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Abstract 
In this study, the mechanical properties of aluminum-5%magnesium doped 
with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artifi-
cial neural network (ANN) were used to model the mechanical properties of 
aluminum-5%magnesium (0 - 0.9 wt%) neodymium. The single input (SI) to 
the fuzzy logic and artificial neural network models was the percentage weight 
of neodymium, while the multiple outputs (MO) were average grain size, ul-
timate tensile strength, yield strength elongation and hardness. The fuzzy 
logic-based model showed more accurate prediction than the artificial neutral 
network-based model in terms of the correlation coefficient values (R). 
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1. Introduction 

5xxx series aluminum alloy is generally used in transport and construction in-
dustries such as railway, airspace, automobile, field ship and welded structural 
parts because of its high strength to weight ratio, reasonable corrosion resis-
tance, excellent welding properties, high fracture toughness, and super elasticity 
[1] [2]. Improvement of the performance of 5xxx aluminum alloy is required in 
order to broaden its application. 
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Generally, the alloy cannot be strengthened by heat treatment. Its main streng-
thening effect comes from strain hardening and solution strengthening [3]. One 
effective way to improve the mechanical properties of 5xxx aluminum alloys is so-
lution strengthening using micro-alloying. Alloying with rare earth elements such 
as cerium (Ce), lanthanum (La), ytterbium (Yb), scandium (Sc), strontium (Sr), 
scandium (Sc), samarium (Sm) and erbium (Er) have been shown to improve 
the mechanical properties of 5xxx aluminum alloys. For example, Zhang et al. 
[4] indicated that the addition of cerium and lanthanum below 0.3 wt% and 0.2 
wt% respectively, obviously increased the strength and ductility of Al-3 wt%Mg 
alloy, addition of rare earth metal above 0.3 wt% was harmful to the micro-
structure of the alloy. Song et al. [5] reported that the addition of 1% wt ytter-
bium improved the mechanical properties of Al-5 wt%Mg alloy. Wang et al. [6] 
reported that the addition of scandium to Al-10Mg alloy improved the mechan-
ical properties of the alloy due to grain refinement. Zhou et al. [7] reported that 
the addition of scandium up to 0.6% increased the tensile and yielded strength of 
Al-5%Mg alloy though it severely degraded the ductility of the alloy. 

For some rare earth metals, such as neodymium, terbium, dysprosium pro-
methium, gadolinium, holmium and thulium, previous research contains few 
reports of their effects on the mechanical properties of Aluminum magnesium 
alloys. Previous study on the effect of neodymium on the mechanical properties 
of near-eutectic aluminum silicon alloy, indicated that the addition of Nd below 
0.3wt% to Al-12Si alloys refined the morphology of the α (Al) and Si phases which 
resulted in improved mechanical properties [8]. However, the effects of neodym-
ium as a micro-alloying element on the structure and properties of Al-Mg alloys 
have not been studied. Hence, this study focused on investigating the role of 
neodymium addition in improving the structure and mechanical properties of 
aluminum-magnesium alloy. 

Recently modeling methods such as fuzzy logic (FL) and artificial neural net-
works (ANN) systems have been used by many researchers for predicting the 
mechanical properties of engineering materials. Fuzzy logic is a very vital artifi-
cial intelligence and soft computing tool used in modeling engineering materials. 
Applications of fuzzy logic in the prediction and modeling of the mechanical 
properties of engineering materials are numerous. For instance, Anukwonke et al. 
[9] achieved extensive research on the use of Fuzzy logic for the prediction of ul-
timate tensile strength, yield strength, hardness, elongation and impact strength 
of Al-5%Mg-doped with nickel. Barzani et al. [10] used a fuzzy logic model to 
predict the surface roughness of Al-Si-Cu-Fe die-casting alloy doped with stron-
tium, bismuth and antimony; the predicted machining performance surface had 
an error factor of 5.4%. Rahman et al. [11] studied the influence of steel fibers on 
mechanical properties such as compressive strength, flexural strength and 
post-peak deformation of steel-fiber reinforced concrete using a fuzzy model the 
predicted mechanical properties had an error factor of 7.5%. Chibueze et al. [12] 
successfully predicted the impact strength, flexural strength, hardness of sponge 
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gourd and luffer fiber reinforced epoxy composite using a fuzzy logic model. 
Gence et al. [13] developed a rule-based fuzzy logic model for predicting com-
pressive strengths and elasticity modulus of strength of concrete containing hae-
matite. From the reviewed literature on modeling and predicting using FL the 
experimental data and predicted values were well matched, highlighting the suc-
cess of applying FLs in modeling and prediction of mechanical properties of en-
gineering materials. 

