The Global Attractor and Its Dimension Estimation of Generalized Kolmogorov-Petrovlkii-Piskunov Equation

Yuhuai Liao
School of Artificial Intelligence, Wenshan University, Wenshan, China
Email: 15925159599@163.com

How to cite this paper: Liao, Y.H. (2024)
The Global Attractor and Its Dimension Estimation of Generalized Kolmogorov-Petrovlkii-Piskunov Equation. Journal of Applied Mathematics and Physics, 12, 11781187.
https://doi.org/10.4236/jamp.2024.124073

Received: March 8, 2024
Accepted: April 21, 2024
Published: April 24, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.

Keywords

Generalized Kolmogorov-Petrovlkii-Piskunov Equation, Existence of Solution, Hausdorff Dimension, Fractal Dimension

1. Introduction

Many scholars at home and abroad have studied the dynamical system theory described by mathematical physics equations, such as Navier-Stokes equation, nonlinear Schrödinger equation, KdV equations, reaction-diffusion equation, damped semilinear equation, etc, and estimated the dimension of the attractor.

In [1], Xu et al. studied the type KPP equations of $(3+1)$ and $(1+1)$ dimensions:

$$
u_{t}-\alpha \Delta u+\mu u+v u^{2}+\delta u^{3}=0
$$

Which is the exact solution of the equation.
Wu studied the initial boundary value problem of generalized KPP equations in [2]:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(x, t)=\frac{D}{\sigma} \int_{0}^{t} \mathrm{e}^{-\frac{t-s}{\sigma}} \frac{\partial^{2} u}{\partial x^{2}}(x, s) \mathrm{d} s+\lambda u(1-u), x \in(a, b), t \in(0, T) \\
u(x, 0)=\varphi(x), x \in[a, b] \\
u(a, t)=\alpha(t), u(b, t)=\beta(t), t \in[0, T]
\end{array}\right.
$$

where $D>0$ is the diffusion coefficient, $\lambda>0$ is the reaction rate constant and $\sigma>0$ is the time delay constant. When $\sigma \rightarrow 0$, it became the famous KPP equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\lambda u(1-u)
$$

The traveling wave solution is studied and the propagation speed is $c=2 \sqrt{D \lambda}$.
In [3], Chen et al. proposed a new auxiliary equation method to find the exact traveling wave solution of the nonlinear development equation. By selecting Bernoulli equation with variable coefficient as the auxiliary ordinary differential equation, the generalized Burgers-KPP equation was solved according to the principle of homogeneous equilibrium, and the traveling wave solution of the equation was obtained. In [4], Cao et al. studied the stability and uniqueness of the generalized traveling wave of discrete Fisher-KPP equations with general time and space dependence. More studies on global attractors and their dimension estimation of equations can be seen in references [5]-[10].

In this paper, we consider the initial boundary value problem of the following generalized KPP equations:

$$
\begin{gather*}
\left(u_{t}-\Delta u_{t}\right)+\alpha(u-\Delta u)+\beta u^{2}+\gamma u^{2 p+1}=0 \tag{1}\\
\left.u\right|_{\partial \Omega}=0 \tag{2}\\
u(x, 0)=u_{0}(x) \tag{3}
\end{gather*}
$$

where, $\Omega \subset R^{3}, \alpha>0, \beta>0, \gamma>0, p$ is a natural number.
Notation is introduced for the convenience of narration: \|•\| represents the norm in $H_{0}^{1}(\Omega)$ space; $|\bullet|$ and (\bullet, \bullet) represents the norm and inner product in $L^{2}(\Omega)$ space, and $|f|=(f, f)^{\frac{1}{2}}=\left(\int_{\Omega} f^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$.

2. The Existence of a Global Attractor

In order to prove the existence of problems (1)-(3) global attractors, the following conclusions are needed:

Lemma 1. Let $u_{0} \in L^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, then the solution u of problems (1)-(3) is estimated as follows:

$$
\begin{equation*}
|u|^{2}+\|u\|^{2} \leq\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \mathrm{e}^{-2 \alpha t}+C, \quad t \geq t_{1} \tag{4}
\end{equation*}
$$

where $t_{1}=-\frac{1}{2 \alpha} \ln \left(\frac{C}{\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}}\right), C$ is a normal number that depends on
α, β, γ, and $C=\frac{C_{1}}{2 \alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right)$.
Proof. By taking the inner product of both sides of Equation (1) with u, we get:

$$
\begin{equation*}
\left(\left(u_{t}-\Delta u_{t}\right), u\right)+\alpha((u-\Delta u), u)+\beta\left(u^{2}, u\right)+\gamma\left(u^{2 p+1}, u\right)=0 \tag{5}
\end{equation*}
$$

