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Abstract 
The synthesis of new indoloannulated thiopyranethiones is reported. The 
key-step is a rhodium-catalyzed [2 + 2 + 2]-cycloaddition of alkynyl-ynamides 
with carbon disulfide to close the pyrrole and the thiopyranethione rings si-
multaneously. A violet idolothiopyrane thione or a mixture of the violet and a 
red isomer result from [RhCl(C8H14)2]2/3BINAP catalyzed cycloadditions, the 
regiochemistry is controlled by the substitution pattern on the alkynyl-ynamide. 
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1. Introduction 

Heteroannulated indoles like carbolines (1,2, Figure 1) form the core of a large 
group of alkaloids [1] [2] [3] [4] [5]. Many of these alkaloids possess pharmaco-
logical properties, ranging from antitumor to anxiolytic and anti-HIV activity 
[6]-[11]. Therefore, compounds based on these heterocyclic cores remain im-
portant targets for organic syntheses [12]-[17]. Classical methods for the synthe-
sis of (hetero) annulated indoles are condensation reactions, e.g. Pictet-Spengler 
and Bischler-Napieralski. In recent times, highly successful Pd-catalyzed methods 
have been developed for the formation of the biaryl bond or closure of the pyr-
role ring [18]-[26]. The comparably mild reaction conditions and the tolerance 
of a large scope of functional groups are advantages of this approach. The [2 + 2 
+ 2]-cycloaddition, found by Berthelot, has become a powerful tool for the syn-
thesis of aromatics since the introduction of nickel catalysts by Reppe [27] [28] 
[29]. Transition-metal catalyzed [2 + 2 + 2]-cycloadditions receive continuously 
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growing attention, with topical focusses like polycyclic systems and stereoselec-
tive arene formation [27]-[39]. The similar cocyclization of alkynes and nitriles 
is a highly effective route for the synthesis of pyridines [40]-[50]. Even annulated 
pyridines are accessible, either from tethered diynes or cyanoalkynes [51]-[67]. 
Modern catalytic systems for [2 + 2 + 2]-cycloadditions are typically based on 
cobalt, ruthenium and rhodium, other transition metals are emerging [68]-[75]. 
In some cases, Lewis acid catalysis effectively initiates cycloaddition [61] [76]. As 
part of a project focusing on condensed heterocycles, we used rhodium and ru-
thenium-based catalysts for the addition of nitriles to alkynyl-ynamides [77]-[86]. 
These metals catalyze the simultaneous construction of the pyrrole and the pyri-
dine ring, thus forming β- and γ-carbolines 1,2 (Figure 1). The β/γ-ratio is 
strongly depending on the catalyst. This strategy has been successfully applied to 
the synthesis of alkaloids like lavendamycin [87] [88] [89].  

The [2 + 2 + 2]-co-cycloaddition methodology is not limited to alkynes with 
nitriles, cyclizations of alkynes with hetero-substituted nitriles, allenes, and even 
heterocumulenes have been performed [90]-[102]. Wakatzuki [103] reported the 
cobalt-catalyzed cocyclization of tolane and carbon disulfide to thiopyranthione 
3 (Figure 1) already in 1973. This cycloaddition was followed by rare exam-
ples; Yamamoto applied Cp*RuCl(COD) as a catalyst for the cocyclization of 
1,6-diynes 4 with CS2 and Tanaka introduced [RhCl(COD)]2/BINAP (Scheme 
1) as a very efficient catalytic system for this route to thiopyranethiones 5 [104] 
[105] [106].  

[2 + 2 + 2]-Cocyclizations of tethered diynes and heterocumulenes to form 
annulated heterocycles appear only occasionally in the literature [101] [102] [104] 
[105] [106] [107]. Recently, we could show that rhodium catalyzes the addition 
of CS2 to an alkynyl-ynamide to form an indolothiopyrane thione, an unprece-
dented route to an almost unknown heterocyclic system [108] [109]. The inten-
tion of this communication is to extend the applicability of the [2 + 2 + 2]-cyc- 
loaddition approach with alkynyl-ynamides to the synthesis of indolo-annulated 
thiopyranethiones. 
 

 
Figure 1. Heteroannulated indoles 1,2 and thiopyran-2-thione 3. 

 

 
Scheme 1. [2 + 2 + 2]-cycloaddition of diynes 4 and CS2 to annulated thiopyra-
nethiones 5. 
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2. Results and Discussion 
2.1. Synthesis of o,N-Dialkynyl-N-Tosylanilides 

The literature gives four independent routes to ynamides, direct oxidative al-
kyne-amide coupling, transfer of an activated alkyne to the amide, and stepwise 
construction of the ynamide [108]-[115]. While the alkynyliodonium routeoffers 
excellent yield, it is limited to certain substituents [111] [112]. The lengthy 
Brückner route [115] converts a formamide via dichlorovinyl-amide to a lithio- 
ynamide—beneficial for a one-pot Negishi coupling [111]. Most alkynylyna-
mides 4b - 4e, 4g in this study were prepared via alkynyliodonium salts [116] 
according to the literature [84] [89] [117]. The new syntheses of alkynyl ynamides 
via Brückner route (4a, 4e), via Negishi coupling (4h, 4i), and the Sonogashira 
coupling to 4f are exemplified in Scheme 2.  
 

 
Scheme 2. Synthesis of alkynyl-ynamides 4a, 4h, 4f. 

2.2. [2 + 2 + 2]-Cycloadditions with Carbon Disulfide 

Like the formation of carbazoles or carbolines in [2 + 2 + 2]-cycloadditions of 
o,N-dialkynyl-N-tosylanilides and alkynes or nitriles, a cycloaddition of carbon 
disulfide to the alkynyl-ynamide results in the synchronous formation of a pyr-
role ring and an additional heterocycle, here, a thiopyranethione (Scheme 3). 
 

 
Scheme 3. Isomeric indolothiopyrane thiones 7, 8 from [2 + 2 + 2]-cycloaddition of al-
kynyl-ynamides 4 and carbon disulfide 5. 
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As the orientation of the nitrile to the initially formed metallacyclopentadiene 
[104] [105] is decisive for the formation of β- and γ-carbolines, two different 
indolo-thiopyranthiones 7, 8 can result from the CS2 addition. Depending on the 
orientation of carbon disulfide in the addition step to the rhodacyclopentadiene, 
the thiopyrano[3,4-b]indole-3-thione 7 or its [4,3-b]-annulated isomer 8 results. 
We used o-propynyl-N-ethynyl-N-tosylanilide 4a (R1 = CH3, R2 = H) as a model 
system for the anticipated addition of CS2 to form indolothiopyrane thiones 7a 
and 8a and [Rh(COD)2]+ −

4BF /BINAP, and Cp*RuCl(COD) as catalytic systems. 
These had been successfully applied in the synthesis of β- and γ-carbolines from 
alkynyl-ynamides [87] [88] [89] and of heterocumulenes with 1,6-diynes [104] 
[105]. Unfortunately, these catalysts gave no conversion (Table 1, entry 1, 2). 

Recently, Rh(COD)Cl]2/2BINAP, a neutral complex, had been rewardingly 
applied by Tanaka [20] in cycloadditions of 1,6-diynes to give bicyclic dithiopy-
rones. Inspired by this work, we choose [RhCl(C8H14)2]2 with BINAP as ligand. 
The precatalyst was activated by hydrogenation and revealed a high activity: with 
3.5 mol-% of [RhCl(C8H14)2]2 and 10 mol-% BINAP, cycloadduct 7a was formed 
in 84% yield within 3 h at 40˚C. Lowering the reaction temperature to 25˚C re-
duced the yield to 56%—even after a five-fold reaction time. A 95% yield of 8a 
was obtained when the addition was performed at 80 °C, but further increase of 
the temperature initiated side reactions. Lower yields were obtained upon reduc-
tion of the catalyst loading or use of other ligands, e.g. Xantphos (Table 1, entry 
6 - 8). 

The first successful experiment in this series (Table 1, entry 3) led to an ap-
parently regiospecific formation the violet β-thio-γ-thione derivative 7a (R1 = CH3, 
R2 = H). The structure was confirmed by spectroscopic data and X-ray scattering 
[108]. However, in further experiments we observed a second product: according 
 
Table 1. Study of the [2 + 2 + 2]-cycloaddition of diyne 4a with CS2 in dichloroethane. 

Entry Catalytic System [a] T time Yield [b] 

1 [Rh(COD)2]+ −
4BF /BINAP5 mol%/6 mol% 80˚C 6 h 0% [c] 

2 Cp*RuCl(COD) 10 mol% 80˚C 6 h 0% 

3 [RhCl(C8H14)2]2/3BINAP3.5 mol%/10 mol% 40˚C 3 h 84% 

4 [RhCl(C8H14)2]2/3BINAP3.5 mol%/10 mol% 25˚C 15 h 56% 

5 [RhCl(C8H14)2]2/3BINAP3.5 mol%/10 mol% 80˚C 3 h 95% 

6 [RhCl(C8H14)2]2/3BINAP2 mol%/6 mol% 80˚C 6 h 67% 

7 [RhCl(C8H14)2]2/Xantphos3.5 mol%/10 mol% 80˚C 6 h 0% 

8 [RhCl(C8H14)2]2/dppf3.5 mol%/10 mol% 80˚C 6 h 0% 

As all reaction performed with 10 equiv. CS2 [a] activation of the Rh-precatalyst by hy-
drogenation [b] isolated yield of both isomers; [c] decomposition of starting material. 
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to 1H-NMR, this red component was formed in up to 3% but all attempts to iso-
late this side product failed due to decomposition. The successful cycloaddition 
to 7a prompted us to investigate the reaction more in detail; results are collected 
in Table 2. Variation of the substituent R1 on the alkynyl-ynamides has a strong 
impact on yield and regiochemistry. The violet compounds 7 are accompanied 
by 8, their red isomers (vide infra). Surprisingly, exchanging R1 = CH3 with the 
small hydrogen (entry 2) or with larger groups (entry 3 - 5) reduces the regiose-
lectivity. The reaction with the non-substituted diyne led to both substitu-
ent-free thiopyranothiones 7b/8b (entry 2), as indicated by the violet and red 
spots observed on the TLC and the 1H NMR of the crude product. However, 
isolation of 7b failed due to decomposition during chromatography. Further-
more, while phenyl and butyl give almost equimolar amounts of both isomers, 
the voluminous TMS group hampers the reaction, inverts the 7/8 ratio to 1:2 
and is split off to yield 7b/8b. Finally, the reactions with diynes having a substi-
tuted ynamide moiety 4g - 4i proceed with a surprisingly excellent regioselectiv-
ity, as only the violet thiopyranothiones 7g - 7i are obtained. This perfect selec-
tivity resembles the regiochemistry of aminonitrile addition to diynes which was 
explained by sterical crowding [100]. This approach does not hold for alkynyl 
ynamides substituted on the phenylacetylene segment. Nearly all of these cyc-
loadditions result in an excess of adduct 7—with the thiocarbonyl vicinal to the 
substituent! 
 
Table 2. [2 + 2 + 2]-cycloaddition of various diynes with CS2. 

Entry Diyne R1 R2 
Isolated Yield 

[a] 
Ratio [b]  

7/8 

1 4a CH3 H 95% 33/1 

2 4b H H 84% [c] 3/1 

3 4c n-Bu H 71% 10/11 

4 4d TMS H 31% [c] 1/2[d] 

5 4e Ph H 92% 5/4 

6 4f 4-Ph-Ph H 34% 2/1 

7 4g H Ph 68% [e] >99/1 

8 4h H 4-MeO-Ph 36% [e] >99/1 

9 4i H Benzofuranyl-2 21% [e] >99/1 

[a] reactions performed with 10 equiv. CS2, 3.5 mol%/10 mol% of [RhCl(C8H14)2]2/3BINAP 
in DCE at 80˚C; activation of the Rh-precatalysts by hydrogenation; [b] determined by 
1H-NMR of the crude product [c] 84% of product was isolated but was partially decom-
posed [d] proto-desilylation during reaction; [e] catalyst loading of 2.5 mol%/6 mol%. 
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Several of the cycloadditions above are accompanied by formation of small 
amounts of side products, FD-MS and some 1H-NMR signals indicate dimers 
formed via [2 + 2 + 2]-cycloaddition of diynes. On the other hand, benzofuranyl 
diyne 4i underwent an intramolecular cyclization to carbazole 9 (Scheme 4), 
probably via a dehydro Diels-Alder addition followed by a 1,5-H-shift. The me-
chanism follows Saá et al. who developed this route to new and successful access 
to benzo-annulated carbazoles [118] [119].  

Unfortunately, some of the thiopyranethiones, especially the violet isomers, 
are highly sensitive towards light and air, in several cases impeding the complete 
analytical and spectral characterization; aromatic substituents appear to be bene-
ficial for stability. 
 

 
Scheme 4. Intramolecular cyclization of 4i to carbazole 9. 

2.3. Optical properties 

Indolothiopyranethiones are deeply colored in solution and in the solid state; β- 
(8) and γ-thiono (7) derivatives are clearly distinguishable by their violet or red 
color. The absorption spectra of 7b and 8d without additional substituents on 
the thiopyrane ring are depicted in Figure 2. The intense color of these com-
pound results from their absorption in the blue or green region of the visible 
spectrum. These maxima (535 nm resp. 474 nm) probably correspond to n → π* 
transition of the thiocarbonyl group. Interestingly, the long-wavelength absorp-
tion maximum of related indolopyrones appear at λmax = 370 nm (“oxa-7”) and 
λmax = 309 nm (“oxa-8”), both about Δλ = 160 nm at shorter wavelengths [120] 
[121]. The length of the conjugation path from indole-N to carbonyl-O/-S appears  
 

 
Figure 2. Electronic spectra of isomeric indolothiopyrane thione. 
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to be decisive for the red shift. Separated by huge energy differences (Δὔ = 
12,954 cm−1 (7b); 5535 cm−1 (8b), the π* → π* transitions occur in the UV (316 
nm, 378 nm), with extinction coefficients about 6 - 7 times higher than of the 
n → π* transitions. Donor-substitution on thiopyranethiones 7 shifts both tran-
sitions to lower energies (e.g. 7i: λmax = 391, 547 nm), the effect of substituents 
vicinal to the thiocarbonyl group are less pronounced than those in the 
α-position (7e: λmax = 313 nm, 535 nm, but 7g: λmax = 322 nm, 527 nm). Solva-
tochromism of both transitions of 7 and 8 is weak (Δλ ≤ 10 nm), but typically 
inverted, e.g. 7e: λmax in cyclohexane: 535 nm, 307 nm; in dichloromethane: 540 
nm, 317 nm and in ethanol 535 nm, 313 nm. 

3. Conclusion 

The [2 + 2 + 2]-cycloaddition of alkynyl-ynamide to carbon disulfide catalyzed 
by Rhodium/Binap complexes is a short access to the unprecedented indolothi-
opyrane thione. Depending on the relative orientation, two different regioiso-
mers are formed, a red β- and a violet γ-isomer. The formation of the violet iso-
mers 7 is generally preferred, if the ynamide is substituted, nearly exclusively 
formation of the violet 7 occurs. The UV-vis spectra of the isomers differ not 
only in the long-wavelength absorption, even the π − π* transitions are separated 
by more than 6000 cm−1. 

4. Experimental Part 
General Information 

All reactions were carried out under dry argon or nitrogen unless otherwise in-
dicated. Commercially available reagents were used without further purification 
unless otherwise indicated; solvents and gases were dried by standard proce-
dures. Yields refer to chromato-graphically and spectroscopically pure compounds 
unless otherwise stated. 1H and 13C NMR spectra: Bruker AC 300 (300 MHz), 
Bruker AV 400 (400 MHz), and Bruker ARX 400 (400 MHz), in CDCl3, CD3OD, 
and DMSO-d6. H and C signals were assigned on the basis of DEPT, COSY 45, 
HMQC, and HMBC experiments. Chemical shifts as δ values in ppm, coupling 
constants are given in Hz. Melting points: Büchi HWS SG 200; IR: JASCO 4100 
FT-IR (ATR); FD-MS: Mat 95 (Finnigan); HR-ESI: Q-TOF-ULTIMA 3 with 
Lock Spray device (Waters-Micromass), NaICsI Standard as reference. UV-vis: 
Perkin-Elmer Lambda 16. Elemental analyses were carried out by using a Vario 
EL. 

Starting materials: 4-methyl-N-(2(prop-1-ynyl)phenyl)benzenesulfonamide, 
N-(2-iodophenyl)-4-methyl-N-(trimethylsilylethynyl)-benzenesulfonamide,  
4-methyl-N-(2(phenylethynyl)phenyl)-benzene-sulfonamide, and diynes 4b - 4d, 
4g, 4h were prepared according to the literature. [14f, 15c, 27] 

Negishi coupling on TMS-diynes: A freshly prepared LiHMDS solution (6.0 
mL, 0.5M in THF, 1.5 equiv.) was added slowly to a cooled solution (−78˚C) of 
the diyne (2 mmol) in dry THF (10 mL) After stirring for 1 h, a solution of ZnBr2 
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(1.5 M in THF, 1.5 mL, 1.1 equiv.) was added via syringe and stirred for 20 min 
at 25˚C. The mixture was transferred via cannula to a solution of Pd2(dba)3*CHCl3 
(103.5 mg, 0.1 mmol), PPh3 (104.9 mg, 0.4 mmol) and the haloarene in dry THF 
(4 mL) and stirred for 15 h. The solvent was removed, the residue portioned 
between CH2Cl2 and water (30 mL each) and the aqueous layer extracted with 
CH2Cl2 (3*20 mL). The combined organic layers were washed with 50 mL brine, 
dried (MgSO4), filtered and concentrated. The crude product was purified by 
column chromatography.  

Desilylation of ynamides with TBAF to a solution of the silylated ynamide 
(1.0 mmol) in THF (20 mL) and two drops of water was added dropwise at 0˚C 
TBAF in THF (1M, 1.2 mL, 1.2 mmol). The solution was stirred at 0˚C. After 
completion of the reaction (TLC), EtOAc (20 mL) and brine (20 mL) were add-
ed. The aqueous layer was extracted twice with 20 mL of EtOAc. The combined 
organic layers were dried (MgSO4), filtered and concentrated. The crude prod-
uct was purified by a column chromatography. 

N-(2-(Prop-1-ynyl)phenyl)-N-tosylformamide Under N2 in a Schlenk tube, 
4-methyl-N-(2(prop-1-inyl)phenyl)benzenesulfonamide (1.54 g, 5.4 mmol), for-
mic acid (549 mg, 0.45 mL) and N,N-dimethylaminopyridine (7.3 mg, 0.11 
mmol) in 10 mL toluene was stirred at 0˚C and N,N’-dicyclohexylcarbodiimide 
(DCC) (2.80 g, 13.6 mmol) was added. After 24 h at 25˚C, filtration through ce-
lite and chromatography (SiO2; petroleum ether: ethyl acetate = 2:1, Rf: 0.49) 
yielded 1.34 g (82%) of a colorless solid with m.p. = 103˚C. 1H-NMR (300 MHz, 
CDCl3): δ (ppm) = 1.69 (s, 3H’), 2.41 (s, 3H); 7.19 (t, 1 H, J = 5.2 Hz); 7.37 - 7.23 
(m, 5H); 7.59 (d, 2H, J = 6.0 Hz); 9.23 (s, 1H); 13C-NMR (75 MHz, CDCl3): δ 
(ppm) = 4.35, 21.68, 75.20, 128.33, 128.45, 129.71, 129.77, 130.85, 132.45, 133.16, 
134.95, 145.36, 160.31; IR (ATR): ν�  [cm−1] = 3263, 2917, 2091, 1707, 1595, 
1595, 1485, 1364, 1170, 1080, 992, 812, 757; FD-MS: m/z (%) = 313.3 (100) [M+].  

N-(2,2-Dichlorovinyl)-4-methyl-N-(2-(prop-1-ynyl)phenyl)benzenesulfo
namide Tetrachloromethane (0.35 mL, 3.2 mmol) was added to a solution of 
N-(2-(prop-1-ynyl)phenyl)-N-tosylformamide (100 mg, 0.32 mmol) and tri-
phenylphosphine (250 mg, 0.94 mmol) in dry toluene (1.5 mL). After 24 h at 
110˚C, the solvent was removed and the residue purified via chromatography 
(SiO2; petroleum ether: ethyl acetate = 4:1, Rf: 0.39) to yield 108 mg (89%) of a 
yellowish oil. 1H-NMR (300 MHz, CDCl3): δ (ppm) = 1.74 (s, 3H), 2.41 (s, 3H), 
7.02 (s, 1H), 7.15 (d, 1H, J = 7.8 Hz), 7.32 - 7.20 (m, 4H, 7.43 (d, 1H, J = 7.7 Hz); 
7.51 (d, 2H, J = 8.3 Hz); 13C-NMR (100 MHz, CDCl3): δ (ppm) = 21.60, 29.68, 
75.98, 91.96, 113.21, 126.07, 126.72, 127.90, 128.03, 128.34, 129.54, 131.92, 133.01, 
135.29, 144.33;  IR (ATR): ν�  (cm−1) = 2955, 2920, 2155, 1484, 1362, 1246, 1089, 
1009, 840, 754; FD-MS: m/z (%) = 379.0 (100%, M+). 

N-Ethinyl-4-methyl-N-(2-(prop-1-ynyl)phenyl)benzenesulfonamide 4a To 
N-(2,2-dichlorovinyl)-4-methyl-N-(2-(prop-1-inyl)phenyl)benzenesulfonamide  
(68 mg, 0.18 mmol) in 1 mL dry THF at −78˚C was added butyl lithium (0.16 
mL, 2.5M). Upon warming to −30˚C methanol (50 µL) was added, at 25˚C, pe-
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troleum ether (3 mL) and sat. NaHCO3 were added, the solvent stripped off to 
yield 55 mg (99%) of 4a. Analytical data were identical to the literature. [15a]  

N-(2-(Phenylethinyl)phenyl)-N-tosylformamide Under N2 in a Schlenk tube, 
4-methyl-N-(2(phenylethynyl)phenyl)-benzenesulfonamide (1.81 g, 5.4 mmol), 
formic acid (549 mg, 0.45 mL) and N,N-dimethylaminopyridine (7.3 mg, 0.11 
mmol) in 10 mL toluene were stirred at 0˚C and N,N’-dicyclohexylcarbodiimide 
(2.80 g) was added. After 24 h at 25˚C, filtration through celite and chromato-
graphy (SiO2; petroleum ether: ethyl acetate = 2:1, Rf: 0.44) yielded 1.78 g (90%) 
of a colorless solid, m.p. = 109˚C. 1H-NMR (300 MHz, CDCl3): δ (ppm) = 2.23 
(s, 3H), 7.07 (d, 2H, J = 8.0 Hz), 7.17 - 7.61 (m, 11H), 9.28 (s, 1H); 13C-NMR (75 
MHz, CDCl3): δ (ppm) = 21.55, 75.65, 84.83, 113.78, 124.17, 128.15, 128.68, 
129.17, 129.87, 131.13, 131.50, 131.52, 132.96, 133.01, 134.66, 145.45, 160.29, IR 
(ATR): (cm−1) = 3232, 2988, 1708, 1496, 1364, 1284, 1171, 1122, 1076, 1019, 906, 
865, 756, 667; FD-MS: m/z (%) = 375.3 (100) [M+]. 

N-(2,2-Dichlorovinyl)-4-methyl-N-(2-(phenylethynyl)phenyl)benzenesul
fonamide Tetrachloromethane (0.5 mL, 3.2 mmol) was added to a solution of 
N-(2-(phenylethynyl)phenyl)-N-tosylformamide (395 mg, 5 mmol) and triphe-
nylphosphine (395 mg, 1.51 mmol) in dry toluene (3 mL). After 24 h at 110˚C, 
the solvent was removed and the residue purified via chromatography (SiO2; pe-
troleum ether: ethyl acetate = 4:1, Rf: 0.34) to yield 95 mg (45 %) of a yellowish 
oil. 1H-NMR (300 MHz, CDCl3): δ (ppm) = 2.24 (s, 3H), 7.07 (d, 2H, J = 8.6 Hz), 
7.15 (s, 1H), 7.25 (d, 2H, J = 8.4 Hz), 7.35 – 7.31 (m, 4H), 7.45 - 7.39 (m, 2H), 
7.50 (d, 2H, J = 8.3 Hz, 7.57 (dd, 1H, J = 7.8, 1.4 Hz); 13C-NMR (75 MHz, 
CDCl3): δ (ppm) = 21.47, 85.37, 94.84, 115.03, 122.22, 122.50, 126.16, 127.72, 
128.22, 128.32, 128.64, 128.79, 129.78, 131.30, 132.2, 132.98, 134.72, 138.66, 
144.50; IR (ATR): ν�  (cm−1) = 3062, 2885, 2201, 1493, 1443, 1366, 1170, 1088, 
912, 754; FD-MS: m/z (%) = 441.2 (100) [M+]. 

N-Ethynyl-4-methyl-N-(2-(phenylethynyl)phenyl)benzenesulfonamide4e 
To N-(2,2-Dichlorovinyl)-4-methyl-N-(2-(phenylethynyl)phenyl)benzenesulfon-
amide (80 mg, 0.18 mmol) in 1 mL dry THF at −78˚C was added butyl lithium 
(0.16 mL, 2.5M). Upon warming to −30˚C, methanol (50 µL) was added, at 
25˚C, petroleum ether (3 mL) and sat. NaHCO3 were added, the solvent stripped 
off to yield 62 mg (92%) of 4a. Analytical data were identical to the literature 
[14f].  

N-(2-(Biphenylyl-4-ethynyl)phenyl)-N-ethynyl-4-methylbenzenesulfon-
amide4f: Pd(PPh3)2Cl2 (5 mol-%) and CuI (10 mol-%) were dissolved in 
THF/NEt3 (1:2, v:v) under N2 in a Schlenk tube, N-(2-iodophenyl)-4-methyl- 
N-(trimethylsilylethynyl)benzolsulfonamide (265 mg, 0.57 mmol) added and a 
solution of 4-biphenylylacetylene (131 mg, 0.734 mmol) in THF added dropwise. 
After stirring for 24 h at 80˚C, the solvent was evaporated and the crude product 
4f-TMS was directly desilylated to yield 154 mg (0.35 mmol, 63%) 4f after chro-
matography. Rf = 0.28 (PE/EtOAc 40/10). 1H NMR (300 MHz, CDCl3, 25˚C): δ = 
7.73 (d, J = 8.2 Hz, 2H, 2-H, 6-H Ts), 7.62 (d, J = 7.5 Hz, 2H), 7.37 - 7.57 (m, 
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11H), 7.13 (d, J = 8.1 Hz, 2H), 2.95 (s, CCH), 2.20 (s, 3H, CH3 Ts). 13C NMR (75 
MHz, CDCl3, 25˚C): δ = 144.9 (C-4 Ts), 141.1 (Cq), 140.4 (Cq), 138.2 (Cq), 134.6 
(Cq), 134.5 (Cq), 133.3 (CH), 132.0 (CH), 130.6 (CH), 129.9 (CH), 129.6 (CH), 
129.2 (CH), 129.0 (CH), 128.4 (CH), 127.7 (CH), 127.0 (CH), 124.4 (CH), 122.8 
(Cq), 121.7 (Cq), 95.3 (Cq), 88.4 (Cq), 85.5 (Cq), 59.1 (Cq), 21.5 (CH3). IR (neat, 
ATR) ν�  = 3297, 3034, 2130, 1489, 1392, 1169, 1089, 912, 763 cm−1. FD-MS: m/z 
(%) = 447.3 (100) [M+], 894.4 (22) [M2+]. 

2-(2-Trimethylsilylethynyl)-N-(2-(4-methoxyphenyl)ethynyl)-N-tosyl-
benzenamine4h-TMS: Prepared according to the Negishi procedure from 4d  
and 4-iodoanisole, yield = 83%, yellow oil, purified by column chromatography 
(SiO2, PE/EtOAc 95/5) Rf = 0.33 (PE/EtOAc 90/10). 1H NMR (400 MHz, CDCl3, 
25˚C): δ = 7.75 (d, 3J = 8.3 Hz, 2H, 2-H, 6-H, Ts), 7.52 (d, 3J = 5.7 Hz, 1H, 3-H), 
7.32 (m, 7H, 3-H, 5-H Ts, 4-H, 5-H, 6-H An, 2-H, 6-H Ph), 6.80 (d, 3J = 8.9 Hz, 
2H, 3-H, 5-H Ph), 3.78 (s, 3H, OCH3), 2.45 (s, 3H, CH3 Ts), 0.14 (9H, CH3 
TMS). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 159.2 (Cq, C-4 Ph), 144.6 (Cq, 
C-4 Ts), 139.5 (Cq, C-1 An), 134.6 (Cq, C-1 Ts), 134.0 (CH, C-3), 133.0 (CH, 
C-2, C-6 Ph), 129.5 (CH, C-3, C-5 Ts), 129.1, 128.9, 128.6 (CH, C-4, C-5, C-6), 
128.4 (CH, C-2, C-6 Ts), 122.8 (Cq, C-2), 114.9 (Cq, C-1 Ph), 113.7 (CH, C-3, 
C-5 Ph), 101.1 (Cq, C-C-TMS), 100.0 (Cq, C-C-TMS), 81.0 (Cq, C-C-Ph), 70.0 
(Cq, C-C-Ph), 55.2 (OCH3), 21.6 (CH3, Ts), -0.4 (CH3, TMS). IR (neat, ATR) ν�  
= 2958, 2837, 2238, 2157, 1600, 1567, 1508, 1486, 1444, 1366, 1291, 1245, 1173, 
1089, 1032, 923, 830, 764, 706, 658 cm−1. FD-MS: m/z (%) = 473.4 (100) [M]+. 

N-(2-Ethynylphenyl)-N-((4-methoxyphenyl)ethynyl)-4-methylbenzene-
sulfonamide4h: According to the general procedure for desilylation of  
TMS-diynes, 440 mg, 0.95 mmol) of 4h-TMS gave 310 mg (0.80 mmol, 86 %) of 
6h as colorless solid. Rf= 0.39 (PE/EtOAc 40/10). 1H NMR (400 MHz, CDCl3, 
25˚C): δ = 7.71 (d, 3J = 8.1 Hz, 2H, 2-H, 6-H, Ts), 7.49 (d, 3J = 9.3 Hz, 1H, H-6 
An), 7.23 - 7.34 (m, 7H), 6.77 (d, 2H, 3J = 8.7 Hz, 3-H, 5-H Ts), 3.75 (s, 3H, 
OCH3), 3.05 (s, 1H, CCH), 2.42 (s, 3H, CH3 Ts). IR (neat) ν�  = 2958, 2837, 
2234, 2159, 1603, 1569, 1511, 1491, 1447, 1372, 1291, 1249, 1172, 1081, 1032, 
923, 830, 764, 706, 658 cm−1. 

2-(2-Trimethylsilylethynyl)-N-(2-(benzofuran-2-yl)ethynyl)-N-tosyl-
benzenamine4i-TMS: Prepared according to the Negishi procedure from 4d  
and 2-iodobenzofurane [115], yield = 85%, yellow oil, purified by column chro-
matography (SiO2, PE/EtOAc 95/5), Rf = 0.58 (PE/EtOAc, 80/20). 1H NMR (400 
MHz, CDCl3, 25˚C): δ = 7.71 (d, 3J = 8.2 Hz, 2H, 2-H, 6-H Ts), 7.47 (m, 2H, 5-H 
Bf, 3-H An), 7.34 (m, 7H, 3-H, 5-H Ts, 4-H, 5-H, 6-H An, 6-H or 7-H, 8-H Bf), 
7.23 (t, 3J = 6.9 Hz, 1H, 6-H or 7-H Bf), 6.91 (s, 1H, 3-H Bf), 2.46 (s, 3H, CH3 
Ts), 0.19 (s, 9H, TMS). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 154.9 (Cq, C-9 
Bf), 145.0 (Cq, C-4 Ts), 138.7, 138.6 (Cq, C-1 An and C-2 Bf), 134.6 (C, C-1 Ts), 
134.5 (CH, C-3), 130.2 (CH, C-3, C-5 Ts), 129.6 (CH, C-2, C-6 Ts), 129.5, 128.9 
(CH, C-4, C-5, C-6 sup.), 127.7 (Cq, C-4 Bf), 125.9 (CH, C-7 Bf), 123.4 (CH, C-6 
Bf), 122.9 (Cq, C-2), 121.5 (CH, C-5 Bf), 113.0 (CH, C-8 Bf), 111.5 (CH, C-3Bf), 
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102.3 (Cq, C-C-TMS), 99.9 (Cq, C-C-TMS), 87.8 (Cq, C-C-Bf), 62.1 (Cq, 
C-C-Bf), 22.25 (CH3, Ts), 0.1 (CH3, TMS). IR (neat) ν�  = 3070, 2960, 2227, 
2160, 1601, 1478, 1442, 1372, 1247, 1173, 1092, 844, 812, 753 cm−1. FD-MS: m/z 
(%) = 482.8 (100) [M]+. 

2-Ethynyl-N-(2-(benzofuran-2-yl)ethynyl)-N-tosylbenzenamine4i Desily-
lation according to the general procedure from 4i-TMS, yield= 79%, white solid, 
m.p.: 127˚C, purified by column chromatography (SiO2, PE/EtOAc 90/10) Rf = 
0.28. 1H NMR (400 MHz, CDCl3, 25˚C): δ = 7.76 (d, 3J = 8.3 Hz, 2H, 2-H, 6-H 
Ts), 7.54 (m, 3H), 7.36 (m, 7H), 7.23 (t, 3J = 7.2 Hz, 1H, Bf), 6.94 (s, 1H, Bf), 3.10 
(s, 1H, CCH), 2.48 (s, 3H, CH3 Ts). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 154.9 
(Cq, Bf), 145.3 (Cq, C-4 Ts), 139.2 (Cq, C-1 An), 138.6 (C-2, Bf), 134.2 (CH, C-3 
An), 134.0 (C, C-1 Ts), 129.8 (CH, C-3, C-5 Ts), 129.7, 129.3, 129.2 (CH, C-4, 
C-5, C-6 An), 128.6 (CH, C-2, C-6 Ts), 127.7 (Cq, Bf), 125.6 (CH, Bf), 123.1 
(CH, Bf), 122.2 (Cq, C-2 An), 121.1 (CH, Bf), 113.0 (CH, Bf), 111.2 (CH, Bf), 
87.6 (Cq, N-CC), 83.4 (CH, CCH), 78.5 (Cq, CCH), 61.6 (Cq, N-CC), 21.77 (CH3 
Ts). IR (neat) ν�  = 3262, 2233, 1600, 1474, 1447, 1366, 1258, 1170, 1062, 923, 
818, 754, 689 cm−1. FD-MS: m/z (%) = 411.1 (100) [M]+.  

General procedure for [2 + 2 + 2]-cycloaddition of diynes with CS2 
A degassed solution of BINAP (15.6 mg, 0.025 mmol, 10 mol%) and 

[RhCl(C8H14)2]2 (6.1 mg, 0.0087 mmol, 3.5 mol%) in CH2Cl2 (3.0 mL) was stirred 
in a Schlenk tube at 25˚C for 5 min under Ar and connected to a H2 reservoir for 
30 min. The solvent was evaporated and the residue dissolved in dichloroethane 
(3.0 mL). A solution of the diyne (0.25 mmol) and CS2 (150 μL, 2.5 mmol) in 
DCE (7 mL) was added dropwise via syringe and the mixture was stirred at 
80˚C. After completion of the reaction (TLC), the solvent was removed and the 
residue was purified by column chromatography. 

4-Methyl-9-tosylthiopyrano[3,4-b]indole-3(9H)-thione7a: According to the 
general procedure 77.3 mg (0.25 mmol) of 4a gave 91.6 mg (0.237 mmol, 95%) 
of 7a as a violet solid with m. p. = 175˚C - 176˚C. Rf = 0.46 (Al2O3, PE/EtOAc 
90/10). 1H NMR (400 MHz, CDCl3): δ = 8.55 (s, 1H, 1-H), 8.28 (d, 3J = 8.3 Hz, 
1H, 8-H), 8.14 (d, 3J = 8.0, 1H, 5-H), 7.67 (“t”, 3J = 7.9 Hz, 1H, 7-H), 7.59 (d, 3J = 
8.5 Hz, 2H, 2-H, 6-H Ts), 7.42 (“t”, 3J = 7.5 Hz, 1H, 6-H), 7.18 (d, 3J = 8.4 Hz, 
2H, 3-H, 5-H Ts), 2.94 (s, 3H, 4-CH3 Ts), 2.33 (s, 3H, CH3 Ts). 13C NMR (100 
MHz, CDCl3, 25˚C): δ = 197.6 (Cq, C=S), 146.0 (Cq, C-4 Ts), 142.2 (Cq, C-8a), 
141.2 (Cq, C-9a), 134.3 (Cq, C-4), 134.2 (Cq, C-4a), 133.4 (Cq, C-1 Ts), 132.3 
(CH, C-7), 130.1 (CH, C-3, C-5 Ts), 126.7 (CH, C-2, C-6 Ts), 126.6 (CH, C-5), 
125.3 (CH, C-6), 125.3 (Cq, C-4b), 125.0 (CH, C-1), 115.3 (CH, C-8), 21.6 (CH3, 
Ts), 18.4 (4-CH3 Tp). IR (neat, ATR) ν�  = 2925, 1600, 1508, 1456, 1369, 1345, 
1269, 1188, 1155, 1089, 1028, 936, 788, 743, 703, 668 cm−1. FD-MS: m/z (%) = 
385.2 (100.0) [M]+. C19H15NO2S3 (385.52): calcd.: C 59.19, H 3.92, N 3.63, S 
24.95; found: C 59.35, H 3.94, N 3.58, S 24.43. UV-Vis (CH2Cl2): λmax,1 = 529 nm, 
ε1 = 3927 cm2/mmol, λmax,2 = 312 nm, ε2 = 19,974 cm2/mmol.  

Cycloaddition of CS2 to 4b (R1 = R2 = H) According to the general proce-
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dure, addition of CS2 to 4b (74.2 mg, 0.25 mmol) gave 15.9 mg (partially dec., 
0.043 mmol, 17%) of 8b as a red solid together with 62.3 mg (partially dec., 0.168 
mmol, 67%) of 7b as a violet solid.  

8b: 5-Tosyl-thiopyrano[4,3-b]indole-3(5H)-thione, red solid with m.p.: 
172˚C - 173˚C (dec.) Rf = 0.43 (SiO2, PE/CH2 Cl2/EtOAc 6/3/1). 1H NMR (400 
MHz, CDCl3, 25˚C): δ = 8.58 (s, 1H, 4-H), 8.22 (d, 3J = 8.4 Hz, 1H, 6-H), 8.15 (s, 
1H, 1-H), 7.81 (d, 3J = 8.3 Hz, 2-H, 6-H Ts), 7.68 (d, 3J = 7.7 Hz, 1H, 9-H), 7.54 
(“t”, 3J = 7.5 Hz, 1H, 7-H), 7.36 (“t”, 3J = 7.5 Hz, 1H, 8-H), 7.27 (d, 3J = 8.5 Hz, 
3-H, 5-H Ts), 2.37 (s, 3H, CH3 Ts). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 199.1 
(Cq, C=S), 146.3 (Cq, C-4 Ts), 144.9 (Cq, C-4a), 139.8 (Cq, C-5a), 134.6 (CH, 
C-1), 134.0 (Cq, C-1 Ts), 130.4 (CH, C-7), 130.3 (CH, C-3, C-5 Ts), 127.0 (Cq, 
C-9b), 127.0 (CH, C-2, C-6 Ts), 125.3 (CH, C-8), 123.0 (CH, C-9), 122.9 (Cq, 
C-9a), 120.3 (CH, C-4), 115.3 (CH, C-6), 21.5 (CH3 Ts). IR (neat, ATR) ν�  = 
1586, 1510, 1453, 1402, 1372, 1224, 1170, 1092, 987, 944, 866, 806, 752, 668 cm−1. 
FD-MS: m/z (%) = 371.2 (100) [M]+. HR-MS: [M + H]+ calcd: 372.0181; found 
372.0189. UV-Vis (CH2Cl2): λmax,1 = 474 nm, ε1 = 3562 cm2/mmol, λmax,2 = 378 nm, 
ε2 = 27,770 cm2/mmol.  

7b: 9-Tosyl-thiopyrano[3,4-b]indole-3(5H)-thione Violet solid, Rf = 0.43 
(SiO2, PE/EtOAc 80/20). 1H NMR (300 MHz, CDCl3, 25˚C): δ = 8.49 (s, 1H, 
1-H), 8.16 (d, J = 8.5 Hz, 1H, 8-H), 8.02 (s, 1H, 4-H), 7.80 (d, 1H, J = 7.7 Hz, 
5-H), 7.69 (t, 1H, 7-H), 7.64 (d, 2H, J = 8.4 Hz, 2-H, 6-H Ts), 7.39 (t, J = 7.2 Hz, 
6-H), 7.21 (d, J = 8.1 Hz, 2H, 3-H, 5-H Ts), 2.35 (s, 3H, CH3Ts). 13C NMR (100 
MHz, CDCl3, 25˚C): δ = 197.9 (C=S), 146.3 (C-4 Ts), 142.5 (C-8a), 137.0 (C-4), 
134.4 (C-9a), 133.7 (C-4a), 133.5 (C-1 Ts), 130.9 (C-7), 130.2 (C-3, C-5 Ts), 
127.0 (C-2, C-6 Ts), 126.7 (C-6), 125.6 (C-4b), 122.9 (C-1), 115.5 (C-8), 21.67 
(CH3 Ts). IR (neat, ATR) ν�  = 1589, 1515, 1451, 1372, 1224, 1171, 992, 957, 816, 
767, 668 cm−1. FD-MS: m/z (%) = 371.2 (100) [M+]; UV-Vis (CH2Cl2): λmax,1 = 
535 nm, ε1 = 5678 cm2/mmol, λmax,2 = 316 nm, ε2 = 33456 cm2/mmol. 

Cycloaddition of the diyne 4c (R1 = n-Bu, R2 = H, 84 mg 0.24 mmol) and CS2 
according to the general procedure gave 72.8 mg (0.17 mmol, 71%) of a mixture of 
7c and 8c.  

4-n-Butyl-9-tosyl-thiopyrano[3,4-b]indole-3(9H)-thione7c Violet solid, iso-
lated by column chromatography (Al2O3, PE/EtOAc 90/10), Rf = 0.65 (SiO2, PE/ 
EtOAc 80/20). Decomposition above 110˚C. 1H NMR (400 MHz, CDCl3, 25˚C): 
δ = 8.54 (s, 1H, 1-H), 8.30 (d, 3J = 8.4 Hz, 1H, 8-H), 7.99 (d, 3J = 7.8 Hz, 1H, 
5-H), 7.67 (t, 3J = 8.4 Hz, 1H, 7-H), 7.60 (d, 3J = 8.4 Hz, 2H, 2-H, 6-H Ts), 7.43 (t, 
3J = 8.2 Hz, 1H, 6-H), 7.19 (d, 3J = 8.2 Hz, 2H, 3-H, 5-H Ts), 2.34 (s, 3H, CH3 
Ts), 1.69 (m, 2H, α-CH2), 1.57 (m, 2H, β-CH2), 1.25 (m, 2H, γ-CH2), 1.00 (t, 3J = 
6.9 Hz, 3H, CH3 Bu). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 197.8 (C=S), 146.1 
(C-4), 146.0 (C-4 Ts), 142.3 (C8a), 134.7 (C-9a), 133.8 (C-4a), 133.5 (C-1 Ts), 
132.2 (C-7), 130.1 (C-3, C-5 Ts), 126.7 (C-2, C-6 Ts), 126.2 (C-5), 125.5 (C-6), 
125.0 (C-4b), 124.6 (C-1), 115.5 (C-8), 30.4 (α-CH2 Bu), 27.5 (CH2 Bu), 23.1 
(CH2 Bu), 21.7 (CH3 Ts), 13.9 (CH3 Bu). FD-MS: m/z (%) = 427.1 (100) [M+]. 
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The product 8c was decomposed before all analyses were performed.  
1-n-Butyl-5-tosyl-thiopyrano[4,3-b]indole-3(5H)-thione8c, red solid, de-

composition above 100˚C. Isolated by column chromatography (Al2O3, PE/EtOAc 
90/10), Rf= 0.48 (SiO2, PE/EtOAc 80/20). 1H NMR (400 MHz, CDCl3, 25˚C): δ = 
8.59 (s, 1H, 4-H), 8.32 (d, 3J = 8.4 Hz, 1H, 6-H), 7.80 (d, 3J = 8.6 Hz, 2H, 2-H, 
6-H Ts), 7.73 (d, 3J = 8.0 Hz, 1H, 9-H), 7.54 (t, 3J = 8.4 Hz, 1H, 7-H), 7.39 (m, 
1H, 8-H), 7.27 (d, 3J = 8.4 Hz, 2H, 3-H, 5-H Ts), 3.05 (t, 3J = 7.8 Hz, 2H, α-CH2), 
2.37 (s, 3H, CH3 Ts), 1.74 (m, 2H, β-CH2), 1.50 (m, 2H, γ-CH2), 0.98 (t, 3J = 7.3 
Hz, 3H, CH3 Bu). FD-MS: m/z (%) = 427.3 (100) [M]+. The product 9c was de-
composed before all analyses were performed.  

Cycloaddition of CS2 to4e (R1 = Ph, R2= H, 0.25 mmol) according to the 
general procedure, gave 103 mg (92 %) of a 5 /4 mixture of 7e and 8e. Separation 
by column chromatography (Al2O3, PE/CHCl3/EtOAc 7/2/1). 

4-Phenyl-9-tosyl-thiopyrano[3,4-b]indole-3(9H)-thione7e: violet solid, 
m.p. = 167˚C - 168˚C, Rf = 0.54 (PE/EtOAc 80/20). 1H NMR (400 MHz, CDCl3, 
25˚C): δ = 8.61 (s, 1H, H-1), 8.16 (d, 3J = 8.5 Hz, 1H, H-8), 7.66 (d, 3J = 8.4 Hz, 
2H, 2-H, 6-H Ts), 7.54 (m, 4H, 7-H Bz, 3-H, 5-H Ph), 7.24 (d, 3J = 8.5 Hz, 2H, 
3-H, 5-H Ts), 7.14 (d, 3J = 7.7 Hz, 2H, 2-H, 6-H Ph), 6.94 (“t”, 3J = 8.7 Hz, 1H, 
6-H), 6.11 (d, 3J = 8.2 Hz, 1H, 5-H), 2.38 (s, 3H, CH3 Ts). 13C NMR (100 MHz, 
CDCl3, 25˚C): δ = 197.8 (Cq, C-3), 146.1 (Cq, C-4 Ts), 143.6 (Cq, C-9a), 142.4 
(Cq, C-8a), 136.6 (Cq, C-1 Ph), 134.8 (Cq, C-4), 134.6 (Cq, C-4a), 133.5 (Cq, C-1 
Ts), 132.6 (CH, C-7), 130.1 (CH, C-3, C-5 Ts), 129.8 (CH, C-3, C-5 Ph), 128.8 
(CH, C-4 Ph), 128.5 (CH, C-2, C-6 Ph), 126.7 (CH, C-2, C-6 Ts), 126.6 (CH, 
C-1), 126.2 (CH, C-5), 124.9 (CH, C-6), 124.2 (Cq, C-4b), 114.8 (CH, C-8), 21.6 
(CH3 Ts). IR (neat, ATR): ν�  = 3084, 2988, 1594, 1513, 1447, 1375, 1342, 1282, 
1251, 1167, 1159, 1092, 1041, 953, 899, 839, 809, 749, 695, 665 cm−1. FD-MS: m/z 
(%) = 447.2 (100) [M]+. HR-MS: [M + H]+ calcd.: 448.0494; found 448.0495. 
UV-Vis: (CH2Cl2): λmax,1 = 535 nm, ε1 = 4240 cm2/mmol, λ2 = 313 nm, ε2 = 21,099 
cm2/mmol. 

1-Phenyl-5-tosyl-thiopyrano[4,3-b]indole-3(5H)-thione8e: red solid, m.p. 
= 146˚C - 147˚C, Rf= 0.48 (Al2O3, PE/EtOAc 80/20). 1H NMR (400 MHz, CDCl3, 
25˚C): δ = 8.66 (s, 1H, 4-H), 8.26 (d, 3J = 8.4 Hz, 1H, 6-H), 7.86 (d, 3J = 8.4 Hz, 
2H, 2-H, 6-H Ts), 7.56 (m, 3H, 3-H, 4-H, 5-H Ph), 7.42 (m, 3H, 7-H In, 2-H, 
6-H Ph), 7.31 (d, 3J = 8.0 Hz, 2H, 3-H, 5-H Ts), 7.01 (t, 3J = 8.0 Hz, 1H, 8-H), 
6.78 (d, 3J = 8.0 Hz, 1H, 9-H), 2.40 (s, 3H, CH3 Ts). 13C NMR (100 MHz, CDCl3, 
25˚C): δ = 198.9 (Cq, C=S), 154.5 Cq, C-1), 146.3 (Cq, C-4 Ts), 145.9 (Cq, C-4a), 
139.9 (Cq, C-5a), 134.0 (C, C-1 Ts), 133.2 (Cq, C-1 Ph), 130.8 (CH, C-4 Ph), 
130.3 (CH, C-3, C-5 Ts), 129.93 (CH, C-7), 129.5 (CH, C-3, C-5 Ph), 128.5 (CH, 
C-2, C-6 Ph), 127.0 (CH, C-2, C-6 Ts), 124.8 (CH, C-8), 123.9 (Cq, C-9b), 122.8 
(Cq, C-9a), 122.38 (CH, C-9), 121.4 (CH, C-4), 115.0 (CH, C-6), 21.7 (CH3 Ts). 
IR (neat, ATR): ν�  = 2973, 1583, 1519, 1456, 1363, 1176, 1155, 1086, 984, 942, 
809, 746, 695, 671 cm−1. FD-MS: m/z (%) = 447.2 (100) [M]+. HR-MS: [M + H]+ 
calcd.: 448.0494; found 448.0513. UV-Vis: (CH2Cl2): λmax,1 = 497 nm, ε1 = 46,310 
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cm2/mmol, λmax,2 = 378 nm, ε2 = 23,841 cm2/mmol.  
Cycloaddition of diyne4f (R1 = 4-biphenylyl, R2 = H) (134 mg, 0.3 mmol and 

CS2 according to the general procedure, gave 50 mg (34%) of a 2/1 mixture of 
4-(biphenyl-4-yl)-9-tosylthiopyrano[3,4-b]indol-3(9H)-thione 7f and 1-(biphenyl4- 
yl)-5-tosylthiopyrano[4,3-b]indol-3(5H)-thione 8f. The violet isomer 7f decom-
posed very fast.  