Additionally, the artificial neural network (ANN) model is a very important 
soft computing tool frequently used in place of fuzzy logic for modeling. Deng et 
al. [14] used the ANN model to predict the tensile strength and hardness of 
Cu-Al alloys produced using the powder metallurgy method. ANN was applied 
to determine the composition of Cu-Al alloys for achieving a particular tensile 
strength and hardness level. Khalai et al. [15] used ANN to understand the effect 
of chemical composition (carbon equivalent) parameters on the ultimate tensile 
strength of the API X70 steels after thermo-mechanical treatment. Mahalle et al. 
[16] used ANN to develop predictive models for prediction of strain hardening 
exponent, ultimate strength, yield strength, strain and elongation of Inconel 718 
alloy. Singh et al. [17] used ANN to predict % elongation, tensile strength, yield 
strength, strain hardening exponent and strength coefficient for the extra deep 
drawn (EDD) quality steel in blue brittle region. Parvizi et al. [18] used an artifi-
cial neural network (ANN) to predict the tensile strength and hardness of por-
ous NiTi shape memory alloy. Shabani and Mazahery [19] used an ANN model 
to simulate the correlation between the morphology, distribution of secondary 
dendrite arm spacing (SDAS) and the eutectic Si fibers and mechanical proper-
ties such as tensile strength, hardness and ductility. Sterjovski et al. [20] studied 
impact toughness, hardness, hot ductility and hot strength of micro-alloyed 
steels using ANN. From the reviewed literature on modeling with ANN, the ac-
tual experimental and predicted values were well matched, highlighting the suc-
cess of applying ANNs in predicting mechanical properties. 

Significantly, the literature contains few studies on modeling and prediction 
of the mechanical properties of 5xxx aluminum alloys. This study investigates 
the use of fuzzy logic and artificial neural network systems for the prediction of 
mechanical properties of Al-5%Mg based on experimental data. The fuzzy logic 
models are compared with artificial neural networks (ANN) created for the same 
data. Such a model would notably reduce further experimental work and save 
cost in the design of 5xxx aluminum magnesium alloys. 

2. Materials and Method 

Pure aluminum wire (99.9% pure), magnesium powder (98.9% pure) and neody-
mium powder (98.5% pure) were materials used for producing the alloys with a 
nominal composition of Al-5%Mg-xNd (x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9). The melt-
ing was done in a 10 kg medium crucible furnace [1] [9]. A reference alloy, named 
Al-5%Mg had no Nd addition, whereas Al-5%Mg-0.1%Nd, Al-5%Mg-0.3%Nd, 
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Al-5%Mg-0.5%Nd, Al-5%Mg-0.7%Nd and Al-5%Mg-0.9%Nd were modified with 
neodymium (Nd) additions of 0.1%, 0.3%, 0.5%, 0.7% and 0.9%, respectively. The 
optical metallurgical microscope (model: L2003A) and Phenom ProX type scan-
ning electron microscope were used to analyze the microstructures of the alloy. 
Image J software was used to evaluate the average grain size. The tensile tests 
were carried out using an Instron universal tester (Model: 3367) with a cross-
head speed of 50 mm/min. The hardness tests were measured using Phase II 
900-355 digital motorized Brinell hardness tester machine with a 2.5 mm di-
ameter ball indenter and with a minimum force of 62.5N. 

