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Abstract 
This paper presents a game theory-based method for predicting the outcomes 
of negotiation and group decision-making problems. We propose an exten-
sion to the BDM model to address problems where actors’ positions are dis-
tributed over a position spectrum. We generalize the concept of position in 
the model to incorporate continuous positions for the actors, enabling them 
to have more flexibility in defining their targets. We explore different possible 
functions to study the role of the position function and discuss appropriate 
distance measures for computing the distance between the positions of actors. 
To validate the proposed extension, we demonstrate the trustworthiness of 
our model’s performance and interpretation by replicating the results based 
on data used in earlier studies. 
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1. Introduction 

The ability to predict the outcome of a negotiation is an important topic in var-
ious fields, including finance, healthcare, and political sciences. Decision or pol-
icy makers can use these forecasts to take the necessary measures before the re-
sults are known or to evaluate the possible outcomes of different positions they 
may choose to take. While policy experts typically use intuition to predict the 
future outcome of such problems, a mathematical framework is required to bet-
ter forecast the outcome of a group decision problem that is reproducible, ex-
plainable, and free of bias [1] [2] [3]. 

In the literature, game theory-based models suggest that rational agents can be 
used to model negotiation or group decision-making problems, as these agents 
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can adapt their positions to achieve the Nash equilibrium in each round. This 
allows stakeholders to have a reasonable and explainable forecast of the problem, 
enabling them to allocate more resources to their initial position, block other 
actors, form alliances with critical actors, or take a more extreme position to 
achieve their goals. 

One of the best-known game theory-based methods for prediction was intro-
duced by Bruce Bueno de Mesquita (BDM) in 1980 [4]. Later in 1994, he described 
the model in more detail [5]. Soon it was clear that the extreme predictive accura-
cy of the model seems to be more than a claim. 

Bruce Bueno de Mesquita (BDM) introduced a well-known game theory-based 
method for prediction in 1980 [4]. The model was later explained in detail in [6] 
and the model’s predictive accuracy was tested by replicating results based on da-
ta used in previous studies. However, the model was limited to one-dimensional 
problems, where the actors’ positions are evaluated on a single subject. This li-
mitation makes it difficult to predict the outcome of complex negotiations in-
volving multiple issues. Therefore, there is a need for models that can address 
multi-dimensional problems and provide more accurate predictions. To address 
this need, a recent work proposed an N-dimensional model to tackle more com-
plex problems involving multiple issues [7]. 

To predict the outcome of group decision-making problems, other models 
have also been developed. For example, in [8], the expected utility model was used 
to predict the outcome of Iran-US conflicts over various issues such as Iran’s 
nuclear program and its stance toward Israel. Eftekhari developed another game 
theory-based prediction tool called Preana, which is based on BDM’s model and 
uses a reinforcement learning mechanism to model the players’ reasoning ability 
with regard to taking risks [9]. 

In [10] [11], a method for collecting data on European Union legislative initi-
atives was established, including the 2004 working-time-proposal, called Deci-
sion Making in the European Union (DEU) datasets. These datasets, DEU I and 
DEU II, are based on expert interviews and contain information on 331 conten-
tious issues, as well as the policy positions and importance levels for each issue. 
In addition, [12] utilized expert interviews, text analysis, and media coverage to 
determine issue salience in EU legislative politics. Furthermore, [13] studied in-
terstate bargaining related to major reforms of the Economic and Monetary Un-
ion through the EMU Positions dataset, which covers problems that were nego-
tiated between 28 EU member states and significant EU institutions from 2010 
to 2015, including their position and salience. The use of these datasets allows 
for the analysis and prediction of the EU legislative decision-making process, as 
well as the identification of influential actors and contentious issues. These in-
sights can help stakeholders better allocate resources and develop effective strat-
egies to achieve their goals in EU policy-making. Additionally, the combination 
of various data collection methods, such as expert interviews and text analysis, 
can improve the accuracy and comprehensiveness of the datasets. 
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To further advance the research in modeling negotiation and group decision- 
making problems, another direction will be explored in this paper to incorporate 
the generalized form of the position attribute in the model. The current model 
assumes that actors’ positions are single points in the position spectrum, limiting 
them to have discrete values. To address this problem, the concept of position in 
the model will be generalized so that the actors are able to have continuous tar-
gets distributed over the position spectrum. Moreover, different possible posi-
tion functions will be explored to study the skewness of the position function. 
We aim to define appropriate case studies with the assistance of subject matter 
experts to evaluate the capability of the expanded model. The integration of ge-
neralized position functions into the model has the potential to broaden its ap-
plicability to real-world negotiation and group decision-making problems. Fur-
thermore, it will enable actors to express a more nuanced range of positions and 
preferences, making the decision-making process more representative of the real 
world. 

The rest of the paper will describe the game theory-based predictive analytics 
model using the distributed position function. Section II explains the structure 
of the model. The extended model’s formulation is presented in Section III. Sec-
tion IV provides the case studies and their analysis, and finally the last section 
concludes the paper and offers some suggestions for future research. 

