
Journal of Applied Mathematics and Physics, 2024, 12, 1203-1236 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2024.124075  Apr. 26, 2024 1203 Journal of Applied Mathematics and Physics 
 

 
 
 

Understanding the Theory of Karp,  
Miller and Winograd 

Athanasios I. Margaris 

Department of Digital Systems, Gaiopolis Campus, University of Thessaly, Larissa, Greece 

 
 
 

Abstract 
The objective of this tutorial is to present the fundamental theory of Karp, 
Miller and Winograd, whose seminal paper laid the foundations regarding the 
systematic description of the organization of computations in systems of uniform 
recurrent equations by means of graph structures, via the definition of computa-
bility conditions and techniques for the construction of one-dimensional and 
multi-dimensional scheduling functions. Besides the description of this theory, 
the paper presents improvements and revisions made by other authors and fur-
thermore, points out the differences regarding the conditions of causality and 
dependency between the general case of systems of recurrent equations and the 
special case of multiple nested loops. 
 

Keywords 
Computability, Scheduling, Computations, Recurrent Equations 

 

1. Introduction 

A very important topic in the field of all mathematical sciences is closely related 
to the organization of computations associated with uniform recurrent equa-
tions, namely, recurrent equations characterized by the presence of uniform data 
dependencies. This problem was first formulated and studied in 1967 by Karp, 
Miller and Winograd (KMW) [1], via the development of an appropriate model 
describing the organization of those computations, as well as the inherent paral-
lelism involved in the solution of this type of systems. This model is capable to 
describe a wide range of algorithms and applications from the field of mathe-
matics and computer science, and to provide an accurate description of such an 
organization [2]. Although the model of Karp, Miller and Winograd, which was 
created in an attempt to study explicit schemes of difference equations, is purely 
theoretical, its conclusions were extended and clarified by later works, and the 

How to cite this paper: Margaris, A.I. (2024) 
Understanding the Theory of Karp, Miller 
and Winograd. Journal of Applied Mathe-
matics and Physics, 12, 1203-1236. 
https://doi.org/10.4236/jamp.2024.124075 
 
Received: March 4, 2024 
Accepted: April 23, 2024 
Published: April 26, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2024.124075
https://www.scirp.org/
https://doi.org/10.4236/jamp.2024.124075
http://creativecommons.org/licenses/by/4.0/


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1204 Journal of Applied Mathematics and Physics 
 

number of its applications was so large, that this work is considered one of the 
most important in the field. For example, the well-known Lamport’s method of 
hyperplanes [3], as well as the methodology of spatio-temporal mappings [4] [5], 
related to the field of automatic parallelization of nested loops, are strongly based 
on the model of KMW. Furthermore, the nested loop parallelization algorithm 
of Allen and Kennedy [6] has its roots in this model, since it can be seen as a 
special case of the graph decomposition procedure of Karp, Miller and Wino-
grad. 

To understand the necessity to formalize the organization of calculations, let us 
consider the Laplace differential equation as an example [7]: 

( )
2 2

2 2 ,T T f x y
x y

∂ ∂
+ =

∂ ∂  
that describes the distribution ( ),T x y  of the temperature at each point ( ),x y  
on the surface of a thin square plate of thickness z∆  (much smaller than the 
dimensions of the plate). The plate is considered insulated in such a way, that 
heat flows only along the x and y directions. If there are no sources or sinks of 
heat, described by the function ( ),f x y , the Laplace equation becomes a ho-
mogenous one. The equation is constructed by relying on physical arguments, 
while its numerical solution relies on the application of the well-known finite 
difference method. This method is based on the definition of a grid of points or 
nodes on the surface of the heated plate and on the numerical calculation of the 
temperature, at each point or node of this grid. Even though this example con-
cerns a scalar function, such as the temperature, the same procedure can be used 
for the numerical solution of partial differential equations associated with vector 
functions, such as the electric field. The grid used in the finite difference method 
is usually defined in Cartesian coordinates, although in general it can be defined 
in any system of rectangular or curvilinear coordinates, according to the geometry 
of the problem and the way of the definition of the boundary conditions. The es-
timation of the temperature at each node of the grid allows us to determine the 
values of the temperature at any other point, resorting to methods such as in-
terpolation, extrapolation or function approximation. Note, that in order to ob-
tain a complete solution to the problem, it is also necessary to define the appro-
priate boundary conditions, which consist of setting constant temperature values 
for each of the four edges of the square plate. Based on all the above, we find that 
the finite difference method is nothing more than the discretization of a partial dif-
ferential equation, both in space and in time, a process that leads to the construc-
tion of the corresponding difference equation. 

In order to apply the above procedure to the Laplace equation, we have to de-
fine the appropriate grid structure (see Figure 1(a)) and then replace the partial 
derivatives 2 2T x∂ ∂  and 2 2T y∂ ∂  with the corresponding central differences 
as: 

2
1, , 1,

2 2

2i j i j i jT T TT
x x

+ −− +∂
=

∂ ∆  

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1205 Journal of Applied Mathematics and Physics 
 

 
Figure 1. (a) The grid defined on the surface of a square heated plate for the numerical solution of Laplace’s equation by the finite 
difference method; (b) The grid nodes that identify the spatial points of the calculation of the temperature function ( ),T x y , to-

gether with their coordinates (Source: Chapra & Canale, Figs. 29.2 and 29.3). 
 

2
, 1 , , 1

2 2

2i j i j i jT T TT
y y

+ −− +∂
=

∂ ∆  

with errors ( )2O x ∆   and ( )2O y ∆  , respectively. In this case, the Laplace’s 

equation gets the form: 

1, , 1, , 1 , , 1
2 2

2 2
0i j i j i j i j i j i jT T T T T T

x y
+ − + −− + − +

+ =
∆ ∆  

and for the special case of the square plate, the above relation becomes: 

1, 1, , 1 , 1 ,4 0i j i j i j i j i jT T T T T+ − + −+ + + − =  
where we have set x y h∆ = ∆ = . The above expression, known as the Laplace’s 
difference equation, is valid for all the interior points of the plate. Therefore, if 
the appropriate boundary conditions (such as Dirichlet’s conditions) are defined, 
then, it is possible to calculate the temperature value at each of the nodes of the 
grid defined on the surface of the plate, such as the nine points depicted in Fig-
ure 1(b). The outcome of this procedure is a system of difference equations or 
recurrent equations, whose number is equal to the number of grid nodes, or equi-
valently, to the number of functions to be computed. The work of KMW is con-
cerned with the organization of computations associated with each of those grid 
nodes, as well as the description of the related concepts and techniques, such as 
the notion of computability and scheduling functions. 

2. Defining the Basic Concepts 

Returning to the presentation of the theory of KMW, it deals with the study of a 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1206 Journal of Applied Mathematics and Physics 
 

system of uniform recurrent equations, each one having the form: 

( ) ( ) ( ) ( )( )1 2, , ,i i i i i i i imfα α α α= − − −p p d p d p d  
( )1 i n≤ ≤ , with the functions ( )iα p  to represent matrix-type variables. The 

values of these variables must be computed in the grid points described by the 
integer vectors p , used as arguments to the above functions. These vectors are 
known as iteration vectors, with this name being justified by the fact, that the 
described procedure is an iterative process, in the sense that the computation of 
the above variables is performed in an iterative way at the positions of all integer 
points that are supposed to define a subset R of the space n , which is known as 
the iteration space, or, equivalently, as the computational domain. From this 
viewpoint, the boundary values, defined in the previous example (if required), 
are defined as integer points that do not belong to the set R. On the other hand, 
the vectors ijd  ( )1 , 1i n j m≤ ≤ ≤ ≤  appearing in the above equations are known 
as dependence vectors, while the functions ( )1 2, , ,i mf x x x  ( )1 i n≤ ≤ , are 
strictly dependent on each of their arguments, meaning that whatever value jc  
is assigned to the variable jx  ( )nj eqi , the value of the function  

( )1 2 1 1, , , , , , ,i i i i sf c c c x c b− +   is not a constant. Note, that the number of ar-
guments (namely, the value of m) in these functions, is generally different for 
each one of them, and since we are only interested in the organization of compu-
tations and not in the exact process performed by them, the nature, as well as the 
number of definitions of the functions if  ( )1 i n≤ ≤ , is completely ignored. 

A basic requirement for the computation of the function ( )iα p  at the position 
p  of the iteration space, is the availability at the time of computation, of the com-

plete set of the values of the functions ( ) ( ) ( )1 2, , ,i i i i i imα α α− − −p d p d p d  
( )1 i n≤ ≤ , which should already be calculated and known in advance, meaning 
that there is a dependence between the value ( )iα p  and each one of the above 
values. The theory of KMW deals with systems of recurrent equations characte-
rized by uniform dependencies, described by the well-known dependence dia-
grams, namely, by directed graphs ( ),G V E=  of finite size, defined in the re-
gion of interest nR ⊂  . In these graphs, the sets of vertices V and edges E, are 
defined as finite sets of the form { }1 2, , , mV υ υ υ=   and 1 2= { , , , }ellE e e e , 
respectivelly. The vertex set of such a graph has the form of a Cartesian product 
{ }1,2, ,m P× . The graph contains an edge from vertex ( ),j q  to vertex ( ),i p , 
if the value of the function ( )iα p  depends on the value of the function ( )jα q , 
with the label of this edge to be an appropriate dependence vector, which is a 
vector of integers (and in the general case, a polyhedron). On the other hand, each 
vertex of such a graph represents the complete set of the computations associated 
with the instances of the same variable to be computed. Note, that such a graph 
can have one or more loops, namely, edges whose source and destination are the 
same vertex, as well as one or more cycles, namely closed paths that start and end 
at the same vertex as before, but they pass also through other vertices. In the gen-
eral case, the label associated with a vertex v in such a graph, is a polyhedron vP , 
which belongs to the set vd  where vd  is the dimension of the iteration space 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1207 Journal of Applied Mathematics and Physics 
 

of vertex v, while, the label associated with an edge joining two vertices v and y, 
is a polyhedron defined in the space v yd d+ . Note, that the dimension of the 
vertex iteration space for the special case of a nested iterative loop is equal to the 
number of loops of the nested structure enclosing the statement associated with 
this vertex. This type of graph for the general case of systems of recurrent equa-
tions is known as Generalized Dependence Graph (GDG), in the sense that it con-
tains as many vertices as iteration vectors. A simplified version of such a graph 
that used in the automatic parallelization of multiple nested loops is known as 
Expanded Dependence Graph (EDG). 

Denoting by 11 12 1, , , ke e e  the edges of the graph G starting from vertex iυ  
and ending at vertices 1 2, , ,i i ikυ υ υ  respectively, and by ijd  the weight vector 
of length n associated with the edge ije , the equation corresponding to the ver-
tex iυ  will have the form: 

( ) ( ) ( ) ( )( )1 1 2 2, , ,i i i i i i ik ikfα α α α= − − −p p d p d p d  
It is not difficult to see, that if we know the mathematical form of a system of 

uniform recurrent equations, we can easily construct the associated dependence 
graph, and vice versa, meaning that these two forms of describing the system are 
in fact, equivalent descriptions of the system under consideration. 