3. Results and Discussion 
3.1. Mechanical Properties of the Studied Alloy 

As shown in Table 1 and Figures 1(a)-(d), although neodymium was added in 
trace amounts, the tensile strength, yield strength, hardness and elongation of 
Al-5%Mg alloy had a remarkable improvement when rare earth metal neody-
mium was added. With the increase of neodymium content, the tensile strength, 
yield strength, hardness and elongation values initially increased. The tensile and 
yield strength reached the highest values when the content of neodymium was 
0.5 wt%, hardness reached the top value when the content of Nd was 0.7 wt%, 
elongation reached the highest value when the content of neodymium was 0.3 
wt%. The tensile strength increased from 172.74 to 219.35 MPa, the yield strength 
increased from 79.09 to 125.26 MPa, the hardness increased from 101.92 to 211.76 
HBN, the elongation increased from 10.27% to 13.04%, and after that, further in-
crease in Nd addition, the tensile strength, yield strength, hardness and elongation 
decreased. The reasons for the improvement in the strength of Al-5%Mg were re-
duced grain size, fine-scale uniformly distributed β (Al3Mg2) intermetallic and 
solid solution strengthening processes. 

3.2. Average Grain Size 

From Figure 2, it was revealed that with increase in neodymium, the average 
grain size decreased first from 73.66 μm to 45.6 μm and reached the lowest value 
when neodymium was 0.5 wt%. Further increase in concentration, deteriorated  

 
Table 1. Average grain size and mechanical properties of the studied alloy. 

Alloy composition 
Ultimate tensile  
strength (MPa) 

Yield  
strength (MPa) 

Hardness  
(BHN) 

Elongation  
(%) 

Average grain size (micron)  

Al-5%Mg 172.74 79.09 101.92 10.27 73.66 

Al-5%Mg-0.1%Nd 205.85 117.89 118.23 11.57 67.9 

Al-5%Mg-0.3%Nd 213.88 122.11 148.01 13.04 56.92 

Al-5%Mg-0.5%Nd 219.35 125.26 173.18 12.38 45.6 

Al-5%Mg-0.7%Nd 200.82 115.26 211.76 11.09 51.53 

Al-5%Mg-0.9%Nd 187.51 103.42 193.22 8.42 106.95 
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Figure 1. (a) Effect of Nd contents on the ultimate tensile strength of Al-5%Mg alloy; (b) Ef-
fect of Nd contents on the yield strength of Al-5%Mg alloy; (c) Effect of Nd contents on the 
hardness of Al-5%Mg alloy; (d) Effect of Nd contents on the elongation of Al-5%Mg alloy. 

 

 
Figure 2. Effect of Nd contents on the average grain size of Al-5%Mg alloy. 

 
the grain refining efficiency. Undoubtedly, the idea behind the decrease in the 
grain size was attributed to the grain refinement and modification of the globu-
lar morphology of β (Al3Mg2) intermetallic compound. The additives increased 
the number of solidification sites for heterogeneous nucleation of the primary 
aluminum phase which led to increase in grain boundary area per unit volume 
and a decreased in the intraparticle distance [21]. 

3.2. Optical Microstructure 

Figure 3(a) shows the micrograph of the Al-5wt%Mg alloy. The microstructure 
comprises mainly of α-phase and β-phase, this is in agreement with Al-Mg phase 
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Figure 3. Optical micrograph, (a) Al-5%Mg, (b) Al-5%Mg-0.1%Nd, (c) Al-5%Mg-0.3%Nd, (d) Al-5%Mg-0.5%Nd, (e) 
Al-5%Mg-0.7%Nd and (f) Al-5%Mg-0.9%Nd. 
 

diagram [22]. The alpha phase is the region where magnesium formed a solid 
solution with the aluminum matrix while the beta phase is the intermetallic 
compound (Al3Mg2). The intermetallic phase compound existed in globular 
morphology separated from the solid solution by the grain boundary. 

