adjoint of symme-

DOI: 10.4236/jamp.2024.124078

1264 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2024.124078

J. Manirambona et al.

tric closed operators in Hilbert space, we provide the mathematical definition of
quantum Hamiltonian describing the ¢;-sphere interaction formally given by:
Hg =H, +G3!(]x-R), xe IR*, Re IR (1)

where H_ isthe Dirac Hamiltonian and G is a real 4 x 4 matrix defined by:

. (1A, 0
G= ,
0 1B,

A; and By arereal constants and Ris the radius of a sphere in IR® centered

at the origin.

2.2. The Radial Operators

In the Hilbert space 1 = L*(IR®)®C*, consider the Dirac Hamiltonian H,
defined by:

ACZ
Hp =-iav+5—,
b 103 +/3’2 @)
D(H,)=H"(IR*)®C*

where we have used the following definitions and notations:
1) cis the velocity of the light;
2) H™" is the Sobolev space of indices (m,n);

3) @ and [3’ are 4 x 4 Dirac matrix given by:

A_OO'A_]IO 3)
“=ls 0)P%lo 21

where ¢ are Pauli’s spin matrix defined by:

0 1 0 i 10
771 0)7 i 0) ™ o 1) @

Consider in |2 ( IR® ) ® ¢*, the symmetric closed operator H b defined by:
~ A C2
Hp, =—iaV+ 48—,
2 (5)
D(Ho)={zy e H(R*)®C* /1 7, (S) =0},

where S, ={xeIR®:[x=R,} isthe sphere of radius Rin IR* centered at the
origin.

The operator I-A|D admits a large number of self-adjoint extensions [25]. In
this case, only those of H p corresponding to H, , which are rotationally and
space-reflection symmetric, will be considered.

Under these assumptions, one may decompose the space # in the following
way:

.1
o 1
H=® & @_Hjuu (6)
j,1|:j,£/’:*J
2

2

where we have:
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1) H,, :{;(“ eH|xy (r,n):[ f (r)Q““J; f.ge Lz((O,oo),rzdr)}, (7)

g(r)Q;,

2) The spherical spinors Q;, are defined by:

J+u
Y 0,
A+1 l,ﬂg( ?) o
= fOI’IZJ—E,

S j-u
Loty (o,
2412 (09)

J—u+l
- Y o,
2l +1 W%( (/7) 1
= for I = j+5.

QM jru+l
Y 0,
\ 2141 u,m;( ?)

1 o1
3) I'=sjF= for I=jx=.
) J+2 J >

(8)

The following isomorphism U} defined by:
U, L ((0,0);r%dr)®€* — H = L*((0,0);dr)® € )

(u u)xnl//(f){ jrj_(lr) (r)J (10)

()" re

is introduced to allow us to represent # in the form:

1
w 173

H=0 @& & [U Hlﬁ](@[gjlﬂ(g, @)], (11)

1, . 1u=j
== |=j= M=)
! 2 ) 2

where [Q i (9,(/;)] stands for the vector space generated by the spherical spi-
nors.
With respect to the decomposition (11), H p reads:
1
S
Ho=@ ®1[U"' hyU; |®1. (12)
= 1=i-
2 2

The operator h; in L*((0,:0))®@? is given by:

C2 d J|
? —CJ-FC r o 1
h. =7, )72 jr= |,
' L c? n =) (J 2)
+ ——

dar 1 2
D(hy)={x; € *((0,%))®C | x; € AC, ((0,%)); z; (R+)=0; (13)
oy el ((0,00))@)022},
where AC,, (Q) denotes the set of locally absolutely continuous functions on
Q and
2y (x£)=1lim z, (x£¢). (14)

I
£-0"
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The adjoint h}] of h; isgivenby:
h;, =7,

D(h)={f e *((0,0)) ®C| f € AC,,, ((0,0)\{R}), 7 f e L* ((0,0)) ®C° }. 12

2.3. The Self-Adjoint Extensions of h;

Given the following equation:

(W ~2) 2, =0, 7, C—{(—m,—%}U{%,wJ} (16)

One can write Equation (16) in the following form:

Kol +1
Zfl,ﬁ{kz(z)_%]%m =0

(17)
" 2 Kil(Kjl _1)
X2+ K (Z)_r—z Zj2 =0
where
1 o
k(z)==,2" —=. 18
(1)=2y7 -5 18)
Equation (17) has two linearly independent solutions:
F,(z,r
(Ifllgz r;] <R
A=y (19)
0
r>R,
o
o
0 ;T <R,
(@ _ 20
zjl Gj,(z,r) ( )
~ ,r>R,
G, (zr)
where:
1 1
K\ 72 3 K-Zl 1
F.(z,r)=|= Ixy+= || kKP===1] r2J kr),
e (5] e 02 ] L)
1 =)
. 1 1Y 2 ek ( 3} , ki) 2
F.(z,r)==|= kK "2 kg += || KP—=2 | r2J kr),
JI( ) 0(2) i 2 R? ’(jl’%( )
(21)