1-(Biphenyl-4-yl)-5-tosylthiopyrano[4,3-b]indol-3(5H)-thione 8f: Rf: 0.43 
(petroleum ether/ethyl acetate/dichloromethane = 16/2/1). 1H NMR (400 MHz, 
CDCl3, 25˚C): δ = 8.67 (s, 1H, H-4), 8.27 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 8.4 Hz, 
2H, Ts), 7.78 (d, J = 7.2 Hz, 2H, Bp), 7.69 (d, J = 7.1 Hz, 2 H Bp), 7.42 - 7.53 (m, 
6 H, Bp), 7.31 (d, J = 8.4 Hz, 2 H, Ts), 7.04 (t, J = 7.2 Hz, 1 H), 6.98 (t, J = 7.2 Hz, 
1 Bp), 2.40 (s, 3H, CH3 Ts). 13C NMR (100 MHz, CDCl3, 25˚C): δ = 205.0 (C=S), 
146.4 (C-4, C-1'Bp), 146.1 (C-4 Ts), 140.1 (C-9b), 139.5 (C-5a), 134.2 (C-1 Ts), 
130.4 (C-7), 130.0 (C1), 129.1(C-3, C-5 Bp), 128.4 (C-3, C-5 Ts, C-4'Bp), 128.1 
(C-2, C-6, C-3', C-5' Bp), 127.2 (C-2, C-6 Ts), 124.8 (C-8), 124.0 (C-9), 123.1 
(C-4’ Bp), 122.5 (C9a), 121.5 (C-4), 115.1 (C-6), 21.8 (CH3 Ts), one signal miss-
ing due to superposition. IR (neat, ATR) ν�  = 3012, 1598, 1505, 1453, 1346, 1172, 
1157, 1045, 952, 899, 767 cm−1. FD-MS: m/z (%) = 523.3 (100) [M+]. The product 
7f decomposed before all analyses were performed. 

Cycloaddition of CS2 to 4g (R1 = H, R2 = phenyl, 0.25 mmol) according to 
the general procedure, catalyst: 2.5 mol-% [RhCl(COD)]2, 5 mol-% 2,2'BINAP 
(11.2 mg, 0.018 mmol). Purification by column chromatography Rf: 0.46 (Al2O3, 
petroleum ether/ethyl acetate/chloroform = 8:1:1) gave 76 mg (68%) 4-phenyl- 
9-tosyl-thiopyrano[3,4-b]indole-3(9H)-thione as violet solid with m.p. = 175˚C 
- 176˚C. 1H NMR (CDCl3) δ ppm: 8.08 (d, J = 8.2 Hz, 1H), 7.75 (m, 2H), 7.70 (s, 
1H), 7.63 (m, 2H), 7.54 (m, 3H), 7.37 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 8.3 Hz), 6.97 
(d, J = 8.3 Hz, 2H), 2.26 (s, 3H); 13C NMR (CDCl3) δ ppm: 201.0 (Cq), 149.8 
(Cq), 145.4 (Cq), 144.8 (Cq), 141.6 (Cq), 135.7 (Cq), 133.6 (Cq), 132.9 (CH), 
131.2 (Cq), 130.5 (CH), 129.3 (CH), 129.1 (CH), 128.3 (CH), 127.6 (CH), 127.2 
(Cq), 127.1 (CH), 127.0 (CH), 122.4 (CH), 120.1 (CH), 21.6 (CH3); IR (neat, 
ATR) ν�  = 3042, 1600, 1516, 1486, 1453, 1372, 1207, 1167, 1110, 1047, 905, 818, 
773, 662 cm−1; FD-MS: m/z (%) = 447.3 (100) [M+], 448.3 (38), 449.3 (7), 450.3 
(3); UV-Vis (CH2Cl2): λmax1 = 527 nm, ε1 = 4895 cm2/mmol, λmax2 = 322 nm, ε2 = 
22013 cm2/mmol.  

Cycloaddition of CS2 to 4h (R1 = H, R2 = 4-anisyl, 0.3 mmol) according to 
the general procedure, catalyst: 3 mol-% [RhCl(COD)]2 (6.5 mg, 0.009 mmol), 6 
mol-% 2,2'BINAP (11.2 mg, 0.018 mmol). Purification by column chromato-
graphy Rf: 0.22 (petroleum ether/ethyl acetate/DCM = 8:1:1) gave 51 mg (36%). 
1-(4-Methoxyphenyl)-9-tosylthiopyrano[3,4-b]indol-3(9H)thione7h. the  
compound decomposes before melting. 1H-NMR (400 MHz, CDCl3): δ (ppm) = 
2.26 (s, 3H), 3.90 (s, 3H), 6.97 (d, 2H, J = 8.1 Hz), 7.05 (d, 4H), 7.36 (t, 1H, J = 
7.2 Hz), 7.59 - 7.65 (m, 2H), 7.66 (s, 1H, H4); 7.74 (d, 2H, H3‘‘, J = 8.9 Hz), 8.08 
(d, 1H, J = 8.2 Hz); 13C-NMR (100 MHz, CDCl3): δ (ppm) = 21.59, 55.40, 114.63, 
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120.27, 122.40, 126.96, 127.03, 127.23, 127.50, 128.19, 129.93, 131.19, 132.72, 
133.15, 141.97, 144.90, 145.37, 150.36, 161.50, 200.7; IR (CDCl3, ATR): ν�  
(cm−1) = 2897, 1495, 1375, 1187, 1084, 925, 827, 827; FD-MS: m/z (%) = 477.2 
(100) [M+]; UV-Vis (CH2Cl2): λmax1 = 538 nm, ε1 = 5990 cm2/mmol, λmax2 = 378 
nm, ε2 = 40,456 cm2/mmol. 

Cycloaddition of CS2 to6i (R1 = H, R2 = 2-benzofuranyl, 83 mg, 0.2 mmol) 
according to the general procedure, catalyst: [RhCl(COD)]2 3 mol-% (4.3 mg, 
0.006 mmol), 6 mol-% 2,2'BINAP (7.5 mg, 0.012 mmol). Purification by column 
chromatography Rf: 0.25 (petroleum ether/ethyl acetate/DCM = 8:1:1) gave 21 
mg (21%) 1-(Benzofuran-2-yl)-9-tosylthiopyrano[3,4-b]indole-3(9H)thione7i 
together with 7-tosyl-7H-benzofuro[2,3-b]carbazole 10 as by-product, the com-
pound decomposes before melting. 1H-NMR: (400 MHz, CDCl3): δ (ppm) = 2.27 
(s, 3H), 7.00 (d, 2H, J = 8.0 Hz), 7.17 (d, 2H, J = 8.4 Hz), 7.29 - 7.37 (m, 2H), 
7.41 - 7.47 (m, 1H), 7.51 (s, 1H), 7.57 - 7.65 (m, 4H), 7.71 (d, 1H, J = 7.8 Hz), 
8.08 (d, 1H, J = 8.4 Hz); 13C-NMR (100 MHz, CDCl3): δ (ppm) = 21.36, 110.33, 
111.67, 119.72, 122.05, 122.20, 123.61, 126.71, 126.76, 126.82, 127.14, 127.55, 
127.70, 129.12, 131.22, 132.62, 133.02, 136.41, 141.14, 144.72, 145.24, 148.59, 
155.24, 199.59; IR (ATR): ν�  (cm−1) = 2892, 1608, 1537, 1512, 1368, 1177, 1109, 
1046, 971, 890, 812, 755; FD-MS: m/z (%) = 487.2 (100) [M+]; UV-Vis (CH2Cl2): 
λmax1 = 547 nm, ε1 = 5358 cm2/mmol, λmax2 = 391 nm, ε2 = 33476 cm2/mmol.  

7-Tosyl-7H-benzofuro[2,3-b]carbazole9 Rf: 0.30 (petroleum ether/ethyl 
acetate/DCM = 8:1:1); 1H-NMR (300 MHz, CDCl3): δ (ppm) = 2.23 (s, 3H), 7.07 
(d, 2H, J = 8.5 Hz), 7.33 - 7.52 (m, 4H); 7.60 (d, 1H, J = 8.2 Hz), 7.72 (d, 2H, J = 
8.4 Hz), 7.98 (t, 2H), 8.35 (d, 2H), 8.54 (s, 1H); IR (CDCl3, ATR): ν�  (cm−1) = 
3279, 1489, 1370, 1170, 1125, 1124, 998, 809, 741; FD-MS: m/z (%) = 411.3 (100) 
[M+]. 
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