Figures 3(b)-(f) show the microstructure of Aluminum-5 wt% magnesium al-
loy doped with (0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) wt% neodymium. From the micro-
graphs, micro-alloying reduced the globular morphology of the β-intermetallic 
phase; this resulted in a reduction of grain size. Optimum grain refinement was 
obtained when neodymium of 0.5 wt%, a further increase in concentration re-
sulted in the formation of chains of globular β-intermetallic phase which les-
sened the mechanical properties of the alloy. Neodymium addition neither 
forms any independent phase nor creates any new phase with the Al-5%Mg alloy 
system. This is in agreement with the Al-Nd phase diagram [23]. 

Figure 4(a) shows the SEM micrograph of Al-5%Mg alloy. It was revealed that 
the structure consists of α-phase and β phase. The α-phase is the region where Al 
formed solid-solution with the magnesium matrix while β phase is the interme-
tallic compound. Figure 4(b) shows the SEM of Al-5%Mg + 0.5%Nd. It was ob-
served that the microstructure of the alloy revealed the α-phase surrounded by a 
fine β phase. The addition of neodymium to Al-5%Mg alloy led to solid solution 
strengthening and modification of globular intermetallic, which resulted in in-
crease ultimate tensile strength of the alloy. Figure 4(c) shows the SEM of 
Al-5%Mg + 0.7%Nd. It was observed addition of neodymium above 0.5% to 
Al-%5Mg alloy created inactive particles detrimental to the strength. Also, with the 
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Figure 4. SEM micrograph, (a) Al-5%Mg, (b) Al-5%Mg-0.5%Nd, (c) Al-5%Mg-0.9%Nd. 
 

help of image analysis software Image J, the 3D surface plot was obtained as re-
vealed in Figures 5(a)-(f), this 3D surface plot graphically shows the intensity 
values of the microstructural analysis. The pink colour shows the distribution of 
β (Al3Mg2) in the α phase (green and yellow coloration). 

4. Modeling 

In this study, fuzzy logic and artificial neutral network-model were utilized to 
predict the effect of rare earth neodymium (Nd) on the structure and mechanical 
properties of Al-5%Mg i.e., average grain size, tensile strength, yield strength, 
hardness and percentage elongation. 

4.1. Fuzzy Logic Modeling 

The Fuzzy Logic model contains three components: fuzzification, fuzzy infe-
rence system, and defuzzification. The fuzzifier maps crisp numbers into fuzzy 
variables, rule bases are a collection of IF-THEN statements. It maps input fuzzy 
variables into output fuzzy variables. Defuzzification maps output fuzzy va-
riables into crisp quantity. Figure 6 shows the workflow of fuzzy logic simula-
tion. The model takes in the amount of neodymium as a single input variable, 
which is transformed into a fuzzy plane. Base rules are written which determine 
the study’s outputs based on the centroid method, and the Mamdani method is 
used for defuzzification. 

As shown in Figure 7, micro-alloying with neodymium represented the input 
variable to the fuzzy inference system, while the average grain size, yield strength, 
tensile strength, elongation and hardness derived from defuzzification were the 
output variables. 

Figure 8 depicts the membership function for the micro-alloying using neo-
dymium. The membership function contained ten linguistic variables namely: 
mo1, mo2, mo3, mo4, mo5, mo6, mo7, mo8, mo9, mo10. 

Six (6) fuzzy logic models were utilized in the prediction the modeling. Model 
I contained seventeen (17) linguistic variables for the output (average grain size) 
as shown in Figure 9, model 2 contained thirty-five (35) linguistics for the out-
put (hardness) as shown in Figure 10, model 3 contained eighteen (18) linguistic  
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Figure 5. Surface plot (3D view) of microstructure. (a) Al-5%Mg, (b) Al-5%Mg-0.1%Nd, (c) Al-5%Mg-0.3%Nd, 
(d) Al-5%Mg-0.5%Nd, (e) Al-5%Mg-0.7%Nd and (f) Al-5%Mg-0.9%Nd. 
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Figure 6. Workflow of fuzzy logic-based simulation. 

