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Abstract 
Purpose: To improve the liver auto-segmentation performance of three- 
dimensional (3D) U-net by replacing the conventional up-sampling convolu-
tion layers with the Pixel De-convolutional Network (PDN) that considers 
spatial features. Methods: The U-net was originally developed to segment 
neuronal structure with outstanding performance but suffered serious arti-
facts from indirectly unrelated adjacent pixels in its up-sampling layers. The 
hypothesis of this study was that the segmentation quality of the liver could 
be improved with PDN in which the up-sampling layer was replaced by a pix-
el de-convolution layer (PDL). Seventy-eight plans of abdominal cancer pa-
tients were anonymized and exported. Sixty-two were chosen for training two 
networks: 1) 3D U-Net, and 2) 3D PDN, by minimizing the Dice loss func-
tion. The other sixteen plans were used to test the performance. The similari-
ty Dice and Average Hausdorff Distance (AHD) were calculated and com-
pared between these two networks. Results: The computation time for 62 
training cases and 200 training epochs was about 30 minutes for both net-
works. The segmentation performance was evaluated using the remaining 16 
cases. For the Dice score, the mean ± standard deviation were 0.857 ± 0.011 
and 0.858 ± 0.015 for the PDN and U-Net, respectively. For the AHD, the 
mean ± standard deviation were 1.575 ± 0.373 and 1.675 ± 0.769, respectively, 
corresponding to an improvement of 6.0% and 51.5% of mean and standard 
deviation for the PDN. Conclusion: The PDN has outperformed the U-Net 
on liver auto-segmentation. The predicted contours of PDN are more con-
formal and smoother when compared with the U-Net. 
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1. Introduction 

Liver cancer is the fifth most common cancer in men and the ninth in women in 
the world. It was estimated that 841,100 new liver cancer cases were diagnosed in 
2018 [1], and men were twice more likely than women to develop liver cancer. 
Worldwide liver cancer was respectively the second- and sixth-leading causes of 
cancer death in men and women, with an estimate of 781,600 deaths in 2018. In 
the United States, age-adjusted incidence rates of liver cancer were more than 
tripled between 1975 and 2014 [2]. 

Treatments of liver cancer include surgical resection, transplantation, and ra-
diotherapy. Accurate identification and delineation of the liver from computed 
tomography (CT) images is the key to the success of these procedures. Although 
manual delineation of the liver boundaries by experienced radiologists gives ac-
curate contours of the liver, it is very time-consuming (about 25 minutes) given 
the liver is the largest organ in the human body [3]. In addition, human con-
touring tends to be subjective and is strongly dependent on the CT image quali-
ty. As a result, the intra- and inter-observer variability is usually high. Therefore, 
semiautomatic or automatic liver segmentation is very desirable and meaningful 
in the clinical management of liver cancers. 

However, there are several challenges in achieving accurate computer-aided 
liver segmentation. First, the contrast between the liver and surrounding tissues 
is usually low, which leads to fuzzy boundaries and makes the liver difficult to 
identify. In addition, liver pathologies (e.g. liver tumors) and high-intensity 
intrahepatic veins usually produce complicated intensity distributions and hete-
rogeneous appearances.  

In the past few decades, a variety of approaches have been proposed to seg-
ment the liver from CT images. In 2008, Heimann et al. [4] published a com-
prehensive review of the advantages and disadvantages for different techniques 
presented in MICCAI 3D Liver Tumor Segmentation Challenge, including sta-
tistical shape models, atlas registration, level-sets, graph-cuts, and rule-based al-
gorithm. Later, deep neural networks (DNNs) gained increasing attention in the 
computer vision community because of their ability to learn features automati-
cally from the data. More recently, the Liver Tumor Segmentation (LiTS) chal-
lenge was organized. All top-scoring automatic methods submitted to the two 
rounds organized in 2017 used DNNs. The winner of both rounds used the 
U-Net [5], a “fully convolutional network” based on Convolutional Neural Net-
work (CNN [6]). CNN takes images as input and learns various features from 
these images to differentiate one from each other. U-Net gets its name because it 
further modifies and extends the architecture of CNN, making it a U-shaped ar-
chitecture. U-Net can work with very few training images and still yields accu-
rate segmentations. 