1
(k)2 3" 2
Gj,(z,r)zlg(g) F(KjI+EJ rz4® L (kr),

Kji+s

1
~ (LY 2 e 3\t 1
Gj'(z’r)ZIZ_c(Ej k' ZF[K“-%—E) rZHY | (kr).

s

Jp () is the Bessel function and HS) () is the Hankel function of the first
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kind of order p.
The solutions Equation (19) and Equation (20) have been normalized in such

a way that:

== (22)

Therefore, hjl has indices (2, 2) and consequently, all self-adjoint(sa) exten-
sions of h, are given by a four-parameter family of self-adjoint operators [26].
Since the matrix G in Equation (28) depends on two parameters, it follows that
the self—aAdjoint extension hjl,é of h; corresponding to the interaction
V(r)=G&(r—R) isa special two-parameter family.

The relation h“‘é c h;, implies that the domain D(hu,é) contains those

functions y; e D(hj*I ) which satisfy suitable boundary conditions at r =R.

Theorem 2.1: Any self-adjoint extension ﬁj, of h; reads[25]:

c? d Kj
- —-—+Cc—
A 2 dr r
1= )
Coled s e (23)
dr r 2

D(ﬁj, ) = {;(j, eD(h} )| x; satifies cond, or condz},

where cond, and cond, are given by [25]:
cond, : 7, (R-)=€"Myg; (R+), 9 €[0,m), (24)

and M is2 x 2 matrix with det M =1.

JA & 0 0
cond2.£0 Ojl"(R_)J{bl bzj;(j,(R+)=0 (25)
where a,,a,,b and Db, are real and both matrices are nonzero. Conversely, any
operator of this form is self-adjoint extensions of h,,.

Theorem 2.2: [25] The general form of boundary conditions is given by:

G. G.
1—102—’0';51.,(R+)—1+102—::';5j,(R—):0 (26)

0 -1 A A 0
where Ol P and G, = 0o B I

jl
Let us now construct the self-adjoint extension corresponding to the radial Di-

rac operator with the potential:

-, - A, 0
V(r)=G;s/(r-R),G, = 0 B, A B e R. (27)
i
Suppose that y; satisfies the following equation given by:
[T"'Gjlé‘(r_R)}Zjl =Ex (28)
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02 d il
— —-C—+C—
= 2 dr r (29)
|
dr r 2

where the limits ;((Ri‘g) exist when & — 0. A simple computation shows
that integrating Equation (28) over (R—&,R+¢), and taking the limit » — 0

we get the following conditions:
1
Zjl,l(R+)_zjl,l(R_)Z_EBjI [Zjl,z(R+)+lj|2(R_):|

Zi2(R+)= 252 (R-) = 2C JI[Zul(RJF)”LZul(R )]

(30)

By replacing the function y; in Equation (30) by its derivative, we get the
following conditions:

ZJ{IJ(R'F)_;(J{IJ(R )+ Jl[}(uz(R“‘)Jf}(ﬂz(R )]20

1
2C

(31)
1
Z}l,z(R"')_Z}Lz(R_)_EAjl I:Z;I,l(R+)+Z}I,1(R_)] =

The boundary conditions Equation (31) can be written in the general form:

G. '
1—702—16';(;, (R +)—1+f02—lc';(;, (R-)=0. (32)

A straightforward computation shows that these boundary conditions are
symmetric and linearly independent and can be written in the form of Equation
(26).

One can construct the self-adjoint extension of h; considering its adjoint

h;, where:
D(ﬁj,):{gﬂ e D(M] )| 7, satifies Eq.(32)}.

The boundary conditions of Equation (31) characterize the potential of Equa-
tion (27) and introduce a new exactly solvable model of relativistic J, -sphere

interactions in quantum mechanics.
Let us consider in L*((0,0))®@? the operator hie defined by:
Gji

C2 d jl
= —C—+C¢C
_ 2 dr ro|_
ey d i c2 =T
c—+Cc—L —
dr r 2
14 ’ 1 ’ r
;(j,vl(R+)—;(j,,1(R—)+EB“ [Zjl,Z(R“L)J“le,Z(R_)J:O
D(h_ . ): 2, eD()] ,(33)
NGy J J , , 1 , ,
ZjI,Z(R+)_ZjI,2(R_)__AjI[ljl,l(R+)+Zi|,1(R_)j|:O

2C

|e[j—l j+1} je[l ooj
27 2 ) 27 .