3. Computability and Scheduling of Calculations 

From the above description, it is clear that there are two main issues associated 
with the computations in systems of uniform recurrent equations, namely, 1) the 
issue of computability and 2) the issue of scheduling. In particular, the compu-
tability problem, attempts to give an answer to the question whether the recur-
rent process described above, is associated with computable functions ( )kα p , 
or not. If it turns out that the functions under consideration are computable func-
tions, then the problem of scheduling emerges, associated with the construction 
of a scheduling function that determines the moment of execution for each one 
of the involved computations. A key assumption commonly used in such calcu-
lations is the availability of an infinite number of processors in the underlying 
parallel system, so that, in each case, as many processors as needed, are available. 
Even though this requirement, will never be met in practice, the scheduling func-
tion defined in this way, eventually allows the mapping of the computations to a 
finite number of processors. 

Why it is necessary to define such a scheduling function? This necessity stems 
from the fact, that the algebraic structure describing the iteration space does not 
contain any information regarding the order in which the involved computa-
tions should be performed and therefore, this execution order should be speci-
fied separately. It turns out, that each one of these two problems (namely, com-
putability and scheduling), is the dual of the other (as dualism is defined in the 
field of linear programming). These problems are closely related to the fact that 
the computation of the functions that appear in the left-hand size of the recur-
rent equations requires the computation and the availability of the values of the 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1208 Journal of Applied Mathematics and Physics 
 

complete set of quantities used as arguments to those functions, which, in turn 
requires the values of their own arguments, and so on. Regarding the question of 
calculating all those values, there are two possibilities which may arise in prac-
tice, depending on the nature of the dependencies defined between these func-
tions: either the calculation of all these values will take place in a finite period of 
time, or the dependencies are such that, the waiting period for the availability of 
a value used as an argument to a function has an infinite value, in which case, 
the recurrent procedure is characterised as non-computable. A typical example 
of a non-computable process is a circular wait situation, in which each one of 
two function values is waiting for the other value to become available, a situation 
which is very common in operating systems and it is described by the term dead-
lock [8]. 

As Feautrier [9] points out that the concepts of scheduling and the associated 
tables have their roots in Operations Research and in PERT diagrams [10]. How-
ever, the scheduling tables cannot be used in the field of parallel processing, in 
the way used in Operations Research, since there are several practical difficulties: 
the grouping of elementary computations into tasks, is not a trivial process, and 
generally speaking, it is difficult or impossible to know in advance, the execution 
time instance as well as the total execution time of each task. To overcome these 
difficulties, only a very small number of elementary computations can be assigned 
to each task. In the extreme case, each task is associated with a single statement, 
and since in this case, the number of processes involved, is very large, we can resort 
only to an asymptotic analysis of the situation. In this type of analysis, the know-
ledge of the exact execution time is not so important and therefore, it is common 
practice to assign to each execution time interval, a value of unity. Furthermore, 
the inability to construct scheduling tables makes it as the only possibility, the ex-
pression of the involved functions in closed form. 

The problem of scheduling is one of the fundamental problems associated 
with the automatic parallelization of nested loops, and it can be handled by re-
sorting to a special class of scheduling functions, and more specifically, to linear 
scheduling functions, that do not apply to all systems of uniform recurrent equ-
ations. These functions are constructed via the application of the well-known 
method of hyperplanes [3] that transforms a traditional sequential nested loop 
of depth d n= , into a parallel loop, consisting of an outer sequential loop and 

1n −  inner parallel loops. There are several types of linear scheduling functions, 
with the most general and commonly used type, being the affine linear func-
tions, used initially in systolic array design [11] [12] from systems of recurrent 
equations. These functions, are defined as mappings nV ×    of the form 
( ),S υ υυ ρ= ⋅ +p pΠ  (or of the form ( ),S υ υυ ρ= ⋅ +  p pΠ  if the mapping S 

is defined as : nS V ×   —in this case, they are characterized as semi-linear 
or nearly linear) where n

υ ∈Π  is the so-called scheduling vector, selected such 
that υ ≥D 1Π  where D  is the dependence matrix (or equivalently iυ ≥d 1Π  for 
each dependence vector i ∈d D ), a condition that guarantees the preservation 
of the underlying data dependencies and allows the characterization of the sche-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1209 Journal of Applied Mathematics and Physics 
 

duling function as a valid scheduling function, and υρ ∈  a parameter with a 
value of { }min , Rυ υρ = − ⋅ ∈p pΠ  (this conditions allows the execution of the 
calculations to start at time 0t = ). The use of the subscript υ  in this notation, 
indicates that the quantities υΠ  and υρ , in general, they have different values 
for each vertex kυ , namely, for each calculation ( )kα p , while the dependence 
matrix D , contains as columns the dependence vectors. In the special case, in 
which the vector υΠ  has the same value for all vertices, then the affine schedul-
ing function is characterized as a shifted linear scheduling function (due to the 
non-zero value of the parameter υρ ), and furthermore, if the condition 0υρ =  
holds, then we simply refer to a linear scheduling function. Note, that even though 
the calculation of the vector υΠ  and the parameter υρ  can be performed by 
constructing and solving, via linear programming techniques, an appropriate sys-
tem of equations that contains one equation for each grid point p , however, in 
practice, due to the very large number of equations, the determination of these 
functions in closed form, is carried out by other methods. These types of sche-
duling functions are particularly popular, and they are widely used in almost all 
cases of scientific applications, because they allow the automatic code generation 
for the parallel nested loops, with only a small overhead. 

In order to give a mathematical description, let us define a precedence rela-
tion, described by means of a precedence graph, as a relation between two com-
putations that determines which one of them will be executed first, or equiva-
lently, specifies the order in which the evaluation of the functions ( )iα p  at the 
different grid points p  will take place. Let us consider an ordered pair ( ),k p  
of the set { }1,2,3, ,m P× , with the first element k to be an integer in the in-
terval 1 k m≤ ≤  and the second element p  to be a vector of n elements, that 
identifies the function ( )kα p  to be computed. In this case, the pair ( ),k p   

depends directly on the pair ( ),q , or, in a symbolic notation, ( ) ( )
1

, ,k →p q , 
if and only if a) P∈p  and b) the precedence graph that describes the problem, 
contains an edge directed from vertex kυ  to vertex υ



 such that k− =p d q , 

for some dependence vector kd . In other words, the condition ( ) ( )
1

, ,k →p q  

holds, if and only if the function ( )α q


 is one of the arguments of the function 

( )kα p . The subscript 1 used in this notation indicates that the dependence be-

tween the pairs ( ),k p  and ( ),q  is a direct dependence between these two 

pairs, rather than an indirect one. Note, that if the pairs ( ),k p  and ( ),q  are 

identical, meaning that if k =   and =p q , we simply write ( ) ( )
0

, ,k →p q , 
while in the general case of a t-dependence, it is defined inductively in the fol-

lowing way: we write ( ) ( ), ,
t

k →p q  if there exists a pair ( ),h r  such that 

( ) ( )
1

, ,
t

k h
−
→p r  and ( ) ( )

1
, ,h →r q , and with the basic step of this inductive 

process, being the condition ( ) ( )
0

, ,k →p q  defined earlier. If for some positive 

integer t, it holds that ( ) ( ), ,
t

k →p q , then, we simply write ( ) ( ), ,k →p q . 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1210 Journal of Applied Mathematics and Physics 
 

The meaning of this last expression, is that the value of the function ( )α q


 

should be computed before the value of the function ( )kα p , a condition that is 
the fundamental property of every valid scheduling function. 

4. One- and Multi-Dimensional Scheduling 

According to the description given so far, the scheduling of a generic computa-
tion process, is defined as a function of the form { }: 1, 2, ,S m R +×   , that 
takes as input an ordered pair ( ),k p  describing the computation of the func-
tion ( )kα p  and returns the execution time instance ( ),S k p  of this computa-
tion. In order such a function to be valid, the following condition must be satis-
fied: if ( ) ( ), ,k →p q , then ( ) ( ), ,S k S>p q . This condition stems from the 
fact that the dependencies between calculations must be preserved under the ap-
plication of the scheduling function. In other words, as long as the value ( )kα p  
depends on the value ( )α q



 (in the sense that the latter value must be known 
and available at the estimation time of the first value), it must be calculated af-
terwards. Therefore, the condition ( ) ( ), ,S k S>p q  must be hold. If we make 
the assumption that the duration of each computation is equal to unity (this as-
sumption allows us to describe the duration of the execution of each computa-
tion, as lengths of paths defined on the precedence graph), the above relation 
is alternatively formulated as ( ) ( ), , 1S k S≥ +p q . Therefore, the start time 
( ),S k p  of the computation ( )kα p  must be greater than or equal to the com-

pletion time of the computation ( )α q


, which in turn, is equal to the start time 
( ),S q  of the computation ( )α q



 plus the time duration of this calculation 
(which is equal to one). The above requirement expresses a condition of causali-
ty, which in turn is imposed by the necessity of maintaining the existing depen-
dencies between the computations. 

The scheduling function defined above, is associated with the so-called one- 
dimensional scheduling, in the sense that the execution time instance of the com-
putation performed at the grid point p , is described by a simple positive integer 
value. However, multi-dimensional scheduling functions can also defined, as 
mappings in the form : dS V R +×   . Using these special mappings, it is possi-
ble to define logical execution time instances, that are not described by a simple 
number, but instead, by a vector of d values which can be interpreted in the same 
way as a date, meaning, that the most significant of these values represents days, 
while the remaining values represent, respectively, hours, minutes, seconds, etc. 
This type of scheduling is applied in more complex cases for which the construc-
tion of an affine one-dimensional scheduling function is not possible. Of course, 
since in this case, the execution time instance is not a simple number but a whole 
tuple of d elements, an ordering relation has to be defined, allowing the charac-
terization of such a tuple as smaller (earlier) or larger (later) than another one. In 
practice, for this purpose, the well-known lexicographic ordering is a common 
choice. This ordering is used very frequently in mathematics and computer science 
and a well-known example of its use, is the ordering of the iterations of a multiple 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1211 Journal of Applied Mathematics and Physics 
 

nested loop. If we denote this lexicographic ordering by the symbol  , a mul-
ti-dimensional scheduling function is characterized as a valid one, if it satisfies the 
condition ( ) ( ) ( ) ( ), , , ,k S k S→ ⇒p q p q   . This condition is exactly the same 
as the one we used to characterize a valid one-dimensional scheduling function, 
except that the relevant quantities appearing are tuples of d elements. Assum-
ing again that the time duration of the computations is equal to unity, the condi-
tion ( ) ( ), , 1S k S≥ +p q  for the multi-dimensional scheduling, is formulated 
as ,1k k d∃ ≤ ≤ : s.t :i i k∀ < , 

( ) ( ) ( ) ( ), , and , , 1
i i k k

S k S q S k S q= ≤ +              p p   
In the above expression, the use of the operator [...] stems from the fact that 

the range of the associated mapping, is the set   of rational numbers. As in 
the case of one-dimensional scheduling, the affine multi-dimensional scheduling 
is defined as a mapping of the form : n nS V ×    such that: 

( ) ( )1 1 2 2, , , , d dk υ υ υ υ υ υρ ρ ρ⋅ + ⋅ + ⋅ +p x p x p x p   
In the above expression, the vectors i

υx  ( )1 i d≤ ≤  are all different from 
each other. If 1 2 d

υ υ υ= = =x x x , then, the above condition for each edge e E∈  
of the graph takes the form: 

, :1 :, :1e e ee E k k d i i k∀ ∈ ∃ ≤ ≤ ∀ ≤ ≤  

( )
( )

0

1
e e

e e e
e e

i i i
x y

k k k
x y

e

e

ρ ρ

ρ ρ

 ⋅ + − =


⋅ + − ≥

x w

x w
 

with the subscripts ex  and ey  describing the vertices of the graph associated with 
the edge e (starting at vertex ex  and ending at vertex ey ), and the subscript υ  
denoting the vertex of the graph associated with the computation to be scheduled. 
The equations ( ) 1e ee

e e

k kk
x ye ρ ρ⋅ + − ≥x w  and ( ) 0

e e

i i i
x ye ρ ρ⋅ + − =x w  appearing 

in the above condition, are hyperplane equations, defining a strongly separating 
and a weakly separating hyperplane, respectively. 