In the U-Net architecture, the images were first down-sampled through a se-
ries of convolution layers, processed, then up-sampled to the original resolution. 
This up-sampling (or deconvolutional) operation is carried out by a series of 
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transposed convolution layer (TCL) [7]. Each TCL can produce a higher resolu-
tion output from the lower resolution input so the results can be concatenated 
(or added) to that of the same resolution layer from the down-sampling side. 
This concatenation or addition usually suffers from checkerboard artifacts [8], 
which greatly limit the capabilities of the network in generating smooth outputs 
on semantic segmentation. To overcome this problem, the Pixel De-convolutional 
layer (PDL) [9] was proposed to replace the up-sampling layers. The U-Net 
with the original up-sampling layers replaced with the PDLs is called Pixel- 
Deconvolutional-Net (PDN). 

In this study, we evaluated the performance of the bare U-Net and PDN for 
liver segmentation. Seventy-eight radiotherapy plans of abdominal cancer pa-
tients were anonymized and exported for this study. The liver contours were ex-
tracted and used to train these two networks. The segmentation quality of these 
two networks was then evaluated and compared using various indexes including 
similarity Dice and average Hausdorff distance (AHD). Finally, the pros and 
cons of the U-Net and PDN are discussed. 

2. Methods and Materials 
2.1. The U-Net 

Figure 1(a) and Figure 1(b) show the conceptual block diagrams of the two 
networks used in this study, in which the data are input from the “Input” node 
on the left, flowed toward the bottom and then toward the top, processed at each 
node and output to the “Output” node on the right side. The basic U-net [5] that 
employs fully convolutional network architecture is shown in Figure 1(a). In 
Figure 1(a), the input data after the batch-normalization [10] first go through a 
series of down-sampling operations, i.e., the “Down_n” nodes on the left side. 
Each “Down_n” node has the same internal structures, including a convolution 
layer for feature extraction, followed by a dropout layer (drop rate = 0.5) to pre-
vent the network from over-fitting, a Rectified Linear Unit (ReLU) [11] activa-
tion layer which is simply a piecewise function to keep only the positive value of 
input function to overcome the vanishing gradient problem, and a max pooling 
layer for down-sampling. The data then enter the “Bottom” node that has the 
same convolution operation but without the down-sampling layer.  

The opposite operations of the convolutions in U-Net are a series of 
up-sampling (or deconvolutional) operations, i.e., the “Up_n” nodes on the right 
side of Figure 1(a). Similar to the “Down_n” nodes, each “Up_n” node has the 
same internal structures, particularly for up-sampling. Among these up-sampling 
nodes, the transposed convolution layer (TCL) [7] of the “Up_n” node is named 
as “Deconv” in Figure 1(a). 

TCL is mainly the opposite of convolution by applying a de-convolution ma-
trix on the input image, plus up-sampling by dilation that produces a higher res-
olution output from the lower-resolution input. The resulting layer are then 
added to the output of the corresponding resolution layer on the left side (i.e.,  
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(a) 

 
(b) 