Obtained from Formula (5):

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|u|^{2}+\|u\|^{2}\right)+\alpha\left(|u|^{2}+\|u\|^{2}\right)+\beta \int_{\Omega} u^{3} \mathrm{~d} x+\gamma \int_{\Omega} u^{2 p+2} \mathrm{~d} x=0 \tag{6}
\end{equation*}
$$

Thus, there:

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|u|^{2}+\|u\|^{2}\right)+\alpha\left(|u|^{2}+\|u\|^{2}\right)+\gamma \int_{\Omega} u^{2 p+2} \mathrm{~d} x \leq\left|\beta \int_{\Omega} u^{3} \mathrm{~d} x\right| \leq \int_{\Omega}\left|\beta u^{3}\right| \mathrm{d} x \tag{7}
\end{equation*}
$$

By Young's Inequality, there:

$$
\begin{align*}
& \begin{aligned}
&\left|u^{3} \beta\right| \leq \frac{3 \varepsilon^{\frac{2 p+2}{3}}}{2 p+2} u^{2 p+2}+\frac{1}{\frac{2 p+2}{2 p-1} \varepsilon^{\frac{2 p+2}{2 p-1}} \beta^{\frac{2 p+2}{2 p-1}}} \\
& \quad=\frac{\gamma}{2} u^{2 p+2}+\frac{2 p-1}{2 p+2}\left(\frac{p+1}{3} \gamma\right)^{-\frac{2 p-1}{3}} \beta^{\frac{2 p+2}{2 p-1}} \\
& \quad=\frac{\gamma}{2} u^{2 p+2}+C_{0}
\end{aligned} \\
& \text { (Let } \left.\frac{3 \varepsilon^{\frac{2 p+2}{3}}}{2 p+2}=\frac{\gamma}{2}, C_{0}=\frac{2 p-1}{2 p+2}\left(\frac{p+1}{3} \gamma\right)^{-\frac{2 p-1}{3}} \beta^{\frac{2 p+2}{2 p-1}}\right) .
\end{align*}
$$

By substituting Formula (8) into Formula (7), we get:

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|u|^{2}+\|u\|^{2}\right)+\alpha\left(|u|^{2}+\|u\|^{2}\right)+\frac{\gamma}{2} \int_{\Omega} u^{2 p+2} \mathrm{~d} x \leq C_{1} \quad\left(\text { Let } \quad C_{1}=\int_{\Omega} C_{0} \mathrm{~d} x\right) \tag{9}
\end{equation*}
$$

Due to $\frac{\gamma}{2} \int_{\Omega} u^{2 p+2} \mathrm{~d} x>0,(\gamma>0)$, so:

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|u|^{2}+\|u\|^{2}\right)+\alpha\left(|u|^{2}+\|u\|^{2}\right) \leq C_{1} \tag{10}
\end{equation*}
$$

From Gronwall's inequality, we get:

$$
\begin{equation*}
|u|^{2}+\|u\|^{2} \leq\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \mathrm{e}^{-2 \alpha t}+\frac{C_{1}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right)=\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \mathrm{e}^{-2 \alpha t}+C \tag{11}
\end{equation*}
$$

(among them $C=\frac{C_{1}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right)$).
Hence, $u \in L^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Lemma 2. Let $u_{0} \in H_{0}^{2}(\Omega)$, then the solution u of problems (1)-(3) is estimated as follows:

$$
\begin{equation*}
\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2} \leq\left(\left\|u_{0}\right\|^{2}+\left\|u_{0}\right\|_{H_{0}^{2}}^{2}\right) \mathrm{e}^{-2 \alpha t}+C^{\prime}, t \geq t_{2} \tag{12}
\end{equation*}
$$

where $t_{2}=-\frac{1}{2 \alpha} \ln \left(\frac{C^{\prime}}{\left\|u_{0}\right\|^{2}+\left\|u_{0}\right\|_{H_{0}^{2}}^{2}}\right), C^{\prime}$ is a normal number that depends on
α, β, γ, and $C^{\prime}=\frac{C_{2}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right)$.
Proof. By taking the inner product of both sides of Equation (1) with $-\Delta u$, we get:

$$
\begin{equation*}
\left(\left(u_{t}-\Delta u_{t}\right),-\Delta u\right)+\alpha((u-\Delta u),-\Delta u)+\beta\left(u^{2},-\Delta u\right)+\gamma\left(u^{2 p+1},-\Delta u\right)=0 . \tag{13}
\end{equation*}
$$