The problem of determining affine scheduling functions for both the one- 
dimensional and the multi-dimensional case is described by Feautrier [9] [13] in 
its most general form, which does not refer to a particular dependency graph, 
but to a (potentially) infinite family of such graphs, each member of this family 
being determined by one or more integer parameters which together constitute 
the parameter vector n . Consequently, the affine scheduling function does not 
have the simple form ( ),S υ υυ ρ= ⋅ +p X p  but the more general form: 

( ),S υ υ υυ ρ= ⋅ + ⋅ +p p s nΠ  
where υΠ  and υs  are unknown vectors with fixed rational coordinates and 

υρ  is an unknown constant. It is not difficult to realize, that the problem of de-
termining the scheduling function is related to the estimation of the above un-
known parameters, in such a way that the causality condition is still satisfied, 
and to the selection of a solution that leads to the optimization of the value of 
the appropriate performance parameter, such as the minimum time delay. The 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1212 Journal of Applied Mathematics and Physics 
 

form of the above equation is documented by the fact that the solution of the 
scheduling problem for increasingly larger values of n, leads to functions which 
in the limit of large values of n , are linear with respect to n  [14]. The above 
general equation can be considered as a type of template that every scheduling 
function should follow, and in the literature can be found simpler expressions, 
that use, for example, the same vector υΠ  for all vertices of the graph (as in the 
case of uniform recurrent equations) with the resulting function, in this case, to 
be known as the wavefront. 

5. Solving the Scheduling Problem 

A straightforward way to determine the unknown parameters υΠ , υs  and υρ , 
appearing in the linear scheduling functions, is to substitute in the condition 
( ) ( ), , 1e eS y y S x x≥ +  for each edge e of the graph, starting at vertex ex  and 

ending at vertex ey , the appropriate values of the parameters x, y and n  and 
then solve the resulting system of linear inequalities by resorting to classical li-
near programming methods, such as the simplex method. However, the number 
of inequalities emerging in this way, can be very large (theoretically infinite), 
and furthermore, there is absolutely no guarantee, that in these inequalities, all 
important constraints have been included. Therefore, this technique is in fact, 
not applicable. Feautrier describes two basic methods for solving this problem, 
and more specifically, the vertex method [9], as well as another method based on 
the so-called affine form of Farkas’ lemma [15]. Of these two methods, the ver-
tex method is based on the observation that a polyhedron can be described ei-
ther as a set of points satisfying a finite set of linear inequalities, or as the convex 
hull of a set of points and consists of: a) the determination of the generating sys-
tem for all polyhedra Dυ  where Vυ ∈  and e E∈ , b) the construction of the 
inequality ( ) ( ), , 1e eS y y S x x≥ +  for all vertices of the polyhedron eR  asso-
ciated with edge e, as well as the inequality ( ), 0S xυ ≥  for all vertices of Dυ  
and c) the solution of the finite system of linear inequalities obtained in the above 
way, using algorithms such as Chernikova’s algorithm [16]. 

The above method, which allows the transformation of a set of inequalities, 
into a set of polyhedral vertices, has very high computational cost and therefore, 
a simpler method is required that does not based on new transformations, but 
on the original inequalities. Such a method relies on the affine form of Farkas’ 
lemma, formulated in the following way: let D be a non-empty polyhedron, de-
fined by p affine inequalities of the form 0k ka x b+ ≥  ( )1 k p≤ ≤ . In this case, 
an affine form ψ  is nonnegative anywhere in D, if and only if it is a positive af-
fine combination of the form: 

( ) ( )0 , 0k k k k
k

x a x bψ λ λ λ= + + ≥∑
 

This method relies on the observation that an affine scheduling function 
( ),S υ υ υυ ρ= ⋅ + ⋅ +p X p s n  takes non-negative values if and only if there are 

Farkas multipliers 
kSµ  such that: 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1213 Journal of Applied Mathematics and Physics 
 

( )
0

1
,

S

k k k

m

S S S S
k

A

x
S a b

n
υ µ µ

=

  
= + +  

  
∑p



 
where Sm  is the set of inequalities of D, with each of the expressions A, whose 
values are greater than or equal to zero, being the inequalities defining each po-
lyhedron Dυ . The above equation is a new representation of the original expres-
sion, and can be used in its place, in all relevant calculations. Consequently, if nu-
merical values for the Farkas coefficients 

kSµ  are determined, then, we can im-
mediately construct the appropriate version of the original expression. 

The calculation of Farkas multipliers, is based on the observation that for an 
affine scheduling function ( ),S υ p , the time delay associated with each edge 
e E∈  of the graph, is given by the expression: 

( ) ( ), , 1e e eS y S x∆ = − −y x  
where ex  and ey  are the source and destination of edge e of graph G, respec-
tively. Therefore, there will be Farkas multipliers such that: 

( ) ( )
0

1
, , 1

S

k k k

m

e e e e e e
k

B

x
S y S x c y d

n
λ λ

=

  
  − − = + +  

    

∑y x



 
In the above equation, the expressions denoted by B (whose values are also 

greater than or equal to zero), define the polyhedron of dependencies of edge e. 
The final result of this procedure is a system of linear equations with unknown 
Farkas multipliers, with positive values. Having calculated these coefficients, we 
can then determine the required scheduling function. As Feautrier points out, 
using a technique similar to Gauss-Jordan elimination, we can significantly re-
duce the size of the problem and make the algorithm even more efficient. 

6. Selecting the Optimal Time Routing Function 

The number of valid scheduling functions is obviously not countable, and there-
fore, the most appropriate function for each case has to be identified, in the sim-
plest possible way. When all the iteration spaces are finite and there is at least 
one affine scheduling function, it can be proven that there is at least one affine 
form L k= ⋅ +h n  such that, for every Vυ ∈  and for every Dυ∈x , the con-
dition ( ), 0L S υ− ≥x  holds. If we take into account that the latency increases 
with the components of the vector n , the components of the vector h  will be 
positive numbers, and resorting to Farkas’ lemma, we can write: 

( )
0

1
,

S

k k k

m

S S S S
k

x
L S a b

n
υ ν ν

=

  
− = + +  

  
∑x

 
We are now able to compute the values of the coefficients 

kSν , which lead to 
an affine scheduling function, characterized by the minimum time lag. Alterna-
tively, we can estimate a scheduling function whose latency is characterized by 
an upper bound, namely: 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1214 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ), 1 , ,e e eR S y S x δ∈ ⇔ ≤ − ≤x y y x  
where δ  is a constant term. It turns out that this scheduling function is more 
restrictive than the functions of this type, that lead to the minimum latency. 

Since the above techniques are characterized by a very high sensitivity to the 
order in which the problem parameters appear in the vector n , it may be diffi-
cult to use them in practice. To deal with these situations, an alternative tech-
nique devised by Feautrier can be applied, that tries to determine the optimal af-
fine scheduling function via a search procedure, performed in the closure of the 
set of affine functions under the operation of finding the minimum value. This 
function has the form ( ) ( )minT S=r p , for all the scheduling functions S that 
belong to the set of valid affine scheduling functions. The method of Feautrier is 
based on an ordering relation, defined between the scheduling functions of the 
form ( ) ( )1 2 1 2:S S R S S≡ ∀ ∈ ≤p p p , as well as to a theorem, according to 
which, if the functions 1S  and 2S  satisfy the causality condition for a generalized 
dependence graph, then the same is true for the function  

( ) ( ) ( )3 1 2min ,S S S=   p p p . Using again the affine form of Farkas’ lemma, a 
linear program of the form: 

( )
0

1
, min

S

k k k

m

S S S S
k

x
S a b

n
υ µ ν

=

  
= + +  

  
∑x

 
,≥ ≥m l0 0  

0G  
≥ 

 

m
l  

can be formulated, where µ  and λ  are vectors of Farkas multipliers and with 
the last condition, to describe some systems of inequality constraints. To ensure 
that the above procedure leads to a solution expressed in closed form, a parametric 
solution has to be constructed, whose parameters are functions of x . Applying 
the duality theorem of linear programming to the linear programs ( )minz = kp  
with ≥m 0 , ≤Gp h  and ( )maxy = ph  with ≥nu 0 , ≤nuG k , the con-
struction of the dual of the above program leads to the result: 

( ), max ,S υ = ⋅ ≥x n h n 0  

1 1
0, ,0,1, , , ,0,0,0, ,0

m mS SS S S S
N N

x x
a b a b

n n
′

    
≤ + +         

nG   

 

 
where the parameters N and N ′  are defined as: 

( ) ( )1 and 1 |R T
R S S T

N m N m
< <

′= + = + +∑ ∑
 

To complete the procedure, we need to construct such a problem for each 
statement S and then to solve each one of these problems in closed form, leading 
thus to the final solution. 

What happens if the complexity of the parallelism is polynomial but not li-
near, and therefore, there is not an affine scheduling function? In this case, mul-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1215 Journal of Applied Mathematics and Physics 
 

ti-dimensional scheduling functions are constructed, which in a sense, are equiva-
lent to polynomial scheduling. These functions are associated with multiple nested 
loops, and it interestingly to note, that for any program involving only FOR loops, 
in which the bounds of the loop counters depend only on program parameters 
or they are numerical constants or functions of the counters of the outer loops 
(these programs are known as static control programs), such a multi-dimensional 
scheduling function can always be constructed. It can also be proven that for 
each instance of a static control program, a linear scheduling function is always 
defined. However, a higher dimension for the scheduling process, leads to a 
lower degree of parallelism. Feautrier [13] presents algorithms for finding such 
multi-dimensional scheduling functions and also describes the decomposition 
of scheduling problem into a number of sub-problems related to the strongly 
connected components of the dependence graph, leading to an algorithm which 
is a generalization of the loop parallelization algorithm of Allen and Kennedy 
[6]. 

In practice, there are many linear scheduling functions of the form  
( ),S υ υυ ρ= ⋅ +p pΠ  (namely, one function for each vector υΠ ) and it is quite 

reasonable to try to identify the optimal one, that leads to the shortest possible 
execution time. If we take into account that the total execution time has the form: 

( ){ }
{ }2 1 1

1 max , ,

1 max , ,
XT S R

Rυ υ

υ= + ∈

= + ⋅ − ⋅ ∈       2

p p

X p X p p p
 

where we assume that the calculation starts at 1p  and ends at 2p , while the 
scheduling vector P  satisfies the condition ≥XD 1  that guarantees the pre-
servation of dependencies, the optimal linear scheduling function, is defined as 
the function that minimizes the above time. If T



 is this minimum execution 
time associated with optimal scheduling, then the above definition allows us to 
write the expression: 

{ }min , , 1n
XT T= ∈ ≥X XD



  
The problem of identifying the optimal linear scheduling vector for the case of 

multiple nested loops, has lead to a lot of interesting methods and techniques, 
such as the method of Shang and Fortes [17] which is based to the partitioning 
of the solution space containing all the scheduling vectors into convex sub-cones, 
and to the solution of a linear problem for each sub-cone, in order to identify at 
compile-time, a subset of vectors that contains the optimal solution. 