Figure 1. (a): Conceptual block diagrams of the basic U-Net. All the “Down_n” nodes have the same structures and so do all the 
“Up_n” nodes. Each large block with a name, for example, “Down_0” is a named node in the code. Within each node are multiple 
layers of codes, marked by various rectangles with layer names, one for each layer. “BN”: batch-normalization layer. “Conv”: 
convolution layer. “Dropout”: dropout layer. “Add”: sum of all input layers. “DeConv”: de-convolution layer. “ReLu”: ReLu 
activation layer. The “?” in the parenthesis after the layer name represents the number of cases/patients per step, e.g., 4 patients 
per steps in training or 1 patient per step in testing. The following three numbers are the output dimensions after the input matrix 
is processed through that layer. The last number represents the number of features or kernels used except that in the “CT” block it 
is the color channel. The arrow means the output from previous layer will be input into the next layer and the dimensions are 
indicated by the numbers in the parenthesis from the previous layer; (b): Conceptual block diagrams of the “PDL” layer in the 
“Up_2” node of the Pixel-Deconvolutional-Net (PDN), which replaces the “DeConv” layer in the “Up_2” node of the basic U-Net 
in (a). “LConv”: a convolution layer with large number of features. “Dilate”: dilation layer. “Split”: split layer that splits the input 
to three equal size matrices. “Dilate Shift”: a dilation operation followed by a one voxel shift operation along one of three axis 
(x/y/z). “Mask Convolution Layer”: a combination of “LConv”, “Split” and “Dilate Shift” highlighted in orange. The same “PDL” 
layer replaces the “Deconv” layer in all “Up_n” nodes in (a). 
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the “Dow_n” operations). This addition, usually called skip connection, is shown 
as the line from the “Down_n” layer to the corresponding “Up_n” layer in the 
U-Net of Figure 1(a). 

However, the outputs from these up-sampling nodes suffer from checker-
board artifacts that greatly limit the capabilities of the network model in gene-
rating smooth outputs on semantic segmentation. Detailed explanation of this 
artifact can be found in Odena, A., et al. [8]. In brief, as pointed out in Figure 2 
and Figure 3 of Gao, H., et al. [9], standard deconvolutional operation can be 
decomposed into several convolutional operations, and these convoluted inter-
mediate feature layers are shuffled and combined to produce the final layer. As a 
result, there is no direct relationship among these intermediate feature layers 
since they are generated by independent convolutional kernels. This indepen-
dence usually causes uncorrelated values of adjacent pixels, leading to checker-
board artifacts [8], which greatly limit the capabilities of the network in gene-
rating smooth outputs on semantic segmentation. 

2.2. The Pixel-Deconvolutional-Network (PDN) 

To overcome the checkerboard problem, the Pixel De-convolutional layer (PDL) 
[9] was proposed to replace the TCL up-sampling layer in the up-sampling 
nodes so that the intermediate feature layers are generated sequentially from the 
previously generated ones. That is, the intermediate feature layers in a later stage 
are forced to depend on previous ones. This operation creates direct relationship 
between each intermediate feature layers. The U-Net with the original up-sampling 
layer replaced by the PDL is called the Pixel-Deconvolutional-Net (PDN) [9]. 
With PDN, the direct relationships between adjacent pixels on the output feature 
layers are established as explained in the following.  

The up-sampling procedure of PDN is detailed using the “Up-2” up-sampling 
node in Figure 1(a) as an example by replacing the “Deconv” layer with the “PDL” 
layer in Figure 1(b). As shown in Figure 1(b) the output of the “Bottom” layer 
was fed into the up-sampling PDL. The PDL applies two sequential convolution 
operations on the input layer [9]. These two convolution layers were then dilated 
to higher dimensions and input to the final “Add” layer. The dilation operation 
is done by adding zeros between two adjacent voxels in the input matrix so the 
output matrix dimensions are doubled, for example, from 8 × 8 × 8 to 16 ×16 × 
16. The output of the second convolution layer is further processed by the two 
“Mask Convolution Layers”. As shown in Figure 1(b), the “Mask Convolution 
Layer” (orange rectangular plates) is a combination of “LConv”, “Split” and “Di-
late Shift”. The “LConv” is a convolution that results in 3 times (i.e., “×3” in the 
figure) the number of features of the input matrix (note that the number of fea-
tures is indicated as the last number in the parenthesis after each layer name in 
Figure 1(a) and Figure 1(b)). For example, the input dimensions for “LConv” 
in Figure 1(b) is (?, 8, 8, 8, 32). After “LConv”, the output dimensions will be-
come (?, 8, 8, 8, 96). The ×3 is just because there are three Cartesian coordinate 
(x/y/z) for the matrix. The following “Split” operation splits this output into three 
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separate equal-sized matrix. The 3rd step, the “Dilate Shift” operation is a dila-
tion followed by a one-voxel shift on the output matrix along one of x/y/z axis. 
As in the previous example, the (?, 8, 8, 8, 96) matrix will be split into three (?, 8, 
8, 8, 32) matrices. Each matrix is dilated to size (?, 16, 16, 16, 32) and shifted one 
voxel along the x, y or z axis. So one “Mask Convolution Layer” generates three 
shifted dilated convoluted layers. Finally the two dilated layers and two shifted 
dilated convoluted layers are combined to form the intermediate output layer. 
The conceptual graph of the PDL is also shown in Figure 6 of Gao, H., et al. [9]. 