The operator h,g, 18 the self-adjoint extension of the symetric operator h,.
Gl
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The operator h,c gives the mathematical definition of the formal expres-
Gjl

sion:

=h, +G,5.(r-R), (34)

1.6

where §; is the ¢'-sphere interaction of the second kind characterized by the

boundary conditions of Equation (31) and h, is the radial Dirac Hamiltonian

defined by:
C2 d il
— —-C—+C—
h = 2 dr r
Tl e ;
dr r 2 (35)

X (R+) =75 (R- 1 1] T1
D(hy) =41, € D(h})] i )_ i (R) ,Ie{j——,j+—}, je|:—,ooj.
Zi(R+)=7; (R-) 2" 2 2
The particular case G j =0 in Equation (33) yields the radial Dirac Hamil-
tonian h; , =h,. The case A; #0,B; =0 in Equation (33) gives the one pa-

rameter §;-sphere interaction defined by:

hjl,AjI =7
_ [ X . Z‘{"l(R—F): ( ) }(ul( )
LR T I P

Even, the case A; =0,B; #0 in Equation (33) provides the one parameter
d, -sphere interaction defined by:

h,—.,B“ =
" (R+)=4..(R=)=7",(R),
,D(h- ): L Zins ol |ZJ|,2( +) Z,l‘z( ) Zéz( ) | (36)
1B ! iz ! Z}|,1(R+)_Z;|,1(R_):_ 2'27(;|,2(R)
2 (A 1 11
Let G ={Gj,} J_E<I < j+§ E< j<oo. The decomposition of Equation

(12) implies that the operator H, in I ( IR® ) ®C* defined by:
z -1
He=@ @ [Ujin, ¢ U, |@1. (37)

provides the mathematical definition of the formal expression Equation (2). The

operator H: in Equation (35) defines the ¢; interaction in the tree-dimensional

space.
The case G=0, ie. G ; =0 forall jand /yields the Dirac Hamiltonian H
defined by Equation (2).

2.4. The Resolvent Equation of hjl é

il

Theorem 2.3: The resolvent of hjl G leads:
Gji
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(hjl,éj| B Z)_l ()
(=1 (02, ()| (@00 AP 0 0 )

(38)

A, B

+(<32.2><.>*-)[Bnéﬁf><->—%Q5'”‘)}}’

1 1. )1
z EP(hu,éj. ) Imk >0, | e[]—z,ﬁﬂ, ] e[z,oo],
where p(.) is the resolvent set and where (thz)_l, Imk(z)>0 is the radi-
al Dirac resolvent with kernel:

_ Gi(zrR) G (zrNR)
i 3 ) 12
G (Z'r’R)_[G;{(Z,hR) G5 (z,r,R)/) (39)

where
6! (2,r.R) = G, (zR)F;(zr), r<R
AT F; (z.R)G; (z,r),r>R,
6! (21.R) - G, (zR)F;(zr), r<R
wAm Fi(zR)G, (zr),r>R,
- (40)
6! (2r.R) = G, (zR)F;(zr), r<R
A F.(2R)G, (z.r),r>R,
G (2r.R) = G; (z.R)F,(zr), r<R
ZAm Fi(zR)G,(zr),r>R
and
Qj,(Z,Aj,,Bj,,R)
Bj' Aj' =1 < ' ' B (41)
=-|1- 402 +B,Fj (z.R)G} (z.R)+ A F; (z.R)G (z.R) | .
GJ:, (z,R)Ifj, (zr) r<R,
o0 _ G (z.R)F;(zr) @
YRR, (2,
, ~ >R,
Fjl(z,R)Gj,(z,r)
CEJ:' (Z’R)Ej' (z7) r<R,
<2 G (z.R)F;(zr)
Q=1 (43)
'fp (z, R)ijl (zr)). r>R
Fi(zR)G, (z.r)) '
CEE'(Z’R)EJ'(Z’r)j; r<R,
=) G} (z,R)F;(zr)
Qy =0 (44)
—[Ej'(Z’R)cfj'(Z'r)J' r>R
Fi(z.R)G; (z.r)
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G (z,R)F;(zr) r<
QW = [G;l(Z,R)lf“(z,r)J' ) (45)
i _[Fj’I(Z'R)?i'(Z'r)]'I’>R

