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Abstract 
CDK2 is one of the most important members of Cyclin-dependent kinases. It 
is a critical modulator of various oncogenic signaling pathways, and its activ-
ity is vital for loss of proliferative control during oncogenesis. This work has 
focused on developing a pharmacophore model for CDK2 inhibitors by using 
a dataset of known inhibitors as a pre-filter throughout the virtual screening 
and docking process. Consequently, the best pharmacophore model was 
made of one hydrogen bond acceptor, and two aromatic ring features with a 
high correlation value of 0.906. The validation findings proved out that the 
selected model can be used as a filter to screen new molecules like Enamine 
kinase hinge region directed library against CDK2. As a result, 69 hits were 
subjected to molecular docking studies. Eventually, three compounds (5909, 
701 and 8397) scored good interaction energy values and strong molecular 
interactions. Hence, they were identified as leads for novel CDK2 inhibitors as 
anticancer drugs. 
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1. Introduction 

Cyclin-dependent kinases (CDKs) are members of the serine/threonine kinase 
family and they are key enzymes in cell-cycle progression and transcription. 
These kinases are dependent on cyclin-binding for their activation in order to 
play their biological roles. However, they were shown to be frequently deregu-
lated in different human tumors. Consequently, CDKs have received increasing 
attention as targets for anticancer drugs [1] [2] [3]. One of the members of 
CDKs which play a crucial role in orchestrating cellular transit through the cell 
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cycle is CDK2. Therefore, CDK2 is considered as an important target for new 
therapeutics designed to recover control of the cell cycle [4] [5] [6]. 

Nowadays, there is no doubt that new advances in computer-aided drug de-
signing have reduced the effective cost and time involved in drug discovery. 
However, one of the most important and extensively used tools in drug discov-
ery process is Pharmacophore modeling which employs compound collection to 
generate structural patterns that should be present in active compounds. These 
patterns represent the set of properties and their arrangement in 3D space that an 
active compound must possess for it [7]. Moreover, pharmacophore modelling has 
been routinely used in combination with other molecular modelling techniques. 
Once a pharmacophore model is generated, it can be used for querying the 3D 
chemical database to search for potential ligands, which is so-called “pharma-
cophore-based virtual screening” (VS) [8]. Consequently, it can be a useful filter 
to narrow down the number of compounds to be docked [9] [10]. 

As an example of a typical such use, Nicklaus et al. used a known inhibitor of 
HIV-1 integrase to build a high correlation pharmacophore model, search a da-
tabase, and prioritize 267 possible leads. Sixty of those were tested, and 19 were 
found to inhibit the enzyme [11]. 

Furthermore, in terms of the urgency of developing high correlation pharma-
cophore models for CDK inhibitors using computer-aided methods, two different 
ligand-based pharmacophore models for CDK inhibitors have been independently 
reported depending on different selected training sets (Figure 1). Hecker’s model 
was based on purine derivatives (activities against CDK1, CDK2) [12], Toba’s was 
based on indenopyrazole scaffold (activities against cyclin E/CDK2) [13]. 

In this study, we aim to develop high correlation pharmacophore models for 
CDK2 inhibitors by 3D QSAR pharmacophore generation module within dis-
covery studio (Biovia, 2016, France) using ligands that belong to various classes 
of cyclin CDK2 inhibitors. After validation with test set, prediction method and 
Fischer randomization method, the best pharmacophore model was used as a 
filter to search Enamine database for compounds with similar pharmacophore 
features. Database compounds with best fitness scores were then subjected to 
molecular docking. All in all, this work has used different tools in a synergistic 
way in order to discover new potential molecules as leads against CDK2. 

 

 
Figure 1. The ligand-based pharmacophore models of CDK2 inhibitors reported pre-
viously by (a) Hecker et al. (b) Toba et al. 
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2. Materials and Methods 

2.1. Protein Structure Preparation 

A large number of crystal structures are available on human active and inactive 
CDK2 in complex with small ligands which bind deeply within ATP site. How-
ever, protein complex with triazolopyrimidine inhibitor having the PDB code 
2C6O and 2.1Å resolution was retrieved from the RCSB Protein Data Bank 
(PDB) to be used as a structural template [14]. 