All codes were written in Python with TensorFlow 2.1 and running on a lap-
top with an Intel i7-7700HQ CPU, 16 GB memory and an NVIDIA GTX 1050 Ti 
GPU with 4 GB video memory. All the parameters in the network were chosen 
considering the achievable performance and endurability under these hardware 
limitations. 

2.3. Dataset and Data Preprocessing 

Seventy-eight liver cases were identified in the Eclipse treatment planning sys-
tem of our facility and used to test the PDN. All patients received radiation 
treatments in the abdominal area and had a full contour of the liver. All contours 
in the data set were contoured by either a medical dosimetrist or a radiation on-
cologist and were reviewed and approved by the attending radiation oncologists 
of our facility during the daily smart rounds. The summary of the dataset was 
listed in Table 1. 

For each case, the liver CT and structure sets were anonymized in the Eclipse 
treatment planning system [12] and exported to the local disk in DICOM RT 
format. With the help of SimpleITK [13] and Plastimatch [14], the CT DICOM  
 
Table 1. Summary of the dataset consisting of the seventy-eight liver cases. 

Variable 
Cases 

Number % 

Sex   

Male 33 42 

Female 45 58 

Treatment Site   

Abdomen 3 4 

Gastric Bed 20 26 

Liver 12 15 

Pancreas 40 51 

Para-aortic 3 4 

Age   

<59 19 24 

59 - 80 40 52 

>80 19 24 
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files were transformed to 3D images and the liver contour in the DICOM RT 
files were converted to mask images. Both image sets were represented as 3D ar-
ray. For the CT images, each voxel used two bytes to represent its gray scale, 
while for the mask image only one bit (1 or 0) was necessary because its function 
was to indicate if a voxel was inside or outside the liver contour. In compliance 
with the 3D image format of Tensorflow [15], one color dimension was also 
added to the 3D array to form a 4D array. Because the CT and mask images were 
both grayscale, the added color dimension was one. 

The next step was to unify the dimensions of these seventy-eight image sets. 
Although the axial dimensions were the same 512 (Height) × 512 (Width), the 
number of slices for each scan was different, ranging from 100 to 250 with a 
mean of ~167. This inconsistence in slice number caused problems in program-
ming the Tensorflow. In addition, our hardware computation power was not 
sufficient to hand the 512 × 512 axial dimensions. As a result, the original CT 
and mask images were converted to lower dimensions. This was achieved by re-
sizing each image to low dimension levels, that is, 64 (Depth/Slice) × 64 (Height) 
× 64 (Width) × 1 (Color). B-spline interpolation was applied in the resizing op-
eration to minimize the loss of image information due to dimension reduction. 
The TFRecord format, a simple format for storing a sequence of binary records, 
was used as the pipeline storage during the training or testing of the networks. 

2.4. Network Training and Testing 

Figure 2 shows the general process flow for network training and testing (or 
prediction) of this study. The exported data set, after going through the prepro-
cessing as described above, was split into two groups: about 80% (62 cases) as the 
training set and the rest (16 cases) as the testing set. When the data of a training 
case were entered into the network, the 4D CT images were used as the input 
(i.e., the input in Figure 1(a)) from which the network tried to segment the liv-
er, and the liver 4D mask image as the label, i.e., the ground truth of the con-
tours, from which the network could compare and learn.  