7. Free Scheduling 

One way to evaluate the performance of a scheduling function S, is to count the 
total number of computations associated with the system of uniform recurrent 
equations, in the appropriate iteration space and at the time instances deter-
mined by the function S. If we assume that each one of these computations is 
performed in a unit time interval, then this number of computations corres-
ponds to an execution time interval, known as the latency ( ),S P  of the 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1216 Journal of Applied Mathematics and Physics 
 

scheduling function. It is not difficult to realise, that the duration of this time 
interval is determine by the completion time of the last computation. In the case 
of a large number of computations, another quality factor that can be used to 
describe the situation, is the so-called asymptotic stability [18], given by the eq-
uation: 

( )
1

,
1

p S P
P

ε
ν

τ

=
+



 
where P is the number of available processors, ν  is the time duration of the 
required synchronization processes, and T is the number of points in the itera-
tion space corresponding to the computations to be performed, that can be con-
sidered as a measure of the amount of computations. In this case, the ratio 

( ),T S P  can be considered as the average degree of parallelism associated 
with the scheduling function, whose maximum value (corresponding to the 
scheduling function that leads to the smallest possible latency) is a characteristic 
of the program being executed. 

It is not difficult to see that for a system of uniform recurrent equations, more 
than one scheduling functions can be defined, each one of them leads to a dif-
ferent number of computations, or in other words, is characterized by its own 
latency. One such function of particular interest is the so-called free scheduling 
function. This function corresponds to the case in which, if there is no pair 
( ),q  such that R∈q  and ( ) ( )

1
, ,k →p q , then the condition ( ), 1T k =p  

holds, meaning that if there are no dependencies, then the process of calculating 
the value of the variable ( )kα p  will start immediately after the unit time in-
terval of the previous calculation has elapsed. On the other hand, in any other 
case, this function is defined as: 

( ) ( ) ( ) ( )
1

, 1 max , | and , ,T k T R k = + ∈ → 
 

p q q p q 

 
A similar condition can be formulated for the case of the affine one-dimen- 

sional scheduling functions. The above relation, as Feautrier comments, is the 
basis for the inductive methods used to construct scheduling functions. In these 
methods, we first compute several values of the function ( ),T k p , based on the 
above expression. In the next step, using these values, we try to express the sche-
duling function in closed form, and finally, we check whether the constructed 
function satisfies the fundamental condition ( ) ( ), , 1S k S≥ +p q , as required 
by any valid scheduling function. 

It can be proven, that if a scheduling function can defined, then a unique free 
scheduling function can also be defined. This function is the fastest scheduling 
function, in the sense that it defines the earliest possible time at which a compu-
tation can be performed. In other words, of all the scheduling functions that can 
be defined, the free scheduling function is the one that leads to the smallest time 
latency, but also to the highest degree of parallelism. In a mathematical notation, 
this condition is formulated as ( ) ( ), ,T k S k≤p p  for all pairs ( ),k p , while, in 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1217 Journal of Applied Mathematics and Physics 
 

a verbal description, defines the free scheduling function, as the function that 
dictates the immediate execution of the associated computation ( )kα p , once 
the values of all the arguments required to perform this computation, have been 
computed and they are available. Therefore, it is safe to say, that the free sche-
duling function, can be considered as a kind of greedy algorithm. In fact, the free 
scheduling function exists if and only if for every pair ( ),k p  such that R∈p , 
it is possible to define the function: 

( ) ( ) ( ) ( ), 1 max 0 | exists , : , ,
t

F k t k = + ≥ → 
 

p q p q 

 
In this case, if there is a free scheduling function, it is simply defined as 
( ) ( ), ,T k F k=p p . 
In order to generalize this description and define the function ( ),T k p  even 

when the free scheduling function does not exist, we can very simply write: 

( ) ( ) ( ), if the function ,
,

in the opposite case
F k F k

T k


= 
∞

p p
p

 
In other words, the above definition covers all possible cases, with the condi-

tion ( ) ( ), ,T k F k=p p  to describe the class of computable functions and the 
condition ( ),T k = ∞p  to describe the class of non-computable functions. Con-
sequently, according to Karp, Miller and Winograd, a function ( )jα p   
( )1 j m≤ ≤  is characterized as computable (or explicitly defined) if for each 
point R∈p , the value of the scheduling is finite, or in mathematical notation, 
( ),T k < ∞p . In an equivalent formulation, the scheduling function ( ),T k p  

exists, if and only if the function ( )kα p  that determines the computation to be 
performed at the time dictated by ( ),T k p , is computable. In this case, the finite 
value of the function ( ),T k p , allows us to define an upper bound regarding the 
computation time of the function ( )kα p . Regarding the total execution time of 
the involved computations, if the free scheduling function is used as the sche-
duling function, it will be equal to ( ){ }1 max , |fT T k R= + ∈p p , since as men-
tioned before, it will be determined by the execution time of the last scheduled 
computation. 

The above definitions can alternatively be formulated using the notion of the 
precedence graph, and specifying the properties that should characterize such a 
graph, for the computable as well as the non-computable case. This is done, by de-
scribing the execution time duration of a computation of ( )jα p  ( )1 j m≤ ≤ , as 
a function of the length of the path defined on the graph, starting from the ver-
tex corresponding to the function to be computed. Such a description is based 
on the assumption that the execution time of each computation is equal to unity, 
as well as on the observation that an edge that joins the vertex associated with a 
computation ( )jα p  to another vertex, indicates that this second vertex cor-
responds to the calculation of a value that used as argument in the calculation of 
the value ( )jα p . It is not difficult to see, that the value returned by the free 
scheduling function ( ),T k p , is just the maximum length of such a path on the 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1218 Journal of Applied Mathematics and Physics 
 

precedence graph, starting from the vertex ( )jα p . If no such maximum path 
exists, or equivalently, if the length of such a path is infinite, then we set 
( ),T k = ∞p  and characterize the involved function as a non computable (or 

not explicitly defined) function. Note that, the converse statement holds, ac-
cording to which, to characterize a function as computable, there must not exist 
a path on the precedence graph starting from the vertex corresponding to this 
function and characterized by infinite length (a typical example of such paths are 
those paths that contain circles). Indeed, in such a case, the computation will 
start after the completion of an infinite number of preceding computations, or 
equivalently, is never going to start. A graph in which there are no such infinite-
ly long paths is characterized as consistent, with this property of graph consis-
tency being a sufficient and necessary condition for the precedence graph, to 
describe a parallel code. It turns out, that the problem of characterizing a graph 
in terms of its consistency, is a decidable problem, for the case of systems of 
uniform recurrent equations, a statement, that, however, is not true for a system 
of non-uniform such equations, with at least one infinite domain, or for an infi-
nite family of such systems with finite domains. 

8. Defining the Degree of Parallelism 

The definition of scheduling function given above, allows, in turn, the definition 
of the degree of parallelism, as the number of computations that can be executed 
simultaneously, namely, at the same time, or in an equivalent formulation, the 
number of computations ( )kα p  for which the scheduling function ( ),S k p  re-
turns the same execution time τ . Considering that each such function ( ),S k p , is 
associated with a grid point R∈p , the degree of parallelism is defined as the 
number of points in the region R whose corresponding computations will be ex-
ecuted at the same time τ . Therefore, the degree of parallelism, according to the 
above, is defined as: 

( ) ( ){ }, | ,S k S kφ τ τ= =p p  
for values 1,2, ,k m=   and 1,2,τ =  , where A  is the cardinality of a set A . 

A scheduling function S, is characterized by bounded parallelism, if there ex-
ists an integer K such that ( ),S k Kφ τ <  for all values of K and τ . Otherwise, 
the parallelism is characterized as unbounded, meaning either that the function 

( ),S kφ τ  is assigned to an infinite value for some pair of values ( ),k τ , or that 
the value of this function increases infinitely for some values of k. When the de-
gree of parallelism for a system of uniform recurrent equations is not satisfacto-
ry, instead of using a one-dimensional scheduling, a multi-dimensional scheduling 
can be used, in which the execution time of a computation is not described by a 
simple scalar quantity, but instead, by a vector. 

9. Identifying the Computability Conditions 

Based on the close relationship between the earliest execution time returned by 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1219 Journal of Applied Mathematics and Physics 
 

the free scheduling function and the maximum path length on the precedence 
graph, it is not difficult to realize, that the condition ( ),T k < ∞p , that allows 
the characterization of the function ( )kα p  as a computable one, is satisfied, if 
the vertex kυ  corresponding to the function ( )kα p , is the starting vertex of a 
path of finite length, on the precedence graph. Karp, Miller and Winograd, using 
a result from graph theory [19], according to which, in a directed graph in which 
the number of edges starting from each vertex is finite, it is possible to have paths 
of infinite length starting from a vertex, if there is no upper bound regarding this 
length, prove the following theorem: 

Theorem 1. Let us consider a dependence graph that describes a system of 
uniform recurrent equations defined in a region R. In this case, a function ( )kα p  
is computable, if and only if there is no path from the vertex kυ , corresponding 
to the function ( )kα p , to any other vertex of the graph iυ , which is contained 
in a non-positive circle. 

The proof of Theorem 1, requires the proof of the sufficient as well as the re-
quired condition, and therefore, we need to prove that: a) if a point p  belongs 
to a non-positive circle, then it holds that ( ),T k = ∞p , meaning that the func-
tion ( )kα p  is not computable and b) if the condition ( ),T k = ∞p  holds, then 
there is a path from the vertex kυ  to a non-positive circle, as demonstrated 
graphically in Figure 2(a). The proof of the direct proposition is based on the 
observation that if, during the traversal of a path starting from vertex kυ , a ver-
tex which is part of a circle is encountered, then, this traversal will take infinite 
time, since we will be trapped indefinitely in this circle. On the other hand, the 
requirement that this circle be a non-positive circle ensures that all the points we 
pass through, are guaranteed to belong to the region of interest, so that this tra-
versal is valid. Regarding the proof of the inverse proposition, it is much simpler 
and it is a direct consequence of the graph theory fact given above. 