 

 
Figure 7. Fuzzy inference system for micro-alloying of Al-5%Mg using Nd. 
 

 
Figure 8. Membership function. 

https://doi.org/10.4236/ijnm.2024.111001


A. M. Chukwuma et al. 
 

 

DOI: 10.4236/ijnm.2024.111001 12 International Journal of Nonferrous Metallurgy 
 

 
Figure 9. Membership function for average grain size. 
 

 
Figure 10. Membership function for hardness. 
 

 
Figure 11. Membership function for Elongation. 
 

variables for % elongation as shown in Figure 11, model 4 contained sixteen 
(16) variables for tensile strength as shown in Figure 12 and model 5 contained 
sixteen (16) variables for yield strength as shown in Figure 13. 

From Table 2 and Figures 14(a)-(e) Fuzzy logic prediction for Al-5%Mg (0.1% 
- 1%) Nd gave correlation coefficient (R) of 0.9996 for average grain size, ultimate 
tensile strength with correlation coefficient (R) of 0.9995, yield strength with corre-
lation coefficient (R) of 0.9831, elongation with correlation coefficient (R) of 0.9958 
and hardness with correlation coefficient (R) of 0.9978. The correlation coefficients  
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Figure 12. Membership function for ultimate tensile strength. 
 

 
Figure 13. Membership function for yield strength. 
 
Table 2. Actual and fuzzy logic predicted average grain size and mechanical properties of Al-5%Mg alloy modified with Nd. 

%wt  
of Nd 

Actual 
AGS 
(μm) 

Predicted 
AGS 
(μm) 

Actual 
UTS 

(MPa) 

Predicted 
UTS 

(MPa) 

Actual 
YS 

(MPa) 

Predicted 
YS 

(MPa) 

Actual 
%E 

Predicted 
%E 

Actual 
hardness 
(BHN) 

Predicted 
hardness 
(BHN) 

0.1 67.9 68 205.85 205 117.89 120 11.57 12 118.23 120 

0.3 56.92 56 213.88 215 122.11 120 14.04 14 148.01 145 

0.5 45.59 44 219.35 220 125.26 125 17.71 18 173.18 170 

0.7 51.53 52 200.82 200 115.26 115 12.52 13 211.76 210 

0.9 106.95 108 187.51 185 103.42 105 8.42 8 193.22 195 

Correlation 
coefficient 

0.9996 0.9995 0.9831 0.9958 0.9978 

 
of actual experimental data and predicted data for average grain size, ultimate 
tensile strength, yield strength and hardness were above 0.9, thus the result 
demonstrated agreement between the experimental values and fuzzy model [24]. 

4.2. Artificial Neural Network (ANN) 

The ANN used in this study consists of input, hidden and output layers as 
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shown in Figure 15 input layer consist of one neuron representing the input va-
riable (wt% of neodymium), each of the ten (10) hidden layers, while number of 
nodes in output layers consist of five neurons of each of the experimental data: 
average grain size, ultimate tensile testing, yield strength, elongation and hard-
ness. For the simulation of artificial neural network, sixty –five percent (65) of 
the experimental data were used for training while twenty-five percent (25) were 
used for validation. 

 

 
Figure 14. Correlation coefficient between the experimental & predicted values for testing data of (a) average grain size (b) ulti-
mate strength, (c) yield strength (d) % elongation, (e) hardness. 
 

 
Figure 15. Schematic diagram of the ANN model for prediction of properties of magne-
sium alloys. Schematic of a single-hidden-layer neural network: one (1)-input, ten (10) 
hidden neurons and five (5) output layers. 

 

From Figures 16(a)-(e) and Table 3, artificial neural network simulation for 
Al-5%Mg (0.1% - 1%) Nd gave correlation coefficient (R) of 0.9161 for average 
grain size, ultimate tensile strength with correlation coefficient (R) of 0.9459, 
yield strength with correlation coefficient (R) of 0.9570, elongation with correla-
tion coefficient (R) of 0.9951 and hardness with correlation coefficient (R) of 
0.97186. The correlation coefficients of actual experimental data and predicted 
data for average grain size, ultimate tensile strength, yield strength and hardness  
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Figure 16. Correlation coefficient (ANN). (a) Average grain size, (b) Ultimate tensile strength, (c) Yield strength, (d) Elongation 
and (e) Hardness. 
 