The network training was performed in a sequential manner by dividing the 
training process into multiple steps. That is, the training data set was first di-
vided into subgroups with, e.g., four patients in each group. In each step, the 
network took one group (four patients) as input, predicted the mask image and 
compared the predicted mask with the label (ground truth) by calculating the 
Dice loss function between the two mask images. The parameters (i.e., the 
weights/bias for segmentation) used by the networks for segmentation, were ad-
justed automatically by stochastic gradient descent (SGD) [16], to minimize the 
loss function. Once the training of the current step was done, the network took 
the next group of patients. The same sequence was repeated until the network 
finished one epoch, or one complete pass through the training set. The training 
process was stopped after 200 epochs, considering the balance between the 
length of the training time and the convergence of the loss function. 
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Figure 2. Process flow of this study. Top is for training and bottom is for prediction. 
 

The prediction path was similar to the training path except for a few steps. 
First, when constructing the low-resolution dataset, no liver contouring was needed 
so only CT images were fed into the network. Second, the network parameters 
were fixed and not adjustable. Lastly, only one patient dataset was used for each 
prediction. 

2.5. Performance Evaluation 

The performance of the U-Net and PDN was evaluated for the low-dimension 
levels, i.e., 64 (Depth/Slice) × 64 (Height) × 64 (Width) × 1 (Color) using the 16 
cases in the testing set, after the networks were trained with the 62 cases in the 
training set. The similarity Dice score of segmented livers was calculated as a 
guideline for evaluating the segmentation quality of the predicted mask results.  

In addition, the predicted mask image was resized back to the original dimen-
sions (i.e. 512 × 512 × 64 × 1), which is called the “Contour” image, so that it 
could be compared with the original contour. For this dimension level, the Av-
erage Hausdorff Distance (AHD) was also calculated to further evaluate the 
segmentation results. The AHD measures the distance between the ground true 
set (X) (i.e., label/mask images) and the predicted set (Y) (i.e., predicted label 
from network). It involves the calculation of two directed HDs: 1) the directed 
HD from X to Y, given by the sum of the shortest distances between all points of 
X and Y divided by the number of points in X, and 2) the directed HD from Y to 
X, which is calculated in a similar way with the roles of X and Y switched. AHD 
is the mean of these two directed HDs. Obviously, the smaller the AHD is, the 
more similarity between the two sets. Therefore, the final metrics were the Dice 
score for the predicted mask images, and the Dice score and AHD for the “Con-
tour” images. 

3. Results 
3.1. U-Net & PDN Comparison 

The performance of these two networks was directly compared using the same 
training (the first 62 cases) and testing (the last 16 cases) sets, each with 200 
training epochs. The mean metrics scores of the sixteen testing cases for each 
network are shown in Table 2. The training time of each network is also pre-
sented in the last column of Table 2. 
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Table 2. Mean ± standard deviation of the segmentation performance using the U-Net 
and PDN, with the first 62 cases being the training set, and the last 16 cases the testing set. 
A larger mean Dice score and a smaller mean AHD indicate better segmentation quality. 
The first Dice was computed for the predicted mask images directly from the output of 
the network with dimensions 64 × 64 × 64 × 1. The “Contour” metrics were computed 
after the predicted mask images were resized back to the original image dimensions (i.e. 
512 × 512 × 64 × 1). 

Network Dice Contour Dice Contour AHD Train (min) 

PDN 0.865 ± 0.011 0.857 ± 0.011 1.575 ± 0.373 31.4 ± 0.08 

U-Net 0.866 ± 0.016 0.858 ± 0.015 1.675 ± 0.769 27.9 ± 0.05 

 
The similarity Dice score of predicted images and “Contour” images were al-

most the same for both networks. However the mean and standard deviation of 
“Contour AHD” for the PDN were respectively 6.0% and 51.5% better than that 
for the U-Net. Surprisingly, the training times for both networks were around 30 
minutes for 200 epochs and only 3 more minutes for PDN although the PDL is 
much complicated than the TCL. The prediction time was negligible relative to 
the training time for both networks. Segmented livers on one slice of two testing 
cases for these two networks are shown in Figure 3. 
 

 

Figure 3. Segmented liver on one slice of two testing cases. From left to right were 
contoured by the expert (i.e., Label), U-Net and PDN, respectively. 