To understand the terminology used in this theorem, let us consider a path on 
the dependence graph of the form ( )1 1, , , ne e eπ =   and let us define the weight 
of this path as: 

( ) ( )
1 1

n n

i i
i i

w eπ
= =

= =∑ ∑w w
 

 

 
Figure 2. (a) A function is computable if and only if the dependency graph does not contain a path from the vertex corresponding 
to that function to a non-positive circle (Source: Karp, Miller, & Winograd, Fig. 2). (b) The dependence graph of a simple uniform 
recurrent equation contains a simple vertex. 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1220 Journal of Applied Mathematics and Physics 
 

where ( )i ie=w w  is the weight of the edge ie . In the above equation, the ad-
dition between vectors, takes place by adding together the corresponding com-
ponents of these vectors. If we characterize a vector as non-positive, if and only 
if all its coordinates have non-positive values (namely, have a negative or a zero 
value), we can characterize a path as non-positive, if its weight ( )w π  is described 
by a non-positive vector. An example of path weight calculation based on the 
above definition, is shown in Figure 3. In this figure, the path π  starting from 
vertex 1υ  and ending at vertex 4υ  consists of the edges 1e , 2e  and 3e , with 
weights 1w , 2w  and 3w , while the path weight ( )πw , is characterized as 
non-positive or not, depending on whether the coordinates of 1π , 2π  and 3π , 
that are calculated in the way shown in Figure 3, satisfy the above definition, or 
not. If this path is circular, i.e. if there is an edge that joins the last vertex of the 
path with the first vertex, then a non-positive path is characterized as a non- 
positive circle. It is interest to note, that the problem of finding non-positive cir-
cles, that according to the above theorem is intrinsically related to the computa-
bility issue, can be transformed into a problem of finding zero weight circles, by 
adding to each vertex of the graph, the appropriate number of loops, with weights 

( ) ( ) ( )T T T1,0, ,0 , 0,1, ,0 , , 0,0, ,1   
 and with each one of these vectors, to 

have the appropriate length [20]. The transformation of the graph in this way, 
leads to a significant simplification of the situation, since these zero-weight 
cycles are much easier to detect. Note also, that this theorem can be extended to 
regions of iteration space that are characterized by certain shapes. For example, 
if t tQ F⊆  is a finite subset of a region tF  and the region R is defined as 

t n tR Q F −= × , where nF  is the set of n-dimensional grid points, whose coordi-
nates are all positive numbers, then the application of the above theorem leads to 
the conclusion that for any t tQ F⊆ , the function ( )kα p  is computable in the 
region R, if and only if there is no vertex υ



 such that: a) there exists on the 
graph, a path connecting vertex υ



 to vertex υ


 and b) vertex υ


 is contained 
in a circle C, whose weight is such that its first t components are equal to zero, while  

 

 
Figure 3. The definition and the estimation of the weight vector associated with a path 
defined on the dependence graph. 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1221 Journal of Applied Mathematics and Physics 
 

the remaining n t−  components have a non-zero value. 
Let us present now the conditions that guarantee the computability of a function: 

a) for the case of a simple equation and b) for the case of a system of equations. 

9.1. The Case of a Simple Equation 

Starting for the sake of simplicity from a simple uniform recurrent equation, Karp, 
Miller and Winograd prove that the problem of computability of the function 
( )α p 1 in the appropriate region of space is relatively simple and equivalent to 

the existence of a linear scheduling function. Furthermore, they derive sufficient 
and necessary conditions that guarantee the computability of this function. Ac-
cording to one of these conditions, the function ( )α p  is computable, if and 
only if a particular system of linear inequalities, listed below, has a feasible solu-
tion, with the optimal solution for this linear program, to provide an upper 
bound on the value returned by the free scheduling function ( )T p . It turns out, 
that the value of this upper bound may or may not be restrictive, depending on 
whether the grid point p  at which the value of ( )α p  is estimated, is near or 
far from the boundary of the region of interest. The main results of this analysis, 
is that the free scheduling function is characterized by unbounded parallelism, 
for the case 2n ≥ . The next theorem specifies the conditions under which the 
function ( )α p  is a computable function. 

Theorem 2. Let us consider a simple uniform recurrent equation of the form: 

( ) ( ) ( ) ( )( )1 2, , , mfα α α α= − − −p p d p d p d  
where the vectors p  and id  ( )1 i m≤ ≤  are vectors of n integers. In this case, 
it is proven that the following statements are equivalent: 

1) The function ( )α p  is computable and therefore its calculation can be sche-
duled at all grid points p  in the region of interest. 

2) There is no semi-positive row vector u  (or equivalently, non-positive vec-
tor −u ) with components ( )1 2, , , nu u u  such that: 

1

n

j j
j

u
=

− ≥∑ d 0
 

3) The system of inequalities 1j ⋅ ≥d x  ( )1 j m≤ ≤  and 0ix ≥  ( )1 i n≤ ≤  
has a solution. Of these two inequalities, the second one implies that the vector 
x  which is a row vector of n elements is a semi-positive vector, while the first 

one can be written more compactly as ≥xD 1  where x  is a row vector with n 
integer elements, D  the dependence matrix of dimension n m×  whose columns 
are the dependence vectors jd  ( )1 j m≤ ≤ , while 1  is a column vector of m 
elements, with a value of unity. The set of vectors x  satisfying this property is 
denoted by ( )T D , and therefore, we can write that ( ) { }|nT = ∈ ≥D x xD 1 . 

4) For each vector nF∈p  where nF  is the set of vectors of length n with 
positive components, the following two linear programs each one of them is the 
dual of the other (according to the definition of duality of linear programming): 

 

 

1Here, the subscript k is omitted because there is a single equation and hence a single function ( )α p . 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1222 Journal of Applied Mathematics and Physics 
 

( )
1

1

I 0 1,2, ,

max

m

j j
j

j

m

j
j

u

u j m

u

=

=


− ≥

 ≥ =




∑

∑

p d



0

 

( )
( )
1 1,2, ,

II 0 1,2, ,
min

j

i

j m

x i n

⋅ ≥ =


≥ =
 ⋅

d x

p x





 
have a common optimal value ( )m p . In other words, the construction of a li-
near scheduling function (which is the optimal such function) for the case of a 
simple uniform recurrent equation, is possible, if and only if this condition is sa-
tisfied. 

To understand the way of construction of the above linear programs, let us 
consider any point R∈p , which is the common destination of a set of depen-
dency paths of the form ( )0 1 2, , , , ,sp p p p p , such that k R∈p  for 0 k s≤ ≤  
and ( )1k k i k+ = +p p d  where ( )i k ∈d D  for 0 1k s≤ ≤ − . These paths are linear 
combinations of the dependence vectors of the form 1 1 2 2 m mu u u′ = + + +p d d d  
with the constants ju  ( )1 j m≤ ≤  having non-negative values (namely, 0ju ≥  
( )1 j m≤ ≤ ). Now, the vectors p  and 0p  are related to each other by the expres-
sion 0− =p p Du  where m∈u   is a vector of m elements, with non-negative 
integer components. Furthermore, the condition 0′− ≥p p  holds, while, the 
value of ( ),T k p , is equal to the maximum value of the sum 1 2 mu u u+ + +  
that can be obtained in this way. Combining all these observations, the Linear 
Program I is constructed. In this program, the last equation identifies the objec-
tive function to be maximized, while the first two equations identify the con-
straints associated with this maximization problem. On the other hand, in Linear 
Program II, the objective function to be minimized (recall that the two programs 
are each one the dual of the other, and therefore, if the one of them refers to 
maximization, then the other refers to minimization and vice versa), is the value 
of the inner product ⋅p x . This product expresses the execution time of the 
computation determined by the grid point p , when: a) the vector ( )x p  is 
used as the scheduling vector, b) the constraints 1j ⋅ ≥d x  ( )1 j m≤ ≤  are sa-
tisfied (a condition that guarantees the conservation of dependencies) and c) the 
condition 0ix ≥  ( )1,2, ,i n=   (in order for the vector x  to be a non-negative 
one), is met. Therefore, the objective of Linear Program II, is to determine the 
optimal linear scheduling function, for each point p  in the iteration space, that 
will lead to the execution of the computation associated with point p  at time 
( )m p . It turns out that such a vector is necessarily an edge point of the domain 

{ }: 1 for 1 and 0 for 1n
j ij m x i n∈ ⋅ ≥ ≤ ≤ ≥ ≤ ≤x d x . The number of vectors 

satisfying this property is finite, and as Darte, Khachiyan and Robert point out 
[21], this strategy leads to piecewise scheduling functions, with the same vector 
x  being the optimal linear scheduling vector for an entire region of the itera-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1223 Journal of Applied Mathematics and Physics 
 

tion space R. 
In the case of a simple recurrent equation, the dependence graph G contains a 

single vertex υ  corresponding to the function ( )α p  to be computed, while 
the number of edges (these edges have the form of circles or loops, starting and 
ending to the one and only one vertex), is equal to the number m of the argu-
ments of the function f. The labels of the edges in this case, are the dependence 
vectors 1 2, , , md d d  (see Figure 2(b)). The logical equivalence between the 
four statements of Theorem 2 is easily proven based on the above properties, as 
well as on the principles of linear programming. As Karp, Miller and Winograd 
point out, since the system of inequalities of Statement 2 is a homogeneous sys-
tem, and the vectors jd  ( )1,2, ,j n=   are vectors of rational numbers, the 
system has a semi-positive solution, if and only if it has a semi-positive integer 
solution. But the sets of semi-positive integer solutions of this system will be the 
edge weights of the graph, and therefore Statements 1 and 2 are equivalent (ac-
cording to Theorem 1). On the other hand, the equivalence of Statements 2 and 
3 is a consequence of the Minkowski-Farkas lemma [22], according to which, for 
each matrix A  of dimension m n×  and for each vector n of dimension d , 
either the system ≤Ax d  will have a non-negative solution, or the system  

T ≤u A 0 , T < 0u d  will have a non-negative solution. To prove the equivalence 
of Statements 2 and 3, the above lemma with elements: 

1 1

2 2

1
1

, ,

1m m

u
u

u

− −     
     − −     = = =
     
     
− −    

w
w

A u d

w
  

 
must be used. Finally, regarding the remaining two statements, Statement 4 im-
plies Statement 3, because the existence of an optimal solution for Linear Pro-
gram II implies that the system of inequalities defined via Statement 3 has a 
feasible solution. Conversely, the validity of Statement 3, implies that Linear 
Program II, has a feasible solution, and furthermore, that the vector with coor-
dinates 0ju =  ( )1 j m≤ ≤  is a feasible solution for Linear Program I. Now, 
using the duality theory of linear programming, according to which, if two linear 
programs each one of them is the dual of the other, have both a feasible solution, 
then they have a common optimal solution, we get to the point. 

A geometric interpretation of the Statement 3 of Theorem 2 advocates the ex-
istence of a n-dimensional hyperplane passing through the origin of the coordi-
nate system and separating the first n-dimensional orthant (except the origin of 
the coordinate system) from the vectors 1 2, , , m− − −d d d . Therefore, it is rea-
sonable to characterize this hyperplane as separating hyperplane (note, that this 
characterization can be extended to the vector which is perpendicular to this 
hyperplane which is called, accordingly, the separating vector). This situation is 
depicted graphically in Figure 4, with the left picture to show a separating 
hyperplane (the dashed line) that separates the above vectors from first orthant, 
and the right picture, to depict a situation that it is not characterized by this  

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1224 Journal of Applied Mathematics and Physics 
 

 
Figure 4. The ability to draw a hyperplane that separates the vectors 1 2, , , s− − −w w w

 
from the first n-dimensional quadrant (see the dashed line in the left figure) allows the 
function, and by extension the associated uniform recurrent equation, to be characterized 
as computable. This is something that happens in the left figure, but not in the right fig-
ure (Source: Karp, Miller, & Winograd, Fig. 3). 

 
property. Consequently, the left picture corresponds to a recurrent equation whose 
function is computable, while the right image is associated with a non computa-
ble function. 