Occasionally, the protein was prepared using general purpose protocol (Dis-
covery Studio-Biovia 2016) by removing water molecules in all the system. Add-
ing bond orders and formal charges to the hetero groups of the protein along 
with addition of hydrogens using charmM forcefield and finally minimizing 
energy using adopted basis Newton-Raphson algorithm (NR). 

2.2. Pharmacophore Model Generation 
2.2.1. Selection of Training Set Compounds 
3D Quantitative Structure-Activity Relationship (3D-QSAR) pharmacophore 
generation is designed to use HypoGen in order to produce predictive pharma-
cophores from a set of ligands with known activity values against a given biolog-
ical target [15]. 

The structures of 51 CDK2 inhibitors were obtained from literature [16]-[25] 
16 diverse compounds (Figure 2) were selected for training data set basing on 
the principles of structural diversity and experimental activity values (IC50) 
spreading over four orders of magnitude (Table 1); Most active (IC50 ≤ 15 nM,  

 
Table 1. Training Set. 

 Pdb Code Ligand IC50 (nM) Structure 

1 2A4L R-roscovitine 400 Purine/Adenin Analogues 
Purine/Adenin Analogues 
Purine/Adenin Analogues 

2 1G5S H717 48 

3 1W0X OLOMOUCINE 7 

4 1E1V NU2058 17000 O6-Substituted Guanines 

5 5D1J BMs-387032/56H 48 Aminothiazole -based Inhibitors 

6 2BHE 5-bromo Indirubin (BRY) 80 Oxindole-based Inhibitors 

7 1E1X NU6027 (NW1) 2200 Aminopyrmidine 
Aminopyrmidine 
Aminopyrmidine 

8 1PXL CK4 900 

9 3S2P PMU 68 

10 2R3Q 5SC 1 Pyrazolopyrmidine 
Pyrazolopyrmidine 11 3WBL PDY 23000 

12 2W05 FRT 1 Imidazolopyrmidine 

13 1PXP CK8 220 Thiopyrmidine 

14 2VU3 AT7519 47 Pyrazolo based inhibitors 
Pyazolo based inhibitors 15 2VTQ LZA 140 

16 2VV9 IM9 17 Triazole Based Inhibitors 
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++++), active (15 < IC50 ≤ 200 nM, +++), moderately active (200 < IC50 ≤ 1000 
nM, ++), very low activity IC50 > 1000 nM, +). Meanwhile, the remaining 35 
molecules with known biological activites, served as the test set (Figure 3). 

2.2.2. Generating and Validating 3d QSAR Pharmacophore Model 
Pharmacophore prediction procedure according to HypoGen algorithm consists 
of three phases: a constructive, a subtractive, and an optimization phase. Occa-
sionally, the idea of constructive phase is to generate pharmacophores that are 
common among the active molecules in the training set. In subtractive phase the 
program removes pharmacophores from the data structure that are not likely to 
be useful. The algorithm of optimization phase applies small perturbations to the 
pharmacophores created in the constructive and subtractive phases in an at-
tempt to improve the score [17]. 

However, predictive pharmacophores are built by the HypoGen algorithm 
according to the selected data (training set of the sixteen selected molecules, 255 
conformers for each compound were generated, only conformations within a 10 
kcal/mol energy range were retained. In addition to that, Hydrogen bond accep-
tor (HBA), hydrogen bond donor (HBD), hydrophobic (HY), Hydrophobic 
aromatic (HA) and ring aromatic (RA) features were used to generate ten phar-
macophore models, Uncertainty value was set to 3 and the minimum inter-feature 
distance was set to 1.5Å, all other parameters used in HypoGen module were 
kept at their default settings [26]. 