Obtained from Formula (13):

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\alpha\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\beta\left(u^{2},-\Delta u\right)+\gamma\left(u^{2 p+1},-\Delta u\right)=0
$$

Thus, there are:

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\alpha\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\gamma\left(u^{2 p+1},-\Delta u\right)=\beta\left(u^{2}, \Delta u\right) \tag{14}
\end{equation*}
$$

Due to

$$
\begin{gather*}
\left(u^{2 p+1},-\Delta u\right)=\left(\nabla u^{2 p+1}, \nabla u\right)=(2 p+1)\left(u^{2 p} \nabla u, \nabla u\right)=(2 p+1) \int_{\Omega} u^{2 p}|\nabla u|^{2} \mathrm{~d} x \geq 0 \tag{15}\\
\text { So, } \left.\gamma\left(u^{2 p+1},-\Delta u\right) \geq 0 \quad \text { (because } \gamma>0\right) \tag{16}
\end{gather*}
$$

And because:

$$
\begin{equation*}
\left|\beta\left(u^{2}, \Delta u\right)\right|=2 \beta|(u \nabla u, \nabla u)| \leq 2 \beta|u|_{L^{\infty}}\|u\|^{2} \leq C_{2} \tag{17}
\end{equation*}
$$

Obtained from Formula (14):

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\alpha\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\gamma\left(u^{2 p+1},-\Delta u\right) \leq\left|\beta\left(u^{2}, \Delta u\right)\right| . \tag{18}
\end{equation*}
$$

By (16)-(18), get:

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right)+\alpha\left(\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2}\right) \leq C_{2} \tag{19}
\end{equation*}
$$

From the Gronwall inequality, obtain:

$$
\begin{gather*}
\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2} \leq\left(\left\|u_{0}\right\|^{2}+\left\|u_{0}\right\|_{H_{0}^{2}}^{2}\right) \mathrm{e}^{-2 \alpha t}+\frac{C_{2}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right) \leq\left(\left\|u_{0}\right\|^{2}+\left\|u_{0}\right\|_{H_{0}^{2}}^{2}\right) \mathrm{e}^{-2 \alpha t}+C^{\prime} \\
\quad\left(\text { Ream } C^{\prime}=\frac{C_{2}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right)\right) \tag{20}
\end{gather*}
$$

Therefore, $u \in H_{0}^{2}(\Omega)$.
Theorem 1. Set a given function u_{0}, and $u_{0} \in H_{0}^{2}(\Omega)$, then the problems (1)-(3) has a unique solution u, such that $u \in H_{0}^{2}(\Omega)$.

Proof. 1) Existence: According to Lemma 1 and Lemma 2, the solution $u \in H_{0}^{2}(\Omega)$ of problems (1)-(3) exists.
2) Uniqueness: Let u, v be two solutions of Equation (1), and let $w=u-v$, then:

$$
\begin{align*}
& \left(u_{t}-\Delta u_{t}\right)+\alpha(u-\Delta u)+\beta u^{2}+\gamma u^{2 p+1}=0 \tag{21}\\
& \left(v_{t}-\Delta v_{t}\right)+\alpha(v-\Delta v)+\beta v^{2}+\gamma v^{2 p+1}=0 \tag{22}
\end{align*}
$$

Obtained by (21) and (22):

$$
\begin{equation*}
\left(w_{t}-\Delta w_{t}\right)+\alpha(w-\Delta w)+\beta\left(u^{2}-v^{2}\right)+\gamma\left(u^{2 p+1}-v^{2 p+1}\right)=0 \tag{23}
\end{equation*}
$$

where $w(0)=0, w \in H_{0}^{2}(\Omega)$.
Take the inner product of both sides of Equation (23) with $w(w=u-v)$, we get:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|w\|^{2}\right)+\alpha\left(|w|^{2}+\|w\|^{2}\right)+\beta\left(\left(u^{2}-v^{2}\right), w\right)+\gamma\left(\left(u^{2 p+1}-v^{2 p+1}\right), w\right)=0
$$

Thus, have:

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|w\|^{2}\right)+\alpha\left(|w|^{2}+\|w\|^{2}\right)+\gamma\left(\left(u^{2 p+1}-v^{2 p+1}\right), w\right)=-\beta\left(\left(u^{2}-v^{2}\right), w\right) \tag{24}\\
& \leq\left|-\beta\left(\left(u^{2}-v^{2}\right), w\right)\right| \leq \beta \int_{\Omega}\left|u^{2}-v^{2}\right||w| \mathrm{d} x
\end{align*}
$$

And because:

$$
\begin{gather*}
\beta \int_{\Omega}\left|u^{2}-v^{2}\right||w| \mathrm{d} x \leq C_{3}|w|^{2} \leq C_{3}\left(|w|^{2}+\|w\|^{2}\right) \tag{25}\\
\gamma\left(\left(u^{2 p+1}-v^{2 p+1}\right), w\right)=\gamma \int_{\Omega}\left(u^{2 p+1}-v^{2 p+1}\right)(u-v) \mathrm{d} x \geq 0 . \tag{26}
\end{gather*}
$$

Obtained by (24)-(26):

$$
\begin{gather*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|\left. w\right|^{2}\right)+\alpha\left(|w|^{2}+\|w\|^{2}\right) \leq C_{3}\left(|w|^{2}+\|w\|^{2}\right) \\
\text { Thus, there are } \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|w\|^{2}\right)+\left(\alpha-C_{3}\right)\left(|w|^{2}+\|w\|^{2}\right) \leq 0 . \tag{27}
\end{gather*}
$$

So, from (27), we get: $w=0$, that is $u=v$.
Define. [7] Let $S(t)$ be a continuous operator semigroup,

$$
S(t): H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega), S(t+\tau)=S(t) S(\tau), \quad \forall t \geq 0, \tau \geq 0 ; \quad S(0)=I_{0}
$$

If the compact set $A \subset H_{0}^{1}(\Omega)$ is satisfied:

1) Invariance: A is an invariant set under the action of a semigroup $S(t)$, i.e. $S(t) A=A, \forall t>0$.
2) Attraction: A attracts all bounded sets in $H_{0}^{1}(\Omega)$, that is, any bounded set $B \subset H_{0}^{1}(\Omega)$, have:

$$
\operatorname{dist}(S(t) B, A)=\sup _{x \in B} \inf _{y \in A}\|S(t) x-y\|_{H_{0}^{1}} \rightarrow 0,(t \rightarrow+\infty)
$$

In particular, when $t \rightarrow+\infty$, all orbitals $S(t) u_{0}$ from u_{0} converge to A, that is:

$$
\operatorname{dist}\left(S(t) u_{0}, A\right) \rightarrow 0,(t \rightarrow+\infty)
$$

Then, the compact set A is called the global attractor of semigroup $S(t)$.
Theorem 2. [8] Let E be a Banach space, $\{S(t)\}(t \geq 0)$ be a family of operators, $S(t): E \rightarrow E, S(t+\tau)=S(t) S(\tau), S(0)=I$, where I is the identity operator. Let $S(t)$ satisfy:

1) $S(t)$ is bounded, that is, $\forall R>0,\|u\|_{E} \leq R$, then there is a constant $C(R)$ such that $\|S(t) u\|_{H_{0}^{1}} \leq C(R)(t \in[0,+\infty))$.
2) There is a bounded absorption set $B_{0} \subset E$, that is, any bounded absorption set $B \subset E$, and there is a constant t_{0} time such that the bounded absorption set $S(t) B \subset B_{0}\left(t>t_{0}\right)$.
3) For $t>0, S(t)$ is a completely continuous operator.

Then, the semigroup $S(t)$ has a compact global attractor A.
Theorem 3. If the problems (1)-(3) have A solution and satisfies the conditions of Lemma 2, then the problems (1)-(3) have a global attractor A, that is, there is a compact set $A \subset H_{0}^{1}(\Omega)$ such that:

1) $S(t) A=A, \forall t>0$.
2) Any bounded set $B \subset H_{0}^{1}(\Omega)$, yes:

$$
\operatorname{dist}(S(t) B, A)=\sup _{x \in B} \inf _{y \in A}\|S(t) x-y\|_{H_{0}^{1}} \rightarrow 0,(t \rightarrow+\infty)
$$

In particular, when $t \rightarrow+\infty$, all orbitals $S(t) u_{0}$ from u_{0} converge to A, that is:

$$
\operatorname{dist}\left(S(t) u_{0}, A\right) \rightarrow 0,(t \rightarrow+\infty)
$$