Fi(2R)G,; (z.r)) |

(9N

with F, (z,r),F, (z.r),G;(zr),
and Equation (18).
Proof

One can use the Krein resolvent formula which yields the following relation

4 (2,r) and k(z) defined by Equation (21)

for the resolvent of hjl 6
y ]l

(hie, =2) =(b -2+ X 7 (#7020 22 (1,5, ). mK(2) >0, s9)

p.g=1

where 4\ (r),q=12 are given by Equations (19) and (20) respectively.
Taking the function Zi :(jju

je L((O,OO))®(|:2, we can define the func-
jl,2

tion 7, by:
771.,(z,r):((hjlyéjl —z)i ;(j,j(r). (47)

As the function 7, eD(hé‘rI ) , it follows that 7, satisfies the boundary
J

conditions in Equation (33). The implementation of these boundary conditions
provides the constants y,, (z). When we insert y, (z) into Equation (46), we
obtain Equation (38).

In particular case A; #0,B; =0 and A; =0,B; #0, the resolvent Equation
(40) provides respectively:

(th,A,-l - Z)_l ()=(ho =2) " () + Ay (2. A0, R)(m -)lez) (),

1.1 (48)
zep(Nya, ) 1Mk >0,1 e[j—?ﬁﬂ, j e[?wj,

and

(P, —2)71(.)=(hD ~2)"()+B,Q, (2.0, Bj,,R)(Qg,2>(,),,)(jgf>(.),

1011
Zep(hjl’B"), Imk>0,le[1—5,1+ﬂ,JE[E,OOJ,

2.5. The Spectral Properties of hjI &

Il

2 2
tial spectrum of h,g, 18 purely absolutely continuous and coincides with
S

Theorem 2.4: For A;,B; € (o0,), Ie{j—l,j+l}, je[%,ooj, the essen-

c? ’ . . .
—00, 5 U ?,oo . Its singularly continuous and residual spectra are empty.
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Proof

Proposition 6.1 and Theorem 6.2.in Ref. [25] provide detailed proof.

2 .2
The eigenvalues E of hi¢ located in {—%,?} are given by the pole of
Gji

the resolvent equation in physical sheet Imk >0, Ze. the solution of:

B, A ~ <
__Zi7h g F'(k,R)GJYI(k,R)+A-|Fj/|(k,R)Gjl(kvR)

1 4¢2 g i

=0,P<0 (50)
k(z)=iv=P

. 1/, ¢
where k=iv-P==,/E T
C

A straightforward computation shows that Equation (50) reads:

-1 ’ ’
B, A ) (B, [1 1
1= P—h | [P K (VEPr)| (e (V-Pr)
4c R C kil R Kji—y (R

+A, {r;Kﬁ“;(ﬁr)]R {rilkwi( —Pr)]R

In Figure 1, we consider the following normalization of the energy
h=2m=c’=1. Consider also KK]'| =-2 with the following condition for the

B A

coupling constants: B;A; <0. Y, = 12

—1 and Y, represents the second

member of Equation (51). Using the graphical resolution method, Ze. by analyz-
ing the intersection of the curves Y, and Y,, one can show easily that Equation

(51) has two solutions which correspond to the two eigenvalues {E;,E,} of

, c? ¢?
hj|,éj| 1n —?,? .

2
-10/75 5 10
-100}

c? ¢
Figure 1. Existence of two eigenvalues in {—?,?} .

The resonances of h,e are defined as poles of the resolvent Equation (38)
Gji

in the unphysical sheet Im k <0.

2.6. The Nonrelativistic Limit

Following the strategy of Gesztesy et al [27], in the case of point interactions,
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one can discuss the nonrelativistic limit of hjI g A C—ooo.
Gji

1 1
Theorem 2.5: For spin—E particules, the operator hjI &3 converges in
i

norm resolvent sense to the Shrodinger operator h , times the projector onto

H, =17((0,%)):

im(h . S 2) —(n R T\ 2
n.cm 6 —?—Z :( I’&I—Z) ® 0 of Ze IR (52)
where h; is defined by:
2 (1+1
1,a =_d_+ ( ’ )!
“ dr? r’

D(h,, )={f e?((0,0))] f, f'e AC, ((0,0)\{R}), f (0+)=0, if 1=0,
(1+%)f’(R+) (l—?'jf’(R—)zo, )
(1+%jf(R+) [1_%jf(R_):o,

Frel(1+)r2 f e 2((0,0))},
a ={a, B} —o<a,f <o lelN,

The boundary conditions in (53) define a self-adjoint extension of the radial
schrédinger operator h, defined by:
d2  I1(1+1)
a2
D(h)={f e’((0.))| f, '€ AC\, ((0,0)), f (0+)=0,if I=0,  (54)
f(R)=1'(R£)=0,~f"+I(1+1)r?f e’ ((0,0))}.1 € IN,

=

Proof
One may follow step by step Ref. [27], where a similar result was obtained in the
case of the point interactions. The Hamiltonian h ; defines a two-parameter

model of nonrelativistic &' -sphere interaction in quantum mechanics.