Table 3. Actual and artificial neural network predicted, average grain size and mechanical properties of Al-5%Mg alloy modified 
with Nd. 

%wt of Nd 
Actual 
AGS 
(μm) 

Predicted 
AGS 
(μm) 

Actual 
UTS 

(MPa) 

Predicted 
UTS 

(MPa) 

Actual 
YS 

(MPa) 

Predicted 
YS 

(MPa) 

Actual 
%E 

Predicted 
%E 

Actual 
hardness 
(BHN) 

Predicted 
hardness 
(BHN) 

0.1 67.9 67.90 205.85 205.85 117.89 117.89 11.57 11.50 118.23 128.21 

0.3 56.92 61.19 213.88 213.88 122.11 116.11 14.04 12.99 148.01 147.13 

0.5 45.59 13.94 219.35 210.47 125.26 125.26 17.71 12.57 173.18 173.18 

0.7 51.53 51.53 200.82 195.82 115.26 115.26 12.52 10.78 211.76 240.32 

0.9 106.95 106.95 187.51 187.51 103.42 99.06 8.42 8.43 193.22 198.96 

Correlation 
coefficient 

0.9161 0.9459 0.9570 0.9951 0.9719 

 
were above 0.9, thus the result demonstrated agreement between the experi-
mental values and ANN model [24]. 

4.3. Comparison of ANN and FL Predictions 

Generally, Fl is more applicable in interpreting uncertainties connected with data. 
On the other hand the ANN is a nonlinear based technique. In order to compare 
the accuracy of the predicted numerical values of ANN and FL, the correlation 
coefficient R values obtained for both models were compared. From Figure 14 and  
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Figure 17. Comparison of ANN and FL predictions. 
 

Figure 16 and Figure 17 show the average correlation coefficient values ob-
tained for ANN and FL based models were 0.9572 and 0.9952 respectively. The 
correlation coefficient values of ANN and FL had a strong positive relationship. 
It was observed that FL based model predictions fit the line of perfect prediction 
more than ANN based model thus the experimental values were estimated FL ef-
ficiently. The higher accuracy of prediction by Fl can be linked to fact for com-
plex problem analysis, ANN needs large data for accurate interpretation while 
FL based model does not [25]. 

5. Conclusions 

Modeling and prediction of mechanical properties of aluminum-5% magnesium 
(0 - 0.9 wt%) neodymium using artificial neural network and fuzzy Logic ap-
proaches, the following conclusions can be summarized as follows: 
• Trace addition of Nd below 0.5 wt% greatly improved the tensile strength, 

yield strength and elongation of Al-5 wt% alloy, mainly through grain re-
finement: morphological changes in detrimental shape of β-Al3Mg2 interme-
tallic compounds and reduction of α-Al grain size. Also, minor addition of 
Nd below 0.6 wt%, generally improved the hardness of Al-5 wt% alloy. 

• The Fuzzy model predicted the average grain size for Al-5%Mg (0.1% - 
1%)Ni with a correlation coefficient (R) of 0.9996 for average grain size, ulti-
mate tensile strength with a correlation coefficient (R) of 0.9988, yield strength 
with a correlation coefficient (R) of 0.9914, elongation with correlation coef-
ficient (R) of 0.9972 and hardness with correlation coefficient (R) of 0.9978. 

• Artificial neural network predicted gave a correlation coefficient (R) of 0.9161 
for average grain size, ultimate tensile strength with a correlation coefficient 
(R) of 0.9459, yield strength with a correlation coefficient (R) of 0.9570, elonga-
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tion with a correlation coefficient (R) of 0.9951 and hardness with a correla-
tion coefficient (R) of 0.97186. 
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