Proof. Let $u(0)=u_{0} \in H_{0}^{2}(\Omega),\left|u_{0}\right| \leq R_{0},\left\|u_{0}\right\| \leq R_{1},\left\|u_{0}\right\|_{H_{0}^{2}} \leq R_{2}$, and $u=S(t) u_{0}$, then follows from Lemma 1: $|u|^{2}+\|u\|^{2} \leq\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \mathrm{e}^{-2 \alpha t}+C$.
Thus, there is:

$$
\begin{equation*}
|u|^{2}+\|u\|^{2} \leq\left(R_{0}^{2}+R_{1}^{2}\right) \mathrm{e}^{-2 \alpha t}+C . \tag{28}
\end{equation*}
$$

Ream $\left(R_{0}^{2}+R_{1}^{2}\right) \mathrm{e}^{-2 \alpha t} \leq C$, then $t \geq-\frac{1}{2 \alpha} \ln \left(\frac{C}{R_{0}^{2}+R_{1}^{2}}\right)$.
Take $t_{1}=-\frac{1}{2 \alpha} \ln \left(\frac{C}{R_{0}^{2}+R_{1}^{2}}\right)$, then $t \geq t_{1}$, Formula (28) can be written as: $|u|^{2}+\|u\|^{2} \leq 2 C$.

Similarly, from Lemma 2:

$$
\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2} \leq\left(\left\|u_{0}\right\|^{2}+\left\|u_{0}\right\|_{H_{0}^{2}}^{2}\right) \mathrm{e}^{-2 \alpha t}+C^{\prime} .
$$

Thus, have:

$$
\begin{equation*}
\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2} \leq\left(R_{1}^{2}+R_{2}^{2}\right) \mathrm{e}^{-2 \alpha t}+C^{\prime} \tag{29}
\end{equation*}
$$

Ream $\left(R_{1}^{2}+R_{2}^{2}\right) \mathrm{e}^{-2 \alpha t} \leq C^{\prime}$, then $t \geq-\frac{1}{2 \alpha} \ln \left(\frac{C^{\prime}}{R_{1}^{2}+R_{2}^{2}}\right)$.
Take $t_{2} \geq-\frac{1}{2 \alpha} \ln \left(\frac{C^{\prime}}{R_{1}^{2}+R_{2}^{2}}\right)$, then $t \geq t_{2}$, Formula (29) can be written as: $\|u\|^{2}+\|u\|_{H_{0}^{2}}^{2} \leq 2 C^{\prime}$.

Let $B=\left\{u \in H_{0}^{1}(\Omega):\|u\| \leq \sqrt{2\left(C+C^{\prime}\right)}\right\}$, and u is bounded in $H_{0}^{2}(\Omega)$, and $H_{0}^{2}(\Omega)$ is tightly embedded in $H_{0}^{1}(\Omega)$, so B is the compact absorption set in $H_{0}^{1}(\Omega)$.

Let $u_{0} \in H_{0}^{1}(\Omega), v_{0} \in H_{0}^{1}(\Omega)$, and u, v be the corresponding two solutions of the equation, $S(t) u_{0}=u, S(t) v_{0}=v$, and let $w=u-v$, then w satisfies:

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|w\|^{2}\right)+\alpha\left(|w|^{2}+\|w\|^{2}\right)+\beta \int_{\Omega}\left(u^{2}-v^{2}\right)(u-v) \mathrm{d} x \\
& +\gamma \int_{\Omega}\left(u^{2 p+1}-v^{2 p+1}\right)(u-v) \mathrm{d} x=0
\end{aligned}
$$

From uniqueness, can be obtained:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(|w|^{2}+\|w\|^{2}\right)+\left(\alpha-C_{3}\right)\left(|w|^{2}+\|w\|^{2}\right) \leq 0
$$

Thus, have:

$$
|w|^{2}+\|w\|^{2} \leq\left(\left|w_{0}\right|^{2}+\left\|w_{0}\right\|^{2}\right) \mathrm{e}^{2\left(C_{3}-\alpha\right) t}
$$