On the other hand, the generated pharmacophore models were then evaluated 
in order to choose the best one concerning; correlation coefficient, cost analysis 
and RMSD values. Furthermore, Fischer’s randomization method was per-
formed on the training set compounds in order to validate the statistical robust-
ness of optimized model through verification of the correlation between the 
chemical structures and the biological activity [27]. In this validation process, 
the experimental activities of the training set used in HypoGen were scrambled 
randomly with the same parameters as those used for generating the original 
pharmacophore [28] [29]. A set of 19 random spreadsheets was generated with a 
confidence level of 95%. 

Finally, the selected pharmacophore model was further validated by test set 
method using 35 molecules [30]. The test set validation method was carried out 
using not only ligand pharmacophore mapping protocol which identifies ligands 
that map to a pharmacophore, and aligns them to the query, but also ligand pro-
filer protocol which maps a set of ligands against a set of pharmacophores. 

2.3. Virtual Screening 

The advantage of pharmacophore-based virtual screening in the drug discovery 
process is that most of the compounds with low probability to be active can be 
excluded early from further studies [31]. However, there are multiple pharma-
cophore-based virtual screening algorithms with the same principle: As an input, 
a small molecule database and a pharmacophore model are given, then each of  
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Figure 2. Training set. 
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Figure 3. Test set. 
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the molecules conformations is fitted to the model. As result, a hit list, fitting 
compounds, are given as output [10]. 

Enamine Kinase-Hinge-Region-Directed-library which consists of 18,020 
compounds was screened using Ligand Pharmacophore Mapping protocol and 
screen library protocol in order to search novel compounds which have the gen-
erated pharmacophore. Besides, retrieved compounds were filtered by applying 
Lipinski’s rule of five (i.e., a molecule with a molecular mass less than 500 Da, no 
more than 5 hydrogen bond donors, no more than 10 hydrogen bond acceptors, 
and an octanol-water partition coefficient log P not greater than 5), and further 
sorted on the basis of fit value. 

2.4. Docking 

The selected compounds from Enamine library were docked into the active site 
of the previously prepared CDK2 structure (2C60) with CDOCKER protocol im-
plemented in Biovia Discovery Studio 2016. CDOCKER uses a CHARMm-based 
molecular dynamics (MD) scheme to dock ligands into a rigid receptor binding 
site. First, Random ligand conformations are generated using high-temperature 
MD. Second, the conformations are translated into the binding site. Third, Can-
didate poses are created using random rigid-body rotations followed by simu-
lated annealing. A final minimization is then used to refine the ligand pose [32]. 

Moreover, the performance of the docking method on CDK inhibitors had 
been evaluated before it was carried out. The validation was achieved by mea-
suring the RMSD between the orientation of the ligand existing in the crystal 
complex (2C6O) and its orientation found by our study. The RMSD value must 
be less than 2Å. However, CDOCKER interaction energy predicts the binding 
energies of the protein with retrieved hits [33]. The proximity between the re-
ceptor and hit was studied in terms of the electrostatic, hydrogen bond interac-
tions and hydrophobic interaction. 

3. Results and Discussion 
3.1. Pharmacophore Modeling and Validation 

A set of ten pharmacophore models was generated based on a training set con-
taining 16 structurally diverse compounds (Table 2). 

In the present work, we will discuss the first pharmacophore model (Hypo-
thesis 1) which is basically composed of three features: a hydrogen bond accep-
tor, and two aromatic ring features (Figure 4). 

The first pharmacophore model was considered the best model for so many 
reasons. For instance, in terms of hypothesis significance, what really matters is 
the magnitude of the difference between the cost of any returned hypothesis and 
the cost of the null hypothesis. By the way, cost analysis shows a null cost value 
of 118.527 and Hypo1 cost value of 73.896. So, the cost difference for it was 
44.631. A cost difference value above 40 implies that the pharmacophore model 
correlates the estimated and experimental activity values between (75% - 90%).  
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Table 2. Generated Pharmacophore Models. 