To make this point clear, consider the set: 

( ) { }| 0, ,nQ = ∈ ≥ ≠ =D q q q Dq 0 0  
that contains all the vectors of space n  associated with circles on the graph 
with zero weight (note, that in this case, each vector ( )Q∈q D  is interpreted as 
a circle, since all edges are connected at the same single vertex and thus they can 
be used in any order). New, according to Farkas’ lemma, it will be ( )Q =D 0  if 
and only if it is ( )T ≠D 0 . In other words, the graph G is computable, and 
therefore the condition ( )Q =D 0  is true (meaning that there are no vectors 
associated with zero-weight cycles) if the set ( )T D  contains at least one vector 
x , namely, if and only if the cone generated by the dependence vectors belongs 

entirely to the semi-space resulting from the separation of space into two regions 
by means of this vector. Each of these vectors ( )T∈x D , that correspond to se-
parating hyperplanes, and they are perpendicular to these hyperplanes, are feasi-
ble solutions of the Linear Program II of Theorem 2, and allow the definition of 
an affine scheduling function of the form ( )S K= ⋅ +x p x p . The constant K 
used in this expression, is computed as ( )minK = − ⋅x p  ( )R∈p . Note, that if 
the point q  depends on the point p , i.e. it is such that = +q p d , for some de-
pendence vector d , then, the condition: 

( ) ( )
( )

S K K

K S

= ⋅ + = + ⋅ +

= ⋅ + ⋅ + >
x

x

q q p p d p

x p x q p  
holds, just as required for a valid scheduling function. We thus find that for the 
case of a simple uniform recurrent equation, the associated dependence graph, 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1225 Journal of Applied Mathematics and Physics 
 

as well as the function defined by this equation, are computable quantities if and 
only if there exists a separating hyperplane, or equivalently, a separating vector 
x , which leads to the definition of an affine scheduling function, independent of 

the computational domain R. It can be proven that for the case of a uniform re-
current equation defined on a polyhedron of the form { }N≤Ap b , the length of 
the maximum path on the graph is equal to ( )1kN O+  for some positive ra-
tional number k and, consequently, the latency of this function will also be equal 
to ( )1kN O+ . 

Let us consider a separating hyperplane x  and its associated affine schedul-
ing function ( )Sx p . In this case, the latency of scheduling, defined as the num-
ber of sequential computations, can be rounded off to the value  

( ) ( ){ }maxS = ⋅ −x x p q  ( ), P∈p q . On the other hand, the identification of 
the free scheduling function leading to the smallest possible latency, is based to 
the solution of a min-max optimization problem of the form: 

( ) ( ){ }
( ){ } ( ){ }

min min |

min max , , |

S T

R T

= ∈

= ⋅ − ∈ ∈

x x D

x p q p q x D

 

 
In the special case of nested loops, where the iteration space P is a polytope 

{ }| ≤p Ap b , the above problem is formulated as: 

( ) ( ){ }max | ,S = ⋅ − ≤ ≤x x p q Ap b Aq b  
Therefore, if we apply the duality theorem of linear programming, we can 

write: 

( ) ( ){ }
( ){ }1 2 1 2

max | ,

min | ,

S

t t

= ⋅ − ≤ ≤

= + ⋅ ≥

x x p q Ap b Aq b

b t t



0
 

with 1 =t A t  and 2 = −t A t , as well as: 

( ){ }min 1 2 1 2min | ,t t= + ⋅ ≥b t t 0  
with 1 2= − =t A t A t  and ≥tD 1 . 

As a consequence of the above theorem, if the function ( )α p  is computable 
in all regions t n tR Q F −= ×  such that t tQ F⊆  (for an explanation of the nota-
tion see 17), then: a) there is no a semi-positive vector ( )1 2, , , nu u u  such that 
the vector j jj u−∑ d  ( )1 j m≤ ≤  has its first t coordinates zero and its last 
n t−  coordinates non negative, and b) the system of inequalities 1j ⋅ ≥d x  
( )1 j m≤ ≤  and 0ix ≥ , 1, 2, ,i t t n= + +   have a feasible solution. 

There are two interesting questions associated with the case of the single uni-
form recurrent equation: a) is there any relationship between the value returned 
by the free scheduling function ( )T p  and the optimal solution ( )m p  of the 
linear systems of Statement 4 of Theorem 2? b) which is the amount of paral-
lelism that can be extracted, regarding the computation of the value of ( )α p ? 
To answer the first question, we observe that all the dependence paths that lie 
entirely in the domain R and reach the point p , lead to a feasible solution for 
Linear Program I, allowing us to write ( ) ( )T m≤p p . Karp, Miller and Wino-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1226 Journal of Applied Mathematics and Physics 
 

grad prove that the difference ( ) ( )m T−p p , namely, the difference between the 
latency min  of the best affine scheduling function that leads to the earliest sche-
duling of the calculation, and the maximum path length on the graph G express-
ing the latency of the ideal free scheduling, does not have in general, a uniform 
upper bound, although such a bound exists for points p  that are not close enough 
to the boundaries of the first n-dimensional orthant and with the value of this 
bound to not depend on the size of the region R. Darte, Khachiyan and Robert 
[21] extend the results of Karp, Miller and Winograd and examine the relation-
ship between the execution times returned by the free scheduling functions, not 
for the computations associated with a particular point p , but for the computa-
tions associated with all points in the space of interest. According to them even, 
if for a particular point, the optimal linear scheduling function returns an execu-
tion time that is much longer than the one returned by the free scheduling algo-
rithm, this is not actually a problem, since the point of interest, is just the ma-
croscopic picture. They conclude that the difference between these two times is 
upper bounded by a constant which does not depend on the size of the compu-
tation domain, and that the linear scheduling functions are very close to being 
optimal. This result is very important, since this class of linear scheduling func-
tions is a very popular and easy to use class of functions. Regarding the second 
question, it turns out that if the function ( )α p  is computable in the domain 

nF  for 2n ≥ , then there exists a scheduling function such that ( )sup sτ ϕ τ = ∞ . 
Therefore, for 2n ≥  the function ( )Sϕ τ  is not bounded. 

9.2. The Case of a System of Equations 

The conclusions stated in the previous section can be generalized to describe the 
case of a system of equations. What are the conditions that render such a system 
as computable, in the appropriate region of interest? Although for a simple equ-
ation, these conditions require the existence of a separating hyperplane, a prob-
lem that can be solved by resorting to linear programming techniques, however, 
in the case of a system of uniform recurrent equations, this procedure is more 
complicated and involves the iterative decomposition of the dependence graph 
into its strongly dependent components, as well as the solution of linear programs 
at each step of this process. The investigation of the parallelism is also more 
complicated, since although for a single equation associated with a computable 
function, the parallelism for 2n ≥  is unbounded, there are systems of such eq-
uations that are characterized by bounded parallelism, exactly for the same con-
ditions. 

In a more detailed description, a system of uniform recurrent equations is cha-
racterized as computable if and only if the Extended Dependence Graph (EDG) 
contains no cycles. On the other hand, if the system is not computable, then the 
EDG graph does not contain cycles, whereas the corresponding Reduced De-
pendence Graph (RDG) contains cycles with zero weight. Conversely, if the graph 
G contains zero weight cycles, we can construct a dependency loop in the itera-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1227 Journal of Applied Mathematics and Physics 
 

tion space R, provided that this space is large enough to ignore the boundary ef-
fects. In what follows, we will assume that the space R is finite, but however, 
large enough to assume that the system is computable if and only if the graph G 
has no zero weight cycles. 

As it is pointed out by Rao and Kailath which characterize the algorithms stu-
died by KMW as Regular Iterative Algorithms (RIAs) [22], in the case of systems 
of equation, we can not rely on the assumption that all computations that are 
related to some grid point in the iteration space, can be scheduled to execute at 
the same time. Even though this is always true for the case of a simple uniform 
recurrent equation, however, in the dependence graph of a system of such equa-
tions, there is always the possibility to find an edge that joins together two ver-
tices associated with the same grid point. It is not difficult to see, that in this 
case, the related computations are dependent on each other and, therefore, they 
cannot be performed at the same time, despite the fact that they are associated 
with the same point. Therefore, in cases like these, it is not possible to treat the 
dependency graph in the same way as we do in the case of a simple equation, 
namely, to consider each grid point as a simple elementary node. Instead, we 
should take into account, the internal structure of this node, to decide whether 
or not it is possible to construct a linear scheduling function. This situation is 
demonstrated in Figure 5 with the left image demonstrating the iteration space 
of an algorithm in which each point is not an elementary object but a complex  

 

 
Figure 5. In the case of a system of uniform recurrent equations, each grid point has an internal structure, since it contains a node 
for each variable of the system of equations. In cases like this, the construction of a linear scheduling function is not always possi-
ble (Source: Rao & Kailath, Figs. 4 and 7b). 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1228 Journal of Applied Mathematics and Physics 
 

object with an internal structure, since it includes two nodes corresponding to 
an equal number of variables, and the right image illustrating the internal struc-
ture of each point when we enter into it and reveal its internal structure. The 
graph depicted in the right picture is an RGD graph, a concept that appeared for 
first time, in the work of Karp, Miller and Winograd. 

Returning to the procedure that allows the characterization of a system of re-
current equations, it relies again on the application of the Theorem 1, namely on 
the search on the graph for non-positive circles, or equivalently, for zero-weight 
circles. In fact, to simplify the procedure, we do not search for simple ze-
ro-weight circles as in the case of one equation, but instead, for multiple ze-
ro-weight circles, with a multiple circle being defined as the union of a set of 
simple circles which are not necessarily connected to each other. If we define the 
connectivity matrix C , as an m n×  matrix where m is the number of vertices 
and n is the number of edges of the graph, with value 1kjC =  and 1ijC = −  if 
the jth edge of the graph is directed from vertex i to vertex k and 0kC =



 other-
wise, for each i and k, then if there exists a vector q  with nonnegative integer 
components such that =Cq 0 , then the graph G has a multiple cycle, in which 
the ith edge of the graph, is used iq  times. If, in addition, the condition =Dq 0  
holds, then this multiple cycle is a zero-weight cycle. Therefore, to detect mul-
tiple zero weight cycles, we need to check the validity of the above two condi-
tions, which can be combined in the condition =Bq 0  where B  is the block 
matrix [ ]T:=B C D . In other words, the graph has cycles of this type if the sys-
tem =Bq 0  with ≥q 0 , ≠q 0  has a rational solution, which can be converted 
to an integer solution, via the appropriate scaling of the coefficients. 

However, as Darte and Vivien point out [24], the detection of a zero-weight 
cycle is much more difficult than the detection a multiple zero-weight cycle, since 
a zero-weight cycle can be considered as a multiple zero-weight cycle, but the 
reverse is not necessarily true. However, if all the edges of a multiple zero-weight 
circle define a strongly connected component on the dependence graph, then it 
is possible to identify zero-weight circles in the way we present below. In fact, 
Karp, Miller and Winograd have proposed an algorithm for decomposing the 
graph G based on exactly this idea. 

A key structure in the decomposition algorithm of Karp, Miller and Winograd 
is graph structure G’, which is defined as a subgraph of the graph G, whose edges 

ie  are also edges of the graph G, if and only if the system of linear inequalities 
described below, has a feasible solution, in which 0iu > . In this expression, the 
sets ( )Ik G  and ( )Ok G  are the sets of incoming and outgoing edges asso-
ciated with the vertex kυ  respectively. Each one of these edges of the graph 
G’, has the same weight as the corresponding edge of the graph G, and the ver-
tices of the graph G’ are the vertices of the graph G associated with the edges 
of the graph G’. If we denote by ( )C G  the set of all integer vectors of n ele-
ments of the form ( )πw , where π  is a circle of G and by ( )L G  the set of all 
semi-positive integer combinations of the vectors of the set ( )C G —meaning 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1229 Journal of Applied Mathematics and Physics 
 

that ( ) ( )L G C G⊇  although in most cases holds that ( ) ( )L G C G⊃ —it turns 
out that the set ( )L G  contains a non-positive vector, if and only if the consi-
dered system of linear inequalities has a feasible solution. This system has the 
form: 

( ) ( )

( )

1

I O

1

0 1

0

III 0 1

1 1

k k

i
m

i
i

i i
i G i G

m

i i j
i

u i m

u

u u k s

u j n

=

∈ ∈

=

≥ ≤ ≤

 >

 − = ≤ ≤


 ≤ − ≤ ≤

∑

∑ ∑

∑ w
 

The graph G’ is therefore, the subgraph of multiple zero-weight cycles, name-
ly, the subgraph of G constructed from the edges belonging to at least one mul-
tiple zero-weight cycle. This subgraph G’ is characterized by the following prop-
erties: 
• The graph G contains a zero-weight circle, if and only if the same holds for 

the sub-graph G’. 
• The graph G’ results from the union of disjoint strongly connected graphs. 
• If the graph G’ is a strongly connected graph, then the graph G contains a 

zero-weight circle. 
Regarding the process of searching for multiple zero-weight cycles, it is car-

ried out as follows [2]: 
• Step 1. Construct the graph G’ using all edges that belong to a multiple ze-

ro-weight circle of G. 
• Step 2. The set s of strongly connected components 1 2, , , sG G G′ ′ ′

  of the 
graph G’ is constructed, with the following outcomes: 
- If 0s = , namely, if the graph G’ is empty, then the original graph G, does 

not contain multiple zero-weight circles and, therefore no zero-weight cir-
cles, rendering thus the system as a computable one. 