So, the operator $S(t): H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is continuous.
Thus, from Theorem 2, we know that problems (1)-(3) exist global attractors:

$$
A=w(B)=\bigcap_{S \geq 0} \overline{\bigcup_{t \geq 0} S(t) B}
$$

3. The Dimension Estimation of the Global Attractor

In order to establish the Hausdoarff dimension of the problems (1)-(3) global attractor A, the upper bound of the fractal dimension. A linear variational problem for problems (1)-(3) needs to be established:

$$
\begin{gather*}
\left(v_{t}-\Delta v_{t}\right)+\alpha(v-\Delta v)+2 \beta u v+(2 p+1) \gamma u^{2 p} v=0,\left(\text { let } u_{t}=v\right) \\
\text { i.e. }(I-\Delta) v_{t}+\alpha(I-\Delta) v+2 \beta u v+(2 p+1) \gamma u^{2 p} v=0 \tag{30}\\
v(0)=v_{0}(x) \tag{31}
\end{gather*}
$$

where $v_{0} \in H_{0}^{1}(\Omega), u(t)=S(t) u_{0}$ is solution of problems (1)-(3) with $u_{0} \in A$.
Lemma 3. Let $v_{0} \in H_{0}^{1}(\Omega)$ and $u_{0}, v_{0} \in A, S(t) u_{0} \in H_{0}^{1}(\Omega)$, then the linearization problems (30) and (31) have unique solutions:

$$
\begin{equation*}
v(x, t) \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), T>0 \tag{32}
\end{equation*}
$$

In addition, remember $v(t)=G(t) v_{0}$, then $\forall T>0, \bar{R} \geq 0$, there is a constant E related to R and T, such that:

$$
\begin{equation*}
\left\|S(t)\left(u_{0}+v_{0}\right)-S(t) u_{0}-G(t) v_{0}\right\|_{H_{0}^{1}} \leq E\left\|v_{0}\right\|_{H_{0}^{1}}^{2}, \forall t \in[0, T] \tag{33}
\end{equation*}
$$

where $\left\|u_{0}\right\| \leq \bar{R},\left\|u_{0}+v_{0}\right\| \leq \bar{R}, u_{0}+v_{0} \in A$, this shows that the operator $S(t)$ is uniformly differentiable on A, and that the differential of $S(t)$ in $u_{0} \in A$ at $H_{0}^{1}(\Omega)$ is:

$$
D S(t) u_{0}: v_{0} \in H_{0}^{1}(\Omega) \rightarrow G(t) v_{0} \in H_{0}^{1}(\Omega)
$$

Let $W=I-\Delta$, and W is positive definite dense, then W^{-1} exists and is bounded.

So, (30) becomes:

$$
W v_{t}+\alpha W v+2 \beta u v+(2 p+1) \gamma u^{2 p} v=0
$$

Multiply both sides by W^{-1}, you get:

$$
\begin{equation*}
v_{t}+L(u(t)) v=0 \tag{34}
\end{equation*}
$$

where $L(u(t)) v=\alpha v+2 \beta W^{-1} u v+(2 p+1) \gamma W^{-1} u^{2 p} v$.
Let's say $v_{1}(t), v_{2}(t), \cdots, v_{m}(t)$ is m solutions of (30) (31), and the corresponding initial values are: $v_{1}(0), v_{2}(0), \cdots, v_{m}(0)$, then:

$$
\begin{aligned}
& \left|v_{1}(t) \wedge v_{2}(t) \wedge \cdots \wedge v_{m}(t)\right|_{\wedge^{m} H_{0}^{1}} \\
& \leq\left|v_{1}(0) \wedge v_{2}(0) \wedge \cdots \wedge v_{m}(0)\right|_{\wedge^{m} H_{0}^{1}} \exp \left[-\int_{0}^{t} \operatorname{Tr}\left(L(u(\tau)) \circ Q_{m}(\tau)\right) \mathrm{d} \tau\right]
\end{aligned}
$$

Let $Q_{m}(t)$ represent the orthogonal projection on the space spanning $H_{0}^{1}(\Omega)$ to $\left\{v_{1}(t), v_{2}(t), \cdots, v_{m}(t)\right\}$.

Next, the exponential attenuation of the m dimensional volume element $\left|v_{1}(t) \wedge v_{2}(t) \wedge \cdots \wedge v_{m}(t)\right|$ and the dimension estimation of the global attractor A are considered. Thus, there is:

Theorem 4. Let the global attractor $A \in H_{0}^{1}(\Omega)$ of problems (1)-(3), and m satisfy: $m-1<\left(\frac{K_{3}}{K_{2}}\right)^{3} \leq m,\left(\right.$ among which $\left.K_{2}=\alpha C_{4} \lambda_{1}, \quad K_{3}=d K_{1}, d=2 \beta|u|_{L^{\infty}}\right)$.