Hypothesis Correlation Factor Total Cost Features 

1 0.906 73.896 HBA-Ring aromatic-Ring aromatic 

2 0.889 75.499 HBA-Hydrophobic aromatic-Ring aromatic 

3 0.883 75.788 HBA-Hydrophobic aromatic-Ring aromatic 

4 0.880 76.123 HBA-Hydrophobic aromatic-Ring aromatic 

5 0.880 76.312 HBA-HBA-Hydrophobic Aromatic 

6 0.878 76.428 HBA-HBA-Hydrophobic Aromatic 

7 0.865 77.654 HBA-Ring Aromatic-Ring aromatic 

8 0.865 77.659 HBA-HBA-Hydrophobic Aromatic 

9 0.863 78.055 HBD-Hydrophobic aromatic-Ring aromatic 

10 0.86 78.080 HBA-Hydrophobic aromatic-Ring aromatic 

 

 
Figure 4. Pharmacophore Model (Hypo1). 

 
Besides, total cost value should be away from the null cost and close to the fixed 
cost. However, among the total cost values of ten pharmacophore models, Hy-
po1 scored the closest value to the fixed cost value (63.187) than other models. 
Therefore, Hypo1 could be considered as a good model. In addition to the cost 
analysis of the models, hypothesis 1 was further assessed based on many factors. 
First, the correlation value of the first pharmacophore model was 0.906. Second, 
estimated activities of all ligands, even the lowest active one, were within one 
order of magnitude of the actual activity (Table 3). Hence, it is considered as an 
acceptable prediction of activity. The predictive ability of Hypo 1 on training set 
compounds is shown in Figure 5. 

Third, the alignment of the training set ligands to the pharmacophore was 
taken into consideration in terms of its ability to explain the activity of the li-
gands. For instance, active ligands should map more features than inactive li-
gands. In other words, a ligand is inactive because it does not have an important 
feature, or the feature is present but cannot be oriented correctly in space. Occa-
sionally, a general guideline for evaluating 3D QSAR pharmacophores is that the 
two most active ligands should map to all features of the pharmacophore.  
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Table 3. Training set aligned to the highest ranked Pharmacophore (hypo1). 

Name Fit Est Act Mapping 

2W05 5.3600 7.4000 1 [18,8,20] 

2R3Q 6.5500 0.48000 1 [26,11,1] 

1W0X 5.2000 11 7 [14,17,1] 

2VV9 4.4000 69 17 [31,*,16] 

2VU3 4.4100 67 47 [*,15,7] 

1G5S 4.4400 62 48 [*,3,13] 

5D1J 4.4000 68 48 [*,10,2] 

3S2P 4.3600 75 68 [7,*,17] 

2BHE 3.6800 360 80 [*,13,1] 

2VTQ 4.4100 67 140 [*,15,7] 

1PXP 4.4000 67 220 [9,*,15] 

2A4L 4.4100 66 400 [1,*,21] 

1PXL 3.5600 470 900 [19,5,*] 

1E1X 2.2300 10,000 2200 [*,1,*] 

1E1V 2.2300 10,000 17,000 [*,1,*] 

3WBL 2.8700 2300 23,000 [*,12,19] 

  

 
Figure 5. The correlation graph between experimental and estimated activity values based 
on hypo1. 

 
Table 3 summarizes the training set aligned to the first pharmacophore model 
and illustrates that the three most active ligands have mapped to all features of 
the pharmacophore. Figure 6 illustrates the most active compound (2R3Q) 
mapped to the features of hypo1. 
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Forth, the result of Fischer’s randomization test confirmed the statistical con-
fidence of Hypo1 and indicated that none of the randomly generated pharma-
cophore models obtained from this validation method scored better statistical 
values than Hypo1. 