2.7. The Scattering Theory for the Pair ( hjI G hy)
i

Let us define for k >0 the following function:

et e SRR L E s

+Fj (2, R){BHQEIZ)( )- AZS" o (r)}}

where the functions Fjl(z,r),lf”(z,r),Q (Z A ,B R) Q() (j(-z) Q(-l) and

1 ]l’ ]li ]| 1 Jl l Jl

Qﬁ) are defined by Equation (21), Equations (41)-(45) respectively. A straightfor-

M (2,1)

ward computation shows that
My2(21)

] are scattering wave functions of
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Gy "
For the cases A; #0 and B; =0 and A; =0,B; #0, (55) yields, respec-
tively to:

[’71“(2’ r))J =Fy (2.r)Fy (2.r)+ A (2. A OR)Fi (2,1) Q) () (56)

77“12(2,!’

and

[ﬂj.,l(zlf)

=F, (zr)F, (z,r)+B,Q,(z _ =1 (7 11OR) (.
n;.,z(z,r)J Fo(21)F, (2.r)+B,2, (2,0,B,,R)F; (zr)QP ()  (57)

Equation (56) and Equation (57) define the scattering wave functions corres-
ponding to the Hamiltonian h, Al and h e, describing two one parameter re-
lativistic o -sphere interactions.

Let us determine the phase shift and the elements of the on-shell scattering
matrix corresponding to hye, Using the asymptotic behavior of 7; (z,r).

73 (2.7)

The asymptotic behavior of {
M2 (2.1)

] as r —oo yields to:

”im(z'r)]L)

ma(zr)) 7
Cj,(z)sin[kr—xj,g}

of (z)sin[kr—(zcj, —1)%}
Dj,(z)exp—i[kr—zcj,ﬂ (58)

D, (z)exp —i{kr—(zcj, —1)%}

[D(z)+ Dzz(z)]% sin{kr—fc“ gﬂﬂej. (z)}

1

D2 (2)+ D2 (2) ¢ sin[kr_(,(” L (z)}

+Q; (2. Ay, By, R)[Aj, Fi2(zR)

+B,F (z.R)]

Ll

2
where

K2 "
le (Z) — 27 i kKjll[kz _R_JZ'J F(ZK” +2)F(Kj| +1) ,
~ 1 —Kji K| 2 KJ'zl N -1
Cy (Z):EZ k k R? F(ZKil +2)F(KJ" +1) : (59)
D, (2)=2"k"'T (2, +2)_11"(Kj, +1),
< 1 Kipp, ki +1 -1
B, (2) =227k T2k +2) T (x +1).

In this case, the phase shifts corresponding to h,c, are defined as:

i
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D D
@. =-—arctan—% = —arctan—*
Ci D, D,

D, (2)Q;
C,(z)-iDy(z

D, (2)Q,
C,(2)-iD; (z

=— arctan

Z)
5, (60)

=— arctan =

where
0,(2)=9,(z.A;.B R)[AJ, Fi (z,R)F;(z,R)+B,F; (z,R)F; (z, R)](61)

» R B

The elements of the on-shell scattering matrix are given by:
Séjl (2)= exp[2i¢éjl (Z):| (62)
The partial wave scattering amplitude is given by:

exp[2i¢éjl (z)} -1

5, (2)= ik (63)
3.The ¢.-Sphere plus Coulomb Interaction
3.1. The Definition of the Hamiltonian
Let us consider the formal expression given by:
H < =Hy+=+G68!(|{-R), aeR, xeR® R>0, (64)

D
a,G |X|

where G is a real matrix of the form:
I (65)
0 B i

Let use the decomposition Equation (12) and introduce in L2 ((0,00))@(]:2

the operator:

~ @© 1
o=@ l[u],hj,au 1, (66)
j:EIZI_E
where h; , is given by:
C2 a d jl
—+= —c—+¢C
2 r dr r
h]la: , =7,
d Kl' C (04
c—+C—L ——4—
dr r 2 r

D(hy. )= {7y € P((0,%))®C | z; € AC, ((0.)); ;i (R+)=0; (67)
T, X € Lz((O,oo))®GI2}.

Ky is defined by Equation (13).
The adjoint H' . of H_. reads:

DOI: 10.4236/jamp.2024.124078 1276 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2024.124078

J. Manirambona et al.

1
© I3
H . =® @ [Uyh) U, |®1,
j=31-i-
¢ «a d Ky
;Ia = ETU(’ (68)
' d K ¢ «a
C—+C—+ ——+=
dr r 2 r

D(N;,)={x; € 2((0.0))®C? | 7 € AC,, ((0.0)\(R}),
7,2y €2 ((0,0)) @},

3.2. The Self-Adjoint Extension of h; ,

Let us consider the following equation:

(o -2) =02~ § e (8. 2| | S o | o0

and introduce the following notations:

(70)

Equation (69) has two linearly independent solutions:

(1) o

) Fiaz(2:1)
| 0)
r>R,

Zj a,z = (71)

o

2. = (72)

gjl,a,l(z’ r)} r>R

gjl,a,Z (Z'r)

where

1 .
2 -

fiaa(z,7)= 1‘@ {cos(arctan%ﬂz {Fjl,a (z. r)_L Fiie (2, r)}

Kj,C+§

foa2(2,r)= 1—0(—22 {cos(arctaniﬂ
- (x5c+¢) 2k¢

2 |:|fj|‘a (z, r)_lc-lc—+§|:jl’a (Z,l’):|,
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Oy (2.7) = 71y R) 1-—C Ht@me()—eu}

(Kilc"'g)z KyC+¢&
1 (73)
Ojen (27) =7 (55, R)| 1= (KJ.,::Z—+§)Z {cos(arctan%é;ﬂ {éj'”(z'r)_z«j,:—+46”‘“(Z’r)}'

and

Fio(zr)= rete F (§+1—| 28 +2, 2|kr)

Gj,va(z,r):F(2§+2) (§+1— 2I(j(Zlk)2§+l réte iy (§+1—| 28 +2, 2|kr)

-1

Fi. (2, r)—£(2§+1) (§+'2i‘kj r[5+1+i2%] ré e x F(g i—, 27, 2|krj (74)
. Froo oo oo (s oda) (= ia\ (s . ia
Gj,’a(z,r):T(2§+l) r(24) r(;+§)r(g+§j r(g+1+§j
24~ 1 4 —ikr
xk?(2ik) U(g—lﬁ 27, 2|krj

,F(a,b,r)(U(a,b,r)) denotes the regular (respectively, irregular) confluent
hypergeometric functions.

7(r;,R) is the normalization constants chosen in such way:

d{gm(zyw £ (2 q_l

; -2 (75)
gjla,Z(Z’r) leaZ( )

c
For the particular case a — 0+, we obtain:
;J (76)

j (77)

where Fj (z,r), JI(z,r),GJf,(z,r) and ij,(z,r) are respectively the derivatives
of the functions Fj,(z,r),lfjl(z,r),Gjl(z,r) and Gj,(z,r) defined by Equa-
tion (21).

The operator h;

jla

has deficiency indices (2, 2), and consequently, all its
self-adjoint extensions may be parametrized by a four-parameter family of
self-adjoint operators.

Consider the following two-parameters family of self-adjoint extensions of

hjl,a:
" « d Kj
— = —-C—+C—
h 2 r dr r
jla.Gy — )
haGj d Kjl CZ a
—-C—+C— - =
d r 2 r
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r 1A 1 ’ r
Zil,l(RJr)_Zjl,l(R—)szle [ 72 (R+)+ 25, (R-)]=0

1
Z}l.z(R+)_Z;|,2(R_)_zAj| [l;l,l(R+)+;(;I,l(R_):| =0 (78)

1.1 . |1
Aanjle'R,lE{J—E,J‘*‘E}Je[aij-

The operator h

D<hjl,a,e,—, ): Zi € D(hB )|

flac, 8ives the mathematical definition of the formal expres-

sion:

hywo, =Ny +=+G,8.(r-R),R>0. (79)
r

jI,a,G”

The case G; =0 in Equation (78) gives the radial Dirac-Coulomb Hamilto-

nian hjl,a,O =h,,

D(hw){xj, eD(h;ﬂ)llfl (R+)=;gj;. (R_)}:[J‘—l,jﬁ},{l,wj, (80)

Zi(R+) =7 (R-) 2" 212

In particular case when A; #0, B; =0 and A; =0, B; #0 in Equation
(78) simplifies respectively to one parameter o, -sphere plus Coulomb interac-

tion. Therefore, the model in Equation (64) is defined in L2 ( IR® ) ®Q* by:

1
o ]

Ao =@ @l[u iUy |91 (81)
i=31=i-t

The particular case G ; =0 for all jand / provides the Dirac-Coulomb Ha-

miltonian H, ;,

a

il

3.3. The Resolvent Equation of hj

o =Ho . D(H, ) - (RY) 0" ®
I,a,é“

Theorem 3.1: The resolvent of hjI ¢ reads:
G

(e, 2] O (o =2 02 (2R (O 0.
w0 0 0] (@0, moz0- e 0], e

1 1) . |1
Zep(hjl,a,éjl)’Imk>01|e|:J_E1J+E:llJe|:57wj’

where p(.) is the resolvent set and where (hmD - Z)il , Imk(z)>0 is the radial
Dirac resolvent with kernel:

: Gl“(zrR) GL“(zr.R)
ile _| 1 12
© (Z’r’R)_£GZJ'1~“(z,r,R) G4 (z,r,R)/ (84)

and

DOI: 10.4236/jamp.2024.124078 1279 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2024.124078

J. Manirambona et al.

G (z,r,R)={g€LaJ(Z, ®) aa(21). <R
fi.1(2R)g;.(2.r), r>R,
Gl‘z'“(z,r,R):{g;;"“’z(z’R) fua1(zr), r<R
fia2 (z, R)gj,,avl(z,r), r>R, )
Gl (z,r,R):{g;,"”‘l(z' R) fi..(z.1), r<R
fi.1(ZR)Gj..(27), r>R,
Gh*(z,r,R)= {g]-,. o2{8R) Tgq (1), <R
fia2(2R)G5,..(2r), r>R
Q,,(zR)
B, A < (86)
=-1- :Czjl +By fi.2(2R) 9], (2. R)+ Ay fjll,a,l(z'R)g}l,a,l(Z'R)i| v
[gél,a,l(z' R) fjl,al(z’ r)J, r< R,
(2) gjl,a,l(Z'R) fjl,aZ(Z'r)

Qe =1, ., (87)
fjl,az,l(zlR)gjl,ozl(z’r) r> R
Frei(ZR)Gy.2(21)) ’

(gél a,2(Z7R) fjlal(z’r)j, r< R,

3(2) gjl,aZ(Z'R) fJ|a2(Z’r)

Qjie = , (88)
fjl,a,Z(Z'R)gjl,al(Z'r) r> R
fie2(ZR)Gjaz(21)) '

[gél,a,Z (Z, R) fjl,a,l(z'r)J, <R
3(1) gjl,a,Z(Z'R) fjl,a,z(z’r)
Qjie = , (89)
_fjl,a,Z(Z’R)gjl,al(Z'r)
' , >R,
fiez(ZR) 902 (27)
(gl}l,a,l(zl R) fjl,a‘l(z’ r)], F<R,
QE|1),1 _ (gjl,al(Z’R))fjl,aZ(Z’r) (%0)

with the functions f; ,,(z,r), f,,(27),9;,1(27).9;,.(2r) defined by
Equation (73).

3.4. The Spectral Properties of h.

ilLaGj

j—l,j+l}j€[l,OO] and a<lR,
2 2 2

is purely absolutely continuous and coincide

i =l

Theorem 3.2: For A,,B; &(—o,),I e[

the essential spectrum of hjl,a,G,.

2 2
with [00,—?} u{?,w} Its singular continuous and residual spectra are emp-
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2 2
ty. The bound states of hyae, D the gap (—%,%J coincide with the poles
a,Gj

of the resolvent Equation (90) in Imk > 0.
Proof
Follow step by step the proof of the Theorem 2.4.

3.5. The Scattering Theory for the Pair ( hjI ady’ h,p)

Let us define, for k >0, the following function:
Mas(27) Faa(2:7) , B)
= Q. R)< f. R)| A,Q;
[njl,a,Z(er)] [fjl,a,Z(Z,r) ’ JI’Q(Z’ ) ]I’a'l(L ) JIQJI‘a(Lr)

(o1)
AiBi . AB.
JZICJI qull,)a(z'r)]" fj;,a,z(zl R){BHQEEL(Zyr)—%QﬁL(Z,I’)}},

with the functions fjlyavl(z,r),f“’uyz(z,r),le_a(z,R),Qgﬁ)a (),Q%,,Q  and

jla? Xjla
lel?a (.) defined by Equation (73), Equations (86)-(90) respectively.

il

A straightforward computation shows that ( ’1] are scattering wave func-

il a2

tions of hywe, - The cases A; #0, B; =0 and A; =0,B; #0 in Equation
I

,a,Gj

(91) simplifies, respectively to:

e

and

; zZ,r fi.a(zr . (2
(Z.’."”'liz r))J:[f:u, ,z(z r;} B, (2.0,8,.R) 1., (zR)G%, (z,r) (93)
ha, ! ha, !