Then:

1) When $t \rightarrow+\infty$, the m dimensional volume element $\left|v_{1}(t) \wedge v_{2}(t) \wedge \cdots \wedge v_{m}(t)\right|$ vwill decay exponentially.
2) $\operatorname{dim}(A)_{H} \leq m, \operatorname{dim}(A)_{F} \leq 2 m$.

Proof. Let's say $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{m}$ is a set of orthogonal bases for $H_{0}^{1}(\Omega)$ and satisfies:

$$
\left(W \varphi_{i}, \varphi_{i}\right)=1,\left(W \varphi_{i}, \varphi_{i}\right)=\lambda_{i}\left(\varphi_{i}, \varphi_{i}\right),(i=1,2, \cdots, m),
$$

where $\lambda_{i}\left(0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{m} ; i=1,2, \cdots, m\right)$ is the eigenroot of the operator $W(W=I-\Delta)$.

The lower bound of $\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right)$ is estimated below:

$$
\begin{align*}
& \operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \\
& =\sum_{i=1}^{\infty}\left(L(u(t)) \circ Q_{m}(t) \varphi_{i}(t), W \varphi_{i}(t)\right)=\sum_{i=1}^{m}\left(L(u(t)) \varphi_{i}(t), W \varphi_{i}(t)\right) \\
& =\sum_{i=1}^{m}\left(\alpha \varphi_{i}+2 \beta W^{-1} u \varphi_{i}+(2 p+1) \gamma W^{-1} u^{2 p} \varphi_{i}, W \varphi_{i}\right) \tag{35}\\
& =\alpha \sum_{i=1}^{m}\left(\varphi_{i}, W \varphi_{i}\right)+2 \beta \sum_{i=1}^{m}\left(u \varphi_{i}, \varphi_{i}\right)+(2 p+1) \gamma \sum_{i=1}^{m}\left(u^{2 p} \varphi_{i}, \varphi_{i}\right)
\end{align*}
$$

Again $\left(u^{2 p} \varphi_{i}, \varphi_{i}\right) \geq 0$, so (35) can be written as:

$$
\begin{equation*}
\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m+2 \beta \sum_{i=1}^{m}\left(u \varphi_{i}, \varphi_{i}\right) \geq \alpha m-2 \beta|u|_{L^{\infty}} \sum_{i=1}^{m}\left(\varphi_{i}, \varphi_{i}\right) \tag{36}
\end{equation*}
$$

Because $\left(W \varphi_{i}, \varphi_{i}\right)=\lambda_{i}\left(\varphi_{i}, \varphi_{i}\right)$, then there is $\left(\varphi_{i}, \varphi_{i}\right)=\frac{1}{\lambda_{i}}\left(W \varphi_{i}, \varphi_{i}\right)=\frac{1}{\lambda_{i}}$.

Therefore, Formula (36) becomes:

$$
\begin{equation*}
\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m-2 \beta|u|_{L^{\infty}} \sum_{i=1}^{m} \frac{1}{\lambda_{i}} . \tag{37}
\end{equation*}
$$

That is $\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m-d \sum_{i=1}^{m} \frac{1}{\lambda_{i}}$, (among others $\left.d=2 \beta|u|_{L^{\infty}}\right)$.
Let $\lambda_{j} \sim C_{4} \lambda_{1} j^{2 / 3}$, then Formula (37) becomes:

$$
\begin{equation*}
\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m-d \sum_{j=1}^{m} \frac{1}{C_{4} \lambda_{1} j^{2 / 3}}=\alpha m-\frac{d}{C_{4} \lambda_{1}} \sum_{j=1}^{m} \frac{1}{j^{2 / 3}} . \tag{38}
\end{equation*}
$$

Thus, have:

$$
\begin{equation*}
\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m-\frac{d}{C_{4} \lambda_{1}} m^{\frac{2}{3}} \sum_{j=1}^{m} \frac{1}{j^{4 / 3}} \geq \alpha m-\frac{d}{C_{4} \lambda_{1}} m^{\frac{2}{3}} \sum_{j=1}^{\infty} \frac{1}{j^{4 / 3}} \tag{39}
\end{equation*}
$$