2. Background and Structure of the Model  

This section provides an overview of the BDM model, including its structure and 
terminology. In this context, a problem is defined as a situation involving actors 
with varying positions, capabilities, and salience. An issue refers to a specific point 
of dispute or contention within a problem. An actor is any entity that utilizes its 
power to achieve a goal regarding an issue in a problem, and its position represents 
its stance on each issue in an N-dimensional problem. The actor’s capability refers 
to its level of power, wealth, or influence, while salience indicates the importance 
of the problem to the actor. The utility function measures the desirability of each 
position based on the actor’s supported position, and risk is a parameter used to 
assess an actor’s willingness to take risks. 

In the BDM model, each actor is assumed to have normalized attributes of ca-
pability, salience, and position. Capability and salience range from 0 to 1, and de-
sired positions are taken along a single dimension. The normalization of these 
attributes ensures that all actors’ metrics are on the same scale, resulting in a spec-
trum of possible solutions based on the stakeholders’ points of view on each is-
sue. For more details on the one-dimensional problem’s definition of terms and 
formulation, please see [6] [7]. 

2.1. Expected Utility 

The Expected Utility Model described in [1] [7] computes the expected utility of 
actor i against actor j as the sum of expected utilities in two different scenarios: 
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when i challenges j and when it does not. In the challenging case, the expected 
utility includes two possible outcomes, depending on whether j decides to chal-
lenge back. The probability that j does not challenge i is represented by ( )1 js− , 
while js  represents the probability of a challenge. The utility gained in case of 
success and failure for actor i is denoted as i

siU  and i
fiU , respectively, in (2). 

When i is not challenging j, the expected utility includes two different scena-
rios as well, which are represented in (3). In the first scenario, actor i goes through 
the status quo with a probability of Q, where Q is either 0.5 or 1, depending on 
the setting. The utility gained in the status quo is i

sqU . In the second scenario, 
actor i does not go through the status quo with a probability of ( )1 Q− . In this 
scenario, actor i can experience a better or worse situation with a probability of 
T or ( )1 T− , respectively. T is set to 1 when ( ) ( ), ,dist i dist i jµ < , where μ is 
the median voter position, and 0 otherwise. 

The structure of the model is visualized as a tree in Figure 1. The computation 
of the expected utility is shown in (1), where ( )i

ij c
EU  and ( )i

ij nc
EU  represent 

the expected utilities in the challenging and non-challenging cases, respectively. 
It is worth noting that the definition of basic utilities i

siU , i
fiU , i

sqU , i
biU , 

i
wiU  for a two-dimensional model are provided in the next section. For more 

details on the one-dimensional model, the reader can refer to [7] [9]. 

( ) ( )i i i
ij ij ijc nc

EU EU EU= −                     (1) 

( ) ( )( ) ( )1 1i i i i i i
ij j ij si ij fi j sic

EU s p U p U s U= + − + −             (2) 

( ) ( ) ( )( )1 1i i i i
ij sq bi winc

EU QU Q TU T U= + − + −             (3) 

 

 
Figure 1. Game tree in expected utility model. 
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The basic utilities i
siU , i

fiU , i
sqU , i

biU , i
wiU  are defined as follow. For more 

details on the formulation please see [1] [6] [7]. 
If actor i is contemplating a new position that differs from its current position, 

its preferred outcome, then its utility function can be defined as a decreasing 
function of the distance between the two positions. Hence, the utility function is 
highest for actor i when the alternative position is the same as its current posi-
tion and is lowest when the two positions are at opposite ends of the position 
range, as viewed by actor i. The equation for this function is given below: 

( )i
ij i ju f x x= − −                       (4) 

where ix  is actor i’s position and f is any arbitrary descending function. The 
utility function i

iju  demonstrates how much actor i attaches to his own policy 
portfolio. The specific function f that is used in our model is: 

( ) = 1 2 irf σ σ−                        (5) 

where the risk parameter, denoted by ir , ranges from 0.5 to 2 and will be de-
fined mathematically in a subsequent section. This parameter is used to assess an 
actor’s willingness to take risks in the decision-making process. Players who hold 
positions with less support from other players are considered more risk-seeking, 
ideological, or ambitious, and are likely to have lower values of ir  (minimum 
value of 0.5). Conversely, players who are risk-averse tend to hold positions that 
are closer to the current likely outcome and do not have to engage in conflicts with 
other players to reach an agreement and are likely to have higher values of ir  
(maximum value of 2) [8]. Substituting (5) into (4), the utility function would be-
come: 

1 2 iri
ij i ju x x= − −                         (6) 

where [ ]1,1i
iju ∈ −  and ix  and jx  are normalized so that [ ], 0,1i jx x ∈ . The 

figure depicted in Figure 2 illustrates the alterations in the utility function of an 
actor as it moves away from its intended position, assumin that the actor’s risk is 
given by 1ir = . The application of the risk parameter is reflected in the utility 
functions of stakeholders, as shown in Figure 3. The introduction of risk prefe-
rences in stakeholder behavior leads to changes in their utility assessments. 
Stakeholders who are more willing to take risks exhibit utility functions with a 
convex shape, resulting in a rapid decline in their utility as they move further 
away from their preferred position. In contrast, stakeholders who are risk-averse 
exhibit utility functions with a concave shape, where their utility decreases slow-
ly as they move away from their ideal position. 

2.2. Median Voter Position 

In a voting process to determine the median voter position, each actor’s level of 
support for their preferred position must be assessed. Actor i casts a vote be-
tween positions j and k, indicating their preference for one over the other. The 
vote is calculated as follows: 
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Figure 2. