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Abstract 
In this work we synthesized new derivatives from Phenyl Hydrazine and se-
ries of different Aldehydes (derivatives of benzylidenes). The synthesized 
compounds contain different aromatic Aldehydes which attached by Benzene 
ring via Hydrazine moiety in glacial acetic acid. These derivatives were cha-
racterized by TLC, melting points, Infrared Red, Proton Nuclear Magnetic 
Resonance, Carbon Thirteen Nuclear Magnetic Resonance and Mass Spec-
troscopy. Finally, these synthesized derivatives were tested for antiprolifera-
tive activity against multiple normal and cancerous cell lines, HepG2 (Liver 
cancer) and MCF-7 (Breast cancer) cell lines were used for cytotoxic assay. 
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1. Introduction 

Cancer is a public health menace. The disease is of a great concern to both devel-
oped and developing countries due to its high morbidity and mortality. In many 
countries, it has become second largest killer after cardiovascular disease [1]. In 
2012, there were 14 million new cases and 8.2 million deaths [1]. Among men, lung 
cancer was the most predominant, while among women, it was breast cancer. It was 
reported that there were 24 million cancer cases annually and 14.6 million annual 
deaths by the end of 2015 [2]. These troubling figures compel policy makers and the 
researchers to combat this disease. Cancer is a collection of different life-threatening 
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diseases characterized by uncontrolled growth of cells leading to invasion of sur-
rounding tissue and often spreading to other parts of the body [3] [4]. Searching for 
new anticancer agents having heterocyclic nucleus continues worldwide at various 
laboratories [5] [6] [7]. It was reported that some aromatic compounds have dem-
onstrated anticancer activities, but their mechanism of action is not established. For 
example, the anticancer activity of these compounds may be due to their intercalat-
ing properties or covalent binding abilities to DNA [8]. In addition, cell membrane 
interaction of these compounds is also proposed as their mechanism of actions [9]. 
In this work, organic compounds using Phenyl hydrazine and series of aromatic 
aldehydes are synthesized and tested as anticancer drugs, which have benzene ring 
attached to five or six membered rings (Benzimidazole) or (Phthalazine, Quinazo-
line, Quinoxalines). We aimed the synthesis of compounds formed of benzene ring 
attached by Hydrazine moiety which is two nitrogen atoms but not fused in the ring 
as Phthalazines, Quinazolines, Quinoxalines or Benzimidazoles [10]-[34]. These 
new compounds have two nitrogen atoms in side chain as a bridge between ben-
zene ring and aromatic aldehydes. 

2. Materials 
2.1. Reagents 

All solvents and reagents were obtained from commercial sources and were used 
without further purification except Glacial Acetic acid and Petroleum ether (PE). 
Phenyl Hydrazine was purchased from Sigma Aldrich (Cairo, Egypt). Series of 
Aromatic Aldehydes were acquired from Sigma Aldrich (Cairo, Egypt). Absolute 
Ethanol, Ehanol 95%, Glacial Acetic Acid, Ethyl Acetate, Petroleum Ether and 
Chloroform were purchased from Piochem (Cairo, Egypt). Distilled water was 
used for the experiments. 

2.2. Instruments 

Progress of chemical reactions was observed using TLC (Merck, silica gel plates 
60 F254) and visualized using a UV-Vis spectrometer at 254 nm. Melting points 
were determined by Mel-Temp apparatus. NMR spectra were performed in 
Chloroform (7.26 ppm), with trimethyl silane as an internal standard, using 
Bruker Avance 500 spectrometer at ambient temperature, at drug discovery unit, 
Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt). All chemical 
shifts were expressed in parts per million (δ), and coupling constants (J) in Hz. 
FTIR spectra were recorded using KBr pellets on a model 883 double beam 
infrared spectrophotometer Bruker in 200 - 4000 cm−1, at drug discovery unit, 
Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt). MS spectra 
were recorded using a Bruker Esquire 2000 by APC or ES ionization, at drug 
discovery unit, Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt). 