Equation (92) and Equation (93) define the scattering wave functions corres-

ponding to the Hamiltonian h, and Nji a8, describing two one parame-

,a,A“
ter relativistic &, -sphere interactions.
Let us determine the phase shift and the elements of the on-shell scattering

matrix corresponding to hyne, USINg the asymptotic behavior of 7, , (z,r).

G

Milan

The asymptotic behavior of ( ] as r —oo yields [28]:

Mit a2
{njha,l(z’r)J o Vl(z)sin[yl+5§J+V2(z)cos[y1+5§J
Mo (2T)) 77 V3(z)sin[y2+5§71]+V4(z)cos[yz+5gfl]

[V12(2)+V22(z)]% sin[yl +§§+5§,Gj,,1} .

1
V5 (2 2 s 2,5,

where
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y, =k —éln(Zkr)—fz,
« 2 (95)
[04 = s
y, =k —?In(Zkr)—(/;—l)E
and
a
5:(2) :521(2)+arctan(ﬂ}
(96)

52(2)= argr(f +1+i%).

The Coulomb modified phase shift (océ_l corresponding to hiwe is given
a,G; a.Gj

by:
¢ —arctan V. (2)
(pﬂl,é'hl Vl(Z)
c = . 97)
a2 —arctan Va(2)
V;(2)

The constants V, (i=1,2,3,4) are defined by:

2)+[d,(2)-i6,, (2)d S'”{""”“"”[fﬂ
~0,.(2)(idy(2)+d,(z ))Co{ammn( 3 H
|

8,0 (02 ) |
Va(2) = [, (2)+i6,, (2 )%(z)]sm{arcta”[zfgﬂ

%
V(1) [ (2) i3 ()0, 1) o rctn 2

KyC+¢
] 008, 0] o |
+i[KHC“+§J_ld4(z)}, (98)

QU{ é,ds(z)sin{arcta“[zfgﬂ{xj.fwj_ld“(Z)}'

with Q,(z) defined by:
ﬁj,,a(z):gj,ya(z,R)[A fr..(zR) T}, (z2.R)+B, T/ ., (zR) fj,az(z,R)]. (99)

The constants d;,i=1,2,3,4 are given by:
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d(z)= o (:os(arctani~~ﬂ_2 25k=r(28 +2
X F(f+l+i%} enzik,
a a? 2 G 7% .
d,(z)=- 1- - {cos(arctanfﬂ 2k
C(KJ|C+§) (Kj|C+§) 2kg

-1 4
2K
e 1

xl“(2§+2)‘1“(g: +1+ iz%j

2 2 =2 . . L
dy(z)= 1—0[—2 {cos(arctan&ﬂ 24k41“(2§+2)1
(ky+¢) %
A
I &+1+i—|le 2,
’ (g 2kj
L (100)
-= 1
o a2 2 g V2 -
d,(z)=- 1- > {cos(arctan—~ﬂ 20k
C(Kjlc+§) (KJ-|C+£:) 2kg
~ -1 ~ .a _ni
xI'(26+2) |T| &+1+i— |e 2.
e+ (e
The limit a — 0+, in (97) yields:
i C o _ i C
JLr](;]+5a,éj|,l - JLn(;]+¢a,éj|,2 - goé“ (Z) (101)
where @g (z) is defined by (60).
J
The Coulomb-modified on-shell scattering matrix is given by:
S,,0=OP| 2i0%¢ (2)]:n=12 (102)
S, S,

4. Conclusion

In this paper, using the self-adjoint theory of symmetric operator in Hilbert space,
we studied the basic properties of two-parameter models of relativistic ¢, -sphere
and ¢, -sphere plus Coulomb interaction (where a charged particle is perturbed
by a ¢ -sphere interaction). For both interactions, we obtain interesting results
on resolvent equations, spectral properties and scattering data (the phase shift,
scattering matrix, scattering amplitude, and scattering cross section). As a pers-
pective, one can use simulations or real-world data to validate the theoretical mod-
els proposed in this paper. Also, in our future paper in preparation, we intend to
study the case where the relativistic J, -sphere interaction is centered on finitely

many concentric spheres.
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