And $\sum_{k=1}^{m} \frac{1}{k^{4 / 3}} \leq \sum_{k=1}^{\infty} \frac{1}{k^{4 / 3}}$, and the series $\sum_{k=1}^{\infty} \frac{1}{k^{4 / 3}}$ converges, let's say the series $\sum_{k=1}^{\infty} \frac{1}{k^{4 / 3}}$ converges to the normal number K_{1}, so Formula (39) becomes:

$$
\begin{equation*}
\operatorname{Tr}\left(L(u(t)) \circ Q_{m}(t)\right) \geq \alpha m-\frac{d K_{1}}{C_{4} \lambda_{1}} m^{\frac{2}{3}} \tag{40}
\end{equation*}
$$

When $\alpha m-\frac{d K_{1}}{C_{4} \lambda_{1}} m^{\frac{2}{3}}>0$, have $m^{\frac{2}{3}}\left(\alpha m^{\frac{1}{3}}-\frac{d K_{1}}{C_{4} \lambda_{1}}\right)>0$, i.e.
$m>\left(\frac{d K_{1}}{\alpha C_{4} \lambda_{1}}\right)^{3}=\left(\frac{K_{3}}{K_{2}}\right)^{3}$, (among them $K_{2}=\alpha C_{4} \lambda_{1}, K_{3}=d K_{1}$), thereby having $m-1<\left(\frac{K_{3}}{K_{2}}\right)^{3} \leq m$.

Let $\mu_{j}(j \in N)$ be the Lyapunov exponent, then there is an inequality:

$$
\mu_{1}+\mu_{2}+\cdots+\mu_{m} \leq-\alpha m+\frac{d K_{1}}{C_{4} \lambda_{1}} m^{\frac{2}{3}}<0
$$

So, $\mu_{1}+\mu_{2}+\cdots+\mu_{m}<0$, and $\frac{\mu_{1}+\mu_{2}+\cdots+\mu_{m}}{\left|\mu_{1}+\mu_{2}+\cdots+\mu_{m}\right|} \leq 1$.
Therefore, $\operatorname{dim}(A)_{H} \leq m, \operatorname{dim}(A)_{F} \leq 2 m$.

4. Closing Remarks

In this paper, the existence and uniqueness of the solutions (1)-(3) of the initial boundary value problem of generalized KPP equation and the existence of the global attractor are studied. The Hausdorff dimension and fractal dimension of the global attractor are estimated.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Xu, L.P., Zhang, C.Y. and Mi, X.H. (2008) Linear Solution of a Class of Nonlinear Heat Transfer Equations. Journal of Sichuan Normal University, 31, 393-396.
[2] Wu, H.W. (2009) Numerical Solutions of Generalized KPP Equations. Computational Mathematics, 31, 137-150.
[3] Chen, Z.G. and Zhang, W.Z. (2010) Variable Coefficient Auxiliary Equation Method for Solving Generalized Burgers-KPP Equation. Journal of North China Institute of Water Resources and Electric Power, 31, 151-154.
[4] Cao, F. and Shen, W.X. (2017) Stability and Uniqueness of Generalized Traveling Waves of Discrete Fisher-KPP Equations in Inhomogeneous Media. Chinese Science and Mathematics, 47, 1787-1808. (In Chinese) https://doi.org/10.1360/N012017-00116
[5] Ghidaglia, J.-M. (1988) Weakdy Damped Fored Korteweg-De Vries Equation Behave as a Finite Dimensional Dynamical System in the Long Time. Journal of Differential Equations, 74, 369-390. https://doi.org/10.1016/0022-0396(88)90010-1
[6] Guo, B.L. (1992) Nonlinear Evolution Equations. Shanghai Science and Technology Education Press, Shanghai.
[7] Zhang, R.-F. and Li, R.-G. (2005) The Global Solution for a Class of Dissipative Ha-segawa-Mima Equation. Chinese Quarterly Journal of Mathematics, 20, 360-366.
[8] Temam, R. (2000) Infinite Dimensional Dynamical System in Mechanics and Physics. Springer-Verlag, New York, 15-329.
[9] Zhang, R.F. and Guo, B.L. (2006) Global Attractor of Hasegava-Mima Equation. Applied Mathematics and Mechanics, 27, 567-574.
https://doi.org/10.1007/s10483-006-0501-1
[10] Xu, G.-G. and Lin, G.-G. (2011) Global Attractor and Its Dimension Estimation for Generalized Boussinesq Equation. Science and Technology Information of China, No. 10, 54-61.