- If 1s = , namely, if the graph G’ is a strongly connected graph, then the 
system of uniform recurrent equations is not computable, since the graph 
contains a zero-weight circle. 

- If none of the above is true, then the graph G’ is not strongly connected and 
thus, is the union of disjoint strongly connected components 1 2, , , sG G G , 
with each zero-weight cycle of the graph G to belong to one of these com-
ponents. In this case, the above procedure is repeated for each component, 
until finally, either a zero-weight cycle is found, or the process of successive 
graph decomposition reaches a termination point, in the sense that these 
components cannot be further analyzed. If during this process, at least one 
single zero-weight is identified in any component, then the system under 
consideration is not computable. 

Darte and Vivien [24] offer a more efficient algorithm to construct the graph 
G’, which is considered as a dual algorithm with respect to the one of Karp, Mil-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1230 Journal of Applied Mathematics and Physics 
 

ler and Winograd. This algorithm is based on the solution of a simple linear pro-
gram of the form: 

min | , , ,i
i
υ ≥ ≥ + ≥ = 

 
∑ q u q u Bq0 0 1 0

 
or equivalently: 

min | 0, 0,i
i
υ ≥ ≥ ≥ 

 
∑ q u w 0

 
where + = +q u w1  and =Bq 0 , with the second formulation being considered 
the standard form for this program. This linear program, which has a finite solu-
tion, since 0=q  for a parameter value 1=u  is indeed a solution of the program, 
leading directly to the computation of the edges of the graph G’ which are the edges 

ie  for which 0iυ = . This conclusion follows as a consequence of the validity of the 
logical equivalences 0 0i iq υ≠ ⇔ = , 0 1i iq υ= ⇔ =  and 0i ie Gυ ′= ⇔ ∈  
that characterize each optimal solution ( ),q u  of the above program. Is is inter-
est to note, that if we consider the dual of the linear program of Darte and Vi-
vien which has the form: 

max | , 0 1i i
i

z z ≥ ≤ ≤ 
 
∑ z 0

 
where ( )

e ei ii x y ie zρ ρ⋅ + − ≥x w , and with the inequality 0iz ≥  corresponding 
to the variable iw , the inequality 1iz ≤  corresponding to the variable iυ , and 
the inequality ( )

e ei ii x y ie zρ ρ⋅ + − ≥x w  corresponding to the variable iq , then, its 
solution reveals an interesting property, according to which for any optimal solution 
of the form ( ), ,ρz x  of this dual program, an edge ie  belongs to the graph G’ if 
and only if the condition ( ) 0

e ei ii x ye ρ ρ⋅ + − =x w  holds, while it does not belong 
to the graph G’, if and only if the condition ( ) 1

e ei ii x ye ρ ρ⋅ + − ≥x w  is true. It is 
not difficult to note, that the conditions ( ) 0

e ei ii x ye ρ ρ⋅ + − =x w  and  

( ) 1
e ei ii x ye ρ ρ⋅ + − ≥x w  define a weakly and a strongly separating hyperplane, 

respectively, and therefore, according to the above, the dual linear program of 
the one used to construct the graph G’, leads to the definition of strongly sepa-
rating hyperplanes for the edges that do not belong to the graph G’, as well as 
weakly separating hyperplanes for the vertices that belong to this graph. The al-
gorithm for constructing the graph G’ involved in these processes, is known as 
the algorithm of Darte and Vivien and it is based on the use of polyhedral RDG 
graphs. As pointed out by Darte [2], the above result explains how to generalize 
the condition 1≥xD  associated with the case of a simple uniform recurrent 
equation (that guarantees the preservation of dependencies under the applica-
tion of scheduling), for a system of such equations. In the case of a simple equa-
tion, the vector x  appearing in this condition is interpreted as a vector per-
pendicular to a hyperplane that separates space into two parts in such a way, that 
all dependence vectors to lie strictly in one of these two halves. On the other 
hand, in the present case where the problem is related to a system of equations 
with uniform dependencies, the vector x  defines (with an approximation of an 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1231 Journal of Applied Mathematics and Physics 
 

additive constant, namely the parameters 
eixρ  and 

eiyρ ), a strongly separating 
hyperplane (for those edges that do not belong to the graph G’), as well as, a 
weakly separating hyperplane (for those edges that belong to the graph G’). For 
each sub-graph G, in the above decomposition, the vector x  defines a hyper-
plane that is strictly separating with the highest possible frequency, namely, a 
hyperplane that is strictly separating for the maximum possible number of edges. 

As Darte and Vivien point out, the linear programs listed here, can be simpli-
fied by replacing the condition =Cq 0  with the equation  

1 1 2 2 m mqµ µ µ= + + +q q q  , where 1 2, , , mq q q  is a cycle basis. This new for-
malism, leads to a reduction of the number of inequalities of the original pro-
gram, as well as of the number of variables in the dual program, and gives rise to 
new equations that do not contain the constants ρ . These constants can be com-
puted by means of a well-known dynamic programming algorithm known as the 
Bellman-Ford algorithm [25] [26]. This algorithm is less demanding than the usual 
linear programming techniques and it is based on the computation of maximum 
path lengths on another type of graph, which is similar to the graph G, but in 
which, each edge ie  is characterized by a weight value equal to ( )i iz e− ⋅x w . 

10. The Decomposition Algorithm of KMW 

The above graph decomposition algorithm of Karp, Miller and Winograd (KMW), 
is implemented by the function KMW (G), where G is a dependency graph. The 
function returns TRUE or FALSE, depending on whether the system of uniform 
recurrent equations described by the graph G, is computable or not. The pseu-
docode of this function, implementing the above procedure is as follows: 

 

From the above pseudo-code, we conclude that the graph G, as well as the 
system of uniform recurrent equations it describes, is computable if and only if 
the function KMW (G) returns a value of TRUE. This is a recursive procedure 
that leads to the construction of a directed tree, whose vertices correspond to the 
original dependence graph and to the strongly connected components emerging 
from the graph decomposition procedure. The root of this tree structure is a 
vertex that corresponds to graph G. The number d of edges that constitute the 
path of maximum length in this tree structure is known as the depth of the de-
composition. Note that this parameter can be defined in an alternative way, as 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1232 Journal of Applied Mathematics and Physics 
 

the maximum number of calls to the recursive function KMW (G) generated by 
its first call (unless, of course, the graph is acyclic, in which case 0d = ). This 
depth d is considered as a measure of the parallelism described by the original 
graph G and is related to the maximum path length, as well as the minimum la-
tency of the multi-dimensional affine scheduling function. It is proven that if the 
system of uniform recurrent equations described by the graph G is going to be 
characterized as computable, then the set of dυ  vectors 1 2, , , dυ

υ υ υx x x  gener-
ated during the execution of the algorithm for vertex υ , describing correspond-
ing separating hyperplanes, is a linearly independent set of vectors, a property 
that always holds, for the set of the first 1dυ −  vectors 11 2, , , dυ

υ υ υ
−x x x  of this 

set. Therefore, the depth d of the decomposition is bounded by the value 1n + , 
where n is the dimension of the iteration space, or by the value n when the graph 
G is computable. This property allows the computation of an upper bound re-
garding the time complexity of the decomposition algorithm [27]. 

Let us conclude this presentation, by noting that the sequence of vectors 
1 2, , , dυ
υ υ υx x x  and the corresponding constants 1 2, , , dυ

υ υ υρ ρ ρ  obtained from 
the above dual program, allows the definition of d-dimensional scheduling func-
tion : dS V P×    as a mapping of the form: 

( ) ( )1 1 2 2, , , , ,0,0,0, ,0d pυ
υ υ υ υ υ υυ ρ ρ ρ= + + +p x x x 

 
In the above expression, the zero values added to the end of the tuple are re-

quired to make this tuple, a set of d elements. Darte and Vivien [24], prove that 
for every edge e E∈  and for every R∈p , this function satisfies the property 

( ) ( )( ), ,e eS x S y e−p p w
 and thus is indeed a valid d-dimensional schedul-

ing function. The above is always valid for strongly connected graphs. On the 
other hand, if the graph is not strongly connected, then: a) the strongly con-
nected components of the graph are identified, b) the multi-dimensional sche-
duling function is constructed separately for each connected, and c) each one of 
these components, is scheduled with respect to the other, using topological sort 
on an acyclic graph, consisting of these strongly connected components. It turns 
out that if the dimension of this multi-dimensional scheduling function, is equal 
to d, then the latency caused by this function is characterized by a complexity 

( )dO N , where N is a measure of the iteration space. On the other hand, the 
maximum dependency path length in the EDG graph, which gives a lower 
bound of the sequential nature of the system and consequently, an upper bound 
of the degree of parallelism, has a complexity of ( )dNΩ . This implies that the 
system of uniform recurrent equations described by the graph G, contains a de-
gree of parallelism equal to ( )n d− , that can be extracted in the appropriate 
way. 

11. The Systems of Uniform Recurrent Equations and Nested 
Loops 

Is there any relationship between systems of recurrent equations and nested 
loops? This question stems in a natural way from the fact, that both these com-

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1233 Journal of Applied Mathematics and Physics 
 

putational structures share a lot of common concepts and definitions, such as 
the concepts of iteration space and iteration vectors, and furthermore, they are 
involved to common procedures, such as the identification of the optimal sche-
duling functions. In fact, the multiple nested loops can be considered as special 
cases of systems of recurrent equations, and therefore, what we have said in the 
previous sections, can also be used to describe nested loops, too, even though 
some concepts are defined and used in different ways. 

In particular, let us consider a multiple nested loop of depth d n= , in which 
the innermost loop contains 1m +  statements. In this case, a set of m depen-
dency vectors can be defined that allows the description of the system via an eq-
uation in the form: 

( ) ( ) ( ) ( )1 2, , , mu g u u u = − − − jj j d j d j d  
where: a) j  is a vector of the iteration space   with 0n >  integer compo-
nents, b) g j  is the computation associated with the iteration vector j  which 
should be completed in a time interval of a duration equal to unity, c) ( )υ j  is 
the result of the computation g j  and d) n

i ∈d   ( )1 i m≤ ≤  are constant in-
teger vectors of length n, describing the uniform dependencies, that jointly de-
fine the dependence matrix D . It is not difficult to see, that such a description 
of the dependencies, leads to equations similar to the ones describing a system of 
uniform recursive equations, and as Shang and Fortes point out [17], this class of 
uniform dependencies can be seen as an extension of the class of computations 
described by uniform recurrent equations. In the case of nested loops, it is possi-
ble to compute the values of different functions at different points in the index 
set, although there is still the requirement of performing these computations in 
unit time. In the above equations, for each point ∈j  , the points i−j d  also 
belong to the iteration space  , while the dependence vectors are constant and 
independent of j . 