2.3. Cell Culture: HepG2, MCF-7 

Cell line was obtained from Nawah Scientific Inc. (Mokatam, Cairo, Egypt). 
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Cells were maintained in DMEM media supplemented with 100 mg/mL of 
streptomycin, 100 units/mL of penicillin and 10% of heat-inactivated fetal bo-
vine serum in humidified, 5% (v/v) CO2 atmosphere at 37˚C [35] [36]. 

2.4. Cytotoxicity Assay: HepG2, MCF-7 

Cell viability was assessed by SRB assay. Aliquots of 100 μL cell suspension (5 × 103 
cells) were in 96-well plates and incubated in complete media for 24 h. Cells were 
treated with another aliquot of 100 μL media containing drugs at various concen-
trations. After 72 h of drug exposure, cells were fixed by replacing media with 150 
μL of 10% TCA and incubated at 4˚C for 1 h. The TCA solution was removed, and 
the cells were washed 5 times with distilled water. Aliquots of 70 μL SRB solution 
(0.4% w/v) were added and incubated in a dark place at room temperature for 10 
min. Plates were washed 3 times with 1% acetic acid and allowed to air-dry over-
night. Then, 150 μL of TRIS (10 mM) was added to dissolve protein-bound SRB 
stain; the absorbance was measured at 540 nm using a BMG LABTECH®- 
FLUOstar Omega microplate reader (Ortenberg, Germany) [35] [36]. 

3. Chemistry and Scheme 
3.1. Scheme 

3.2. Procedure and Synthesis of Compounds 3-13 

Equimolar mixture of Phenyl hydrazine and series of Aromatic Aldehydes were 
stirred together in refluxing glacial acetic acid (Figure 1). TLC was made by 2:1 
Petroleum Ether: Ethyl Acetate system. Precipitate was obtained from organic 
layer then water was added and more precipitate was retrieved. Product was pu-
rified by crystallization in Absolute Ethanol. 
 

 
Figure 1. General scheme for compounds (3-13): (i) Series of Aromatic Aldehydes, Ref-
luxing Glacial Acetic Acid, 135˚C, 1 - 16 Hrs. 
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3.2.1. Compound 3: (E)-1-benzylidene-2-phenylhydrazine 
Yield 70%. m.p = 154˚C - 156˚C. IR: 688.75, 747.51 cm−1 (aromatic, bending), 
880.40 cm−1 (N-H, overtone), 1064.45 cm−1 (C-N), 1518 cm−1 (N-H, bending), 
1590 cm−1 (C=C, aromatic), 2450 cm−1 (aromatic, overtone), 3090 cm−1 (C-H, 
aromatic) and 3300 cm−1 (N-H, stretching). 1HNMR (400 MHz, CDCl3): δ 6.90 - 
7.50 ppm (m, aromatic protons), 7.65 ppm (s, -CH-) and 10.3 ppm (s, -NH-). 
13CNMR (100 MHz, CDCl3): δ C1 (144.5 ppm), C2 (117 ppm), C3 (114 ppm), C4 
(137 ppm), C5 (114 ppm), C6 (117 ppm), C7 (146 ppm), C1 (147.5 ppm), C2 
(115 ppm), C3 (130 ppm), C4 (125 ppm), C5 (130 ppm) and C6 (115 ppm). 

3.2.2. Compound 4: (E)-1-(4-Methoxybenzylidene)-2-Phenylhydrazine 
Yield 82.5%. m.p = 128˚C - 130˚C. 1HNMR (400 MHz, CDCl3): δ 3.86 ppm 
(s,-CH3-), 6.85 - 7.35 ppm (m, aromatic protons), 7.65 ppm (s,-CH-) and 9.9 
ppm (s,-NH-). 13CNMR (100 MHz, CDCl3): δ C1 (54.3 ppm), C2 (158.9 ppm), 
C3 (113.6 ppm), C4 (129.8 ppm), C5 (124.8 ppm), C6 (129.8), C7 (113.6 ppm), 
C8 (143.8 ppm), C1 (145.2 ppm), C2 (112.2 ppm), C3 (129.5 ppm), C4 (128.8 
ppm), C5 (129.5 ppm) and C6 (112.2 ppm). 

3.2.3. Compound 5: (E)-1-(2-Chlorobenzylidene)-2-Phenylhydrazine 
Yield 73%. m.p = 129˚C - 131˚C. 1HNMR (400 MHz, CDCl3): δ 6.75 - 7.75 ppm 
(m, aromatic protons), 7.85 ppm (s, -CH-) and 10.5 ppm (s, -NH-). MS: m/z: 
230.06 (100.0%), (M + 1) 231.05 (87.9%), (M + 2) 229.05 (12.1%). 

3.2.4. Compound 6: 4-((2-Phenylhydrazono)methyl)phenol 
Yield 86%. m.p = 178˚C - 181˚C. IR: 690.59, 743.83 cm−1 (aromatic, bending), 
884.73 cm−1 (N-H, overtone), 1098.33 cm−1 (C-N), 1504 cm−1 (N-H, bending), 
1596.49 cm−1 (C=C, aromatic), 1700 cm−1 (C=N), 3045 cm−1 (C-H, aromatic), 
3290 cm−1 (N-H, stretching) and 2900 - 3625 cm−1 (OH). 1HNMR (400 MHz, 
CDCl3): δ 6.85 - 7.55 ppm (m, aromatic protons), 7.7 ppm (s, -CH-), 7.85 ppm 
(s, -OH) and 9.88 ppm (s, -NH-). 13CNMR (100 MHz, CDCl3): δ C1 (158.82 
ppm), C2 (117.56 ppm), C3 (130.8 ppm), C4 (125.4 ppm), C5 (130.8 ppm), C6 
(117.56), C7 (140.7 ppm), C1 (146.22 ppm), C2 (113.9 ppm), C3 (129.5 ppm), 
C4 (122.8 ppm), C5 (129.5 ppm) and C6 (113.9 ppm). 

3.2.5. Compound 7: 4-((2-Phenylhydrazono)methyl) pyridine 
Yield 73%. m.p = 179˚C - 181˚C. 1HNMR (400 MHz, CDCl3): δ 6.90-8.55 ppm (m, 
aromatic protons), 7.60 ppm (s, -CH-) and 8.15 (s, -NH-). 13CNMR (100 MHz, 
CDCl3): δ C2 (149.98 ppm), C3 (120.13 ppm), C4 (143.47 ppm), C5 (120.13 ppm), 
C6 (149.98 ppm), C7 (142.84 ppm), C1 (133.55 ppm), C2 (113.09 ppm), C3 
(129.42 ppm), C4 (121.13 ppm), C5 (129.42 ppm) and C6 (113.09 ppm). 

3.2.6. Compound 8: (E)-1-(4-Nitrobenzylidene)-2-Phenylhydrazine 
Yield 32.2%. m.p = 110˚C - 112˚C. 1HNMR (400 MHz, CDCl3): δ 6.80 - 7.40 ppm (m, 
aromatic protons), 7.55 ppm (s, -CH-) and 9.88 ppm (s, -NH-). 13CNMR (100 MHz, 
CDCl3): δ C1 (147.18 ppm), C2 (119.06 ppm), C3 (119.84 ppm), C4 (144.93 ppm), C5 
(119.84 ppm), C6 (119.06 ppm), C7 (137.29 ppm), C1 (145.85 ppm), C2 (111.66 
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ppm), C3 (129.28 ppm), C4 (112.71 ppm), C5 (129.28 ppm) and C6 (111.66 ppm). 

3.2.7. Compound 9: (E)-1-(furan-2-Ylmethylene)-2-Phenylhydrazine 
Yield 65%. m.p = 113 – 115˚C. IR: 692.95, 743.06 cm−1 (aromatic, bending), 
818.48 cm−1 (N-H, overtone), 1153.57 cm−1 (C-N), 1342.30 cm−1 (C-O), 1602.35 
cm−1 (C=C, aromatic), 1604 cm−1 (N-H, bending), 1655 cm−1 (C=N), 2025 cm−1 
(C-H, aromatic overtone), 3090 cm−1 (C-H, aromatic) and 3317.56 cm−1 (N-H, 
stretching). 1HNMR (400 MHz, CDCl3): δ 6.85 - 7.55 ppm (m, aromatic pro-
tons), 7.60 ppm (s, -CH-) and 9.75 ppm (s, -NH-). 13CNMR (100 MHz, CDCl3): 
δ C2 (144.36 ppm), C3 (112.89 ppm), C4 (120.46 ppm), C5 (150.55 ppm), C6 
(142.72 ppm), C1 (143 ppm), C2 (112.96 ppm), C3 (129.31 ppm), C4 (127.83 
ppm), C5 (129.31 ppm) and C6 (112.96 ppm). 

3.2.8. Compound 10: (E)-1-Phenyl-2-((E)-3-Phenylallylidene) Hydrazine 
Yield 80.5%. m.p = 150˚C - 152˚C. 1HNMR (400 MHz, CDCl3): δ 6.75 ppm 
(t,-CH-), 7.05 ppm (d,-CH-), 6.85 - 7.50 ppm (m, aromatic protons), 7.55 ppm 
(s,-CH-) and 9.75 ppm (s, -NH-). 13CNMR (100 MHz, CDCl3): δ C1 (132.5 
ppm), C2 (130 ppm), C3 (127 ppm), C4 (125 ppm), C5 (127 ppm), C6 (130 
ppm), C7 (134 ppm), C8 (123 ppm), C9 (140 ppm), C1 (145 ppm), C2 (118 
ppm), C3 (129 ppm), C4 (122 ppm), C5 (129 ppm) and C6 (118 ppm). 

3.2.9. Compound 11: (E)-1-(4-Chlorobenzylidene)-2-Phenylhydrazine 
Yield 80.1%. m.p = 119˚C - 121˚C. IR: 691.09, 746.28 cm−1 (mono-sub.), 819.32 
cm−1 (para-di-sub.) (aromatic, bending), 882.19 cm−1 (N-H, overtone), 1133.08 
cm−1 (C-N), 1518.02 cm−1 (N-H, bending), 1598.38 cm−1 (C=C, aromatic), 
1620.02 cm−1 (C=N), 2000 cm−1 (C=C, aromatic), 3000 cm−1 (C-H, aromatic) and 
3310.61 cm−1 (N-H, stretching). 1HNMR (400 MHz, CDCl3): δ 6.95-7.50 ppm 
(m, aromatic protons), 7.90 ppm (s,-CH-) and 10.10 ppm (s, -NH-). 13CNMR 
(100 MHz, CDCl3): δ C1 (134.5 ppm), C2 (130.2 ppm), C3 (132.3 ppm), C4 (136.9 
ppm), C5 (132.3 ppm), C6 (130.2 ppm), C7 (140.5 ppm), C1 (144.8 ppm), C2 (112 
ppm), C3 (129.7 ppm), C4 (122.9 ppm), C5 (129 ppm) and C6 (112 ppm). MS: 
m/z: 230.06 (100.0%), (M + 1) 231.10 (63.7%), (M + 2) 229.05 (36.3%). 

3.2.10. Compound 12: (E)-1-(4-Bromobenzylidene)-2-Phenylhydrazine 
Yield 71%. m.p = 115˚C - 117˚C. 1HNMR (400 MHz, CDCl3): δ 7.0-7.60 ppm 
(m, aromatic protons), 7.98 ppm (s,-CH-) and 9.85 ppm (s, -NH-). 13CNMR 
(100 MHz, CDCl3): δ C1 (129.3 ppm), C2 (133.3 ppm), C3 (131.5 ppm), C4 
(136.7 ppm), C5 (131.5 ppm), C6 (133.3 ppm), C7 (142.8 ppm), C1 (145.6 ppm), 
C2 (113.8 ppm), C3 (128 ppm), C4 (121.4 ppm), C5 (128 ppm) and C6 (113.8 
ppm). MS: m/z: 276 (100.0%), (M + 1) 278.95 (70%), (M + 2) 280.95 (30%). 

3.2.11. Compound 13: 1,4-bis((2-Phenylhydrazono)methyl)benzene 
Yield 62%. m.p = 220˚C - 222˚C. IR: 690.53, 743.71 cm−1 (aromatic, bending), 
885.30 cm−1 (N-H, overtone), 1130.68 cm−1 (C-N), 1522.08 cm−1 (N-H, bending), 
1588.48 cm−1 (C=C, aromatic), 1600.36 cm−1 (C=N), 1925.25 cm−1 (C-H, aromatic 
overtone), 3075.25 cm−1 (C-H, aromatic) and 3299.42 cm−1 (N-H, stretching). 
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1HNMR (400 MHz, CDCl3): δ 6.95 - 7.90 ppm (m, aromatic protons), 7.75 ppm (s, 
-CH-), 10.03 ppm (s,-NH-). 13CNMR (100 MHz, CDCl3): δ C1 (145 ppm), C2 (115 
ppm), C3 (130 ppm), C4 (122 ppm), C5 (130 ppm), C6 (115 ppm), C7 (140 ppm), 
C8 (136 ppm), C9 (129 ppm), C10 (129 ppm), C11 (136 ppm), C12 (129 ppm), C11 
(136 ppm), C12 (129 ppm), C13 (129 ppm), C14 (140 ppm), C15 (145 ppm), C16 
(115 ppm), C17 (130 ppm), C18 (122 ppm), C19 (130 ppm) and C20 (115 ppm). 

4. Results 
4.1. Cytotoxicity Results of MCF-7 

MCF-7 cell line was used to assay the antiproliferative activity of compounds 
(3-8), compound 8 was the most potent in this group with IC50 value of 45.39 µm 
and compound 7 was the lowest in potency with IC50 value of 100.09 µm (Figure 
2). Microscopical examination of the tested compounds in the cell lines at con-
centration of 100 µm used to confirm the calculation of the IC50 (Figure 3). 
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Figure 2. IC50 Values of compounds 3-8 against MCF-7 Cell line [35] [36]. 

 

 
Figure 3. MCF-7 cell lines under microscopic examination of control and compounds (3 
- 8) at 100 μm concentration [35] [36]. 

4.2. Cytotoxicity Results of HepG2 

HepG2 cell line was used to assay the antiproliferative activity of compounds 
(9-13), compound 10 was the most potent in this group with IC50 value of 127.69 
µm and compound 13 was the lowest in potency with IC50 value of 558.66 µm 
(Figure 4). Microscopical examination of the tested compounds in the cell lines 
at concentration of 100 µm used to confirm the calculation of the IC50 (Figure 5). 
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Figure 4. IC50 Values of compounds 9 - 13 against HepG2 Cell line [35] [36]. 
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Figure 5. HepG2 cell lines under microscopic examination of control and compounds 
(9-13) at 100 μm concentration [35] [36]. 

4.3. Summary of the Cytotoxic assay Results of All Compounds 

 

Figure 6. Summary of the cytotoxic assay results of all compounds against standard drugs 
[35] [36]. 

 

 
Figure 7. Summary of the cytotoxic assay results of all compounds against standard drugs [35] [36]. 

5. Conclusion 

From the above findings, we concluded that all tested compounds have potential 
antiproliferative activity on both cell lines which were tested. For MCF-7 cell 
line, compound 8 was found to be the most potent compound in the group 
scoring 45.39 μm IC50, compound 7 was the lowest in potency scoring 100.09 
μm IC50. For HepG2 cell line, compound 10 was found to be the most potent 
compound among the other compounds scoring 127.69 μm IC50 and compound 
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13 was the lowest in potency in this group (Figure 6, Figure 7). 
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