3.2. Challenging Cases 

The segmentation results for two challenging cases, one with a fiducial and the 
other with a hole inside the contour are shown in Figure 4. As demonstrated in 
Figure 4, neither U-Net nor PDN was able to achieve similar segmentation of 
the liver containing a fiducial or a hole to that performed by human experts. 
However, the PDN did outperform the U-Net for the “hole” case as the PDN did 
not accidently include the contrast from stomach into the liver contour as seen 
in the lower panel of Figure 4. 
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Figure 4. Segmentation results with a fiducial (upper panel) or a hole (lower panel) inside 
the liver. From left to right are contoured by the experts (i.e., Label), U-Net and PDN, 
respectively. 

4. Discussion 

Results for the direct comparison of these two networks in Table 2, show that 
the PDN outperformed the U-Net for the “Contour AHD”, but the Dice score 
was similar for these two networks. This difference could be explained by how 
these two image quality indexes were defined. The Dice score is related to the 
number of true positive, false positive and false negative of the predicted images. 
Given that most voxels in the ground truth and predicted images were back-
ground voxels (i.e., not part of the contours and with a value of 0 for the color 
dimension), the number of true positive was relatively large. As a result, the Dice 
score only changed slightly even when the numbers of false positive and false 
negative decreased. 

The AHD, on the other hand, is the average distance between the liver con-
tours of the ground-truth and the predicted mask images and is independent of 
the background. The smaller “contour AHD” of the PDN in Table 2, therefore, 
indicated that the contours predicted by the PDN were closer to the ground 
truth than that by the U-net. This reduction of AHD was attributed to the fact 
that checkerboard artifacts in the predicted mask image from the U-Net were 
lessened by the PDN. This was evident in both Figure 3 and Figure 4. Visual 
inspection of the contours in both figures clearly demonstrated that the PDN 
could overcome the checkerboard artifacts and smooth the “zigzag” edges, and 
thus shorten the averaged distance between the predicted and ground truth 
mask images. 

Better segmentation results do not mean that the PDN was a perfect learning 
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network. As shown in Figure 4, neither the U-Net nor the PDN was able to 
identify the fiducial and hole between liver lobes. We believe this is due to one 
simple fact. That is, the fiducials and holes are normally not contoured separate-
ly by human experts (in order to save time) and are included as part of the liver 
contours. As a result, the fiducials and holes were not contoured in the training 
cases of this study. During the testing, although both networks thought the fidu-
cials and holes were not part of the liver, neither network had learned how to go 
around them. This problem might not be resolved soon once the fiducials and 
holes are not contoured by human experts. In the meantime, post image- 
processing can be used to the fix those incomplete contours due to the presence 
of fiducials and holes. 

Although the liver segmentation method using the PDN described in this pa-
per is promising, more work needs to be done to match the performance of hu-
man contouring. Moreover, a better performance metric is needed to assess the 
segmentation result when the volume of contours is much smaller than that of 
the whole CT volume so that the number of true positive won’t be skewed by the 
presence of a large number of background voxels. At the same time, evaluations 
in clinical settings are required to measure its clinical efficacy for automatic liver 
segmentation. For future research, we plan to evaluate the performance includ-
ing the accuracy and efficiency of PDN for more complex data sets by increasing 
the dimensions of input images. We also plan to further improve the optimiza-
tion performance by including the AHD in the loss function and adding another 
network structure such as Recurrent Neural Networks (RNNs) that can memor-
ize and learn from past events. 

5. Conclusion 

In conclusion, the PDN demonstrated superior performance for liver segmenta-
tion in comparison to the U-net. The liver contours segmented by the PDN have 
better quality and are more conformal. Particularly, the PDN can overcome the 
checkerboard artifacts and smooth the zigzag edges of the contours that are 
commonly seen in the contours segmented using the basic U-Net. This better 
performance is attributed to the PDN’s establishment of direct relationships 
among adjacent pixels on the up-sampling path. The fiducials and holes inside 
the liver were not successfully identified during the auto-segmentation, which 
will be addressed in future studies. 
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