The most important difference between nested loops and systems of uniform 
recursive equations is the execution order of the required iterations. In particu-
lar, in nested loops, this order is determined, by the so-called lexicographic or-
der, which is dictated by the fact that for each iteration of the outer loops, all 
iterations of the inner loops are executed one after the other. Although in nested 
loops, all kinds of dependencies can occur, such as flow dependencies, output 
dependencies, as well as anti-dependencies, however, the dependence vectors 
should always be lexicographically positive. Consequently, the Extended Depen-
dence Graph (EDG) for the case of a perfect nested loop with uniform depen-
dencies, will always be an acyclic graph, while the corresponding Reduced De-
pendence Graph (RDG), does not contain zero-weight cycles. 

On the other hand, in the systems of uniform recursive equations, the situa-
tion is quite different. Now, there is no such type of lexicographic order with re-
spect to the execution of iterations, since any computation can be performed 
once the values of all required quantities have already been computed and are 
available for use. This means that all the dependencies are flow dependencies, 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1234 Journal of Applied Mathematics and Physics 
 

and there is no requirement for the dependence vectors to be lexicographically 
positive vector. The occurrence of zero-weight cycles in the dependence graph of 
such a system is now possible, and thus, unlike a perfect nested loop, whose ex-
ecution is always guaranteed, provided that the above conditions are met, a sys-
tem of uniform recurrent equations, may or may not be computable, depending 
of the detection of zero-weight cycles in the dependence graph. 

Finally, as we said before, a computational structure emerged from a nested loop 
is acyclic, meaning that the validity of the condition 0 0 1 1 k ka a a+ + + =d d d 0 , 
where 1 2 1, , , ka a a −  are non-negative integers and 0 1 1, , , k−d d d  are depen-
dence vectors, implies that 1 2 1 0ka a a −= = = = . This property is a natural 
consequence of the fact that if the structure is not acyclic but instead cyclic, 
meaning that there are mutual dependencies between the data sets, deadlock 
may be inserted in the picture. An exception to this rule is the case in which, 
some of the above vectors are not actual vectors, but instead, virtual dependence 
vectors, meaning that they are associated with dependencies, that do not involve 
computations, but only data transmission between iterations. In the latter case, 
because no computation is involved, this transmission can be done immediately, 
without delay, and therefore, generally speaking, the appearance of deadlocks is 
not possible. It is important to note, that the requirement for a structure to be 
acyclic, allows us to define the granularity of the computational work and enables 
the possibility of parallelization via the mechanism of pipelining. 

Of course, despite the above differences, the high degree of similarity between 
these computational structures, allows us to study them, using the same techniques, 
and more specifically, to identify scheduling functions and to perform data and 
iteration partitioning. It is not difficult to see, that the processes of scheduling 
and partitioning, which are inextricably linked to the parallelization of a nested 
loop, have their origin in this connection between nested loops and systems of 
uniform recurrent equations. 

12. Conclusion 

Although it has been 57 long years since the publication of the paper of Karp, Mil-
ler and Winograd, its importance is still not disputed by anyone, since the issues of 
computability and the schedulability defined in this work, are characteristic of every 
algorithm and every computational structure in our days. To conclude this brief 
presentation, let us mention hor historical reasons, that one of the most important 
applications of this theory, which appeared 15 years after the publication of KMW, 
and more specifically in the early 1980s, was the design of systolic arrays [28]. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

References 
[1] Karp, R.M., Miller, R.E. and Winograd, S. (1967) The Organization of Computations 

https://doi.org/10.4236/jamp.2024.124075


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1235 Journal of Applied Mathematics and Physics 
 

for Uniform Recurrence Equations. Journal of the ACM, 14, 563-590.  
https://doi.org/10.1145/321406.321418 

[2] Darte, A. (2010) Understanding Loops: The Influence of the Decomposition of Karp, 
Miller, and Winograd. Eighth ACM/IEEE International Conference on Formal Me-
thods and Models for Codesign (MEMOCODE 2010), Grenoble, 26-28 July 2010, 
139-148. https://doi.org/10.1109/MEMCOD.2010.5558638 

[3] Lamport, L. (1974) The Parallel Execution of DO Loops. Communications of the ACM, 
17, 83-93. https://doi.org/10.1145/360827.360844 

[4] Moldovan, D.I. (1982) On the Analysis and Synthesis of VLSI Algorithms. IEEE 
Transactions on Computers, 31, 1121-1126.  
https://doi.org/10.1109/TC.1982.1675929 

[5] Quinton, P. (1984) Automatic Synthesis of Systolic Arrays from Uniform Recurrent 
Equations. ACM SIGARCH Computer Architecture News, 12, 208-214.  
https://doi.org/10.1145/773453.808184 

[6] Allen, J.R. and Kennedy, K. (1987) Automatic Translation of FORTRAN Programs 
to Vector Form. ACM Transactions on Programming Languages and Systems, 9, 
491-542. https://doi.org/10.1145/29873.29875 

[7] Chapra, S.C. and Canale, R.P. (2015) Numerical Methods for Engineers. 7th Edition, 
McGraw-Hill, New York, 855-856. 

[8] Tanenbaum, A. and Bos, E. (2014) Modern Operating Systems. 4th Edition, Pearson, 
London. 

[9] Feautrier, P. (1992) Some Efficient Solutions to the Affine Scheduling Problem. I. 
One-Dimensional Time. International Journal of Parallel Programming, 21, 313-347.  
https://doi.org/10.1007/BF01407835 

[10] Taha, H. (2022) Operations Research: An Introduction. 11th Edition, Pearson, Lon-
don. 

[11] Quinton, P. and Van Dongen, V. (1989) The Mapping of Linear Recurrence Equations 
on Regular Arrays. Journal of VLSI Signal Processing Systems, 1, 95-113.  
https://doi.org/10.1007/BF02477176 

[12] Rajopadhye, S.V. and Fujimoto, R.M. (1990) Synthesizing Systolic Arrays from Re-
currence Equations. Parallel Computing, 14, 63-189.  
https://doi.org/10.1016/0167-8191(90)90105-I 

[13] Feautrier, P. (1992) Some Efficient Solutions to the Affine Scheduling Problem. Part 
II. Multi-Dimensional Time. International Journal of Parallel Programming, 21, 
389-420. https://doi.org/10.1007/BF01379404 

[14] Darte, A. and Robert, Y. (1995) Affine-by-Statement Scheduling of Uniform and Af-
fine Loop Nests over Parametric Domains. Journal of Parallel and Distributed Com-
puting, 29, 43-59. https://doi.org/10.1006/jpdc.1995.1105 

[15] Schrijver, A. (1986) Theory of Integer and Linear Programming. John Wiley & Sons, 
Hoboken. 

[16] Chernikova, N.V. (1965) Algorithm for Finding a General Formula for the Non- 
Negative Solutions of a System of Linear Inequalities. USSR Computational Mathe-
matics and Mathematical Physics, 5, 228-233.  
https://doi.org/10.1016/0041-5553(65)90045-5 

[17] Shang, W. and Fortes, J.A.B. (1991) Time Optimal Linear Schedules for Alforithms 
with Uniform Dependencies. IEEE Transactions on Computers, 40, 723-742.  
https://doi.org/10.1109/12.90251 

[18] Feautrier, P. (1989) Asymptotically Efficient Algorithms for Parallel Architectures. 

https://doi.org/10.4236/jamp.2024.124075
https://doi.org/10.1145/321406.321418
https://doi.org/10.1109/MEMCOD.2010.5558638
https://doi.org/10.1145/360827.360844
https://doi.org/10.1109/TC.1982.1675929
https://doi.org/10.1145/773453.808184
https://doi.org/10.1145/29873.29875
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF02477176
https://doi.org/10.1016/0167-8191(90)90105-I
https://doi.org/10.1007/BF01379404
https://doi.org/10.1006/jpdc.1995.1105
https://doi.org/10.1016/0041-5553(65)90045-5
https://doi.org/10.1109/12.90251


A. I. Margaris 
 

 

DOI: 10.4236/jamp.2024.124075 1236 Journal of Applied Mathematics and Physics 
 

In: Cosnard, M. and Girault, C., Eds., Decentralized Systems, IFIP WG 10.3, North- 
Holland, 273-284. 

[19] Berge, C. (1962) The Theory of Graphs and Its Applications. Wiley, New York.  

[20] Cohen, E. and Megiddo, N. (1989) Strongly Polynomial-Time and NC Algorithms for 
Detecting Cycles in Dynamic Graphs. Prodceedings of 21st Annual ACM Symposium 
on Theory of Computing, Seattle, 14-17 May 1989, 523-534.  
https://doi.org/10.1145/73007.73057 

[21] Darte, A., Khachiyan, L. and Robert, Y. (1991) Linear Scheduling Is Nearly Optimal. 
Parallel Processing Letters, 1, 73-81. https://doi.org/10.1142/S0129626491000021 

[22] Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton University Press, 
Princeton. https://doi.org/10.7249/R366 

[23] Rao, S.K. and Kailath, T. (1988) Regular Iterative Algorithms and Their Implemen-
tation on Processor Arrays. Proceedings of the IEEE, 76, 259-269.  
https://doi.org/10.1109/5.4402 

[24] Darte, A. and Vivien, F. (1995) Revisiting the Decomposition of Karp, Miller and 
Winograd. Proceedings of the International Conference on Application Specific Array 
Processors, Strasbourg, 24-26 July 1995, 13-25.  
https://doi.org/10.1109/ASAP.1995.522901 

[25] Bellman, R. (1958) On a Routing Problem. Quarterly of Applied Mathematics, 16, 
87-90. https://doi.org/10.1090/qam/102435 

[26] Ford Jr., L.R. (1956) Network Flow Theory. RAND Corporation, Santa Monica, CA. 

[27] Darte, A. and Vivien, F. (1994) Automatic Parallelization Based on Multidimensional 
Scheduling. Technical Report 94-24, Laboratoire de 1’Informatique du Parallélisme, 
Ecole Normale Supérieure de Lyon, Lyon.  

[28] Quinton, P. (1983) The Systematic Design of Systolic Arrays. Rapports de Recherche, 
No. 216, Centre de Rennes, Institut de Researche en Informatiwue et den Automa-
tique, Bruz. 

 
 

https://doi.org/10.4236/jamp.2024.124075
https://doi.org/10.1145/73007.73057
https://doi.org/10.1142/S0129626491000021
https://doi.org/10.7249/R366
https://doi.org/10.1109/5.4402
https://doi.org/10.1109/ASAP.1995.522901
https://doi.org/10.1090/qam/102435

	Understanding the Theory of Karp, Miller and Winograd
	Abstract
	Keywords
	1. Introduction
	2. Defining the Basic Concepts
	3. Computability and Scheduling of Calculations
	4. One- and Multi-Dimensional Scheduling
	5. Solving the Scheduling Problem
	6. Selecting the Optimal Time Routing Function
	7. Free Scheduling
	8. Defining the Degree of Parallelism
	9. Identifying the Computability Conditions
	9.1. The Case of a Simple Equation
	9.2. The Case of a System of Equations

	10. The Decomposition Algorithm of KMW
	11. The Systems of Uniform Recurrent Equations and Nested Loops
	12. Conclusion
	Conflicts of Interest
	References