Finally, a test set of 35 ligands with known biological activity was used in 
order to determine the best models by assessing their ability to estimate the 
activity of a test set. Consequently, 24 compounds were mapped to the pro-
posed pharmacophore (Table 4), the other 11 compounds which have not been 
mapped had activities over 1000 nm. Figure 7 represents the most active ligand 
of test set (2A0C) mapped to hypo1. 

Thus, the hypothesis 1 is considered to be a good model to estimate the ac-
tivity of new compounds. Moreover, heat map plot maps test set ligands to the 
set of generated pharmacophores by 3D QSAR. It represents fit values in a 
two-dimensional color map. As they are shown in (Figure 8), blue rectangles  

 
Table 4. Mapped molecules of test set with hypo1. 

Index Name Ic50 (nm) Fit value Index Name Ic50 (nm) Fit value 

1 2A0C 55 5.74741 13 4AU8 551 3.21273 

2 2R3P 900 5.70553 14 3IGG 95 2.88812 

3 3UNJ 11,000 5.58545 15 3RK7 200 2.68082 

4 2R3F 500 5.52399 16 3R9H 100,000 2.66294 

5 3UNK 15,000 5.45168 17 2C6M 350 2.65442 

6 2C68 1800 5.44727 18 2C6I 11,000 2.54907 

7 2R3O 600 4.88627 19 1YKR 560 1.70494 

8 2B54 20 4.67484 20 3QTW 650 1.64192 

9 2C5Y 150 4.50005 21 3RJC 5700 1.59893 

10 3RPV 70 4.45479 22 1JSV 2000 1.38688 

11 3QTX 70 4.03065 23 3LFS 2500 0.753145 

12 3QTU 70 3.66091 24 2UZO 27,000 0.457822 

 

 
Figure 6. 2R3Q mapped to hypo 1. 
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Figure 7. 2A0C mapped to the hypo1. 

 

 
Figure 8. Heat map plot of test set with pharmacophore models. 

 
which simulate low fit values are less in hypo 1 than the other nine hypotheses, 
which indicates beside the other statistical validation indicators that virtual 
screening can be carried out basing on hypo 1. 

3.2. Virtual Screening 

There is no doubt that pharmacophore models are excellent tools for scaffold 
hopping and identifying structurally diverse compounds as hits by using them as 
a filter in virtual screening. Eventually, the validated pharmacophore model 
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(hypothesis1) has been used as 3Dimensional structural query to screen Ena-
mine Kinase-Hinge-Region-Directed-Library of 18,020 compounds which has 
been also gone under Lipiniski filtration in order to evaluate their druglikeness 
and determine if they have chemical and physical properties that would make it 
a likely orally active drug in humans. 

However, when a compound from the database will be considered as a hit, two 
criterions are employed, it needs to match to all of the pharmacophore features 
and to have high fit value. In other words, since the Fit Value is based on the ac-
tual distances of the conformation from the pharmacophore feature centers, the 
better fit gives a higher score and directly describes how well the compound fits 
to the model. As a result, 69 hits were retrieved according to the Fit values over 
5.8 and to the Lipiniski filtration results. 

3.3. Molecular Docking 

The crystal structure of CDK2 from the protein data bank (PDB ID: 2C6O) was 
selected and prepared for docking studies. Besides, the performance of the 
docking method on CDK inhibitors was evaluated by re-docking crystal ligand 
with less than 2 RMSD value. 69 hits with the highest fit value (over 5.8) were 
docked into the active site of CDK2 using CDocker. As a result, compound 5909 
(Figure 9(a)), compound 701 (Figure 9(b)) and compound 8397 (Figure 9(c)) 
showed very good binding modes with -CDocker interaction energy of 54.519, 
52.665 and 48.94, respectively. 

However, compound 5909 formed many significant interactions with the 
key binding amino acid residues of CDK2 (Figure 10(a)). For instance, N atom  

 

 
Figure 9. Hit compounds (a) compound 5909; (b) compound 701; (c) compound 8397. 
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(a) 

 
(b)                                      (c) 

Figure 10. Interaction of HTS hit compounds with CDK2: The result of docking study of 
CDK2 with (a) is hit 5909; (b) indicates hit 701; (c) shows 8397. The residues in the 
hinge-region ATP site are shown in blue. Schematic representation of hydrogen bonding 
(greenish dotted lines) and electrostatic interactions (pi-cation and pi-anion) in dotted 
orange lines, hydrophobic Pi-alkyl in dotted purple lines. 

 
(which functions as a Hydrogen bond acceptor) in pyrimidine ring showed a 
hydrogen bond reaction with LEU83 (particularly with NH), as well as H atom 
(HBA) which is located between the two Nitrogens of pyrimidine ring interacted 
with the carbonyl group (HBD) of GLU81 by a hydrogen bond reaction. H atom 
in the side chain formed a hydrogen bond with ASP145 which is located in 
ribose region of ATP and which also interacted with the centroid of Pi ring of 
imidazole by a Pi-anion interaction. Besides, a Pi-cation interaction was formed 
between the electrons of a delocalized Pi system of imidazole in the side chain of 
the molecule and the positively charged Nitrogen in LYS33 side chain (in triphos-
phate region of ATP). Finally, pyrmidine ring formed a hydrophobic Pi-alkyl in-
teraction bond with each of VAL18, ALA31 and ILE10. Meanwhile, Il10 also inte-
racted with each of thiophene ring and phenyl ring by a Pi-alkyl bond. 

701 is also one of the compounds which were marked as hits (Figure 10(b)). 
Occasionally, S atom in thiophen ring showed a hydrogen bond reaction with 
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NH of LEU83. Another hydrogen bond was formed between the side chain and 
ASP145. Furthermore, there were hydrophobic Pi-alkyl interaction bonds be-
tween pyrimidine ring and each of VAL18 and ALA31, and between each of 
thiophene rings, and phenyl ring with ILE10. 

The third hit in our study was compound 8397 (Figure 10(c)): Each of N 
atom (which functions as an HBD) in pyridine ring and NH (HBA) in pyrazole 
ring showed a hydrogen bond reaction with LEU83 (with NH and carbonyl 
group, respectively). Thiadiazole ring in the side chain of the compound inte-
racted with Lys33 by an electrostatic Pi-cation bond. Besides, hydrophobic 
Pi-alkyl interaction bonds were formed by pyridine ring with each of VAL18, 
ALA31 and ILE10, pyrazole ring with IL10, and methyl group which is substi-
tuted on pyridine with PHE80. Moreover, substituted methyl groups on pyridine 
and pyrazole showed hydrophobic alkyl bonds with each of ALA31 and IL10, 
respectively. 

All in All, binding modes and cdocker interaction energy values of com-
pounds 5909, 701 and 8397 suggest them as good leads in order to design novel 
CDK2 inhibitors. 

4. Conclusions 

In the present work, a highly correlating (r = 0.906) pharmacophore model (hy-
po1) containing one hydrogen bond acceptor, and two aromatic ring features 
was developed according to a group of compounds with known activity values 
(training set). In addition to its correlation factor, the generated pharmacophore 
approved to have a strong significance due to its good statistical values like total 
cost, fit values, RMSD. On the other hand, the model was further validated by a 
test set prediction method and Fischer randomization method. 

However, this validated pharmacophore model was used for database screen-
ing (Enamine kinase hinge region directed library) in order to identify com-
pounds which can be used in developing potent CDK2 inhibitors as proposed 
anti-cancer drugs. Furthermore, molecular docking study which was carried out 
for the 69 retrieved hits from the virtual screening study showed that the 
CDOCKER interaction energy values of the compounds 5909, 701 and 8397 of 
Enamine library and their ability to form bond interactions with the key binding 
elements of the protein (LEU83, GLU81, ASP145, LYS 33, IL10) suggest these 
compounds to be good probable leads against CDK2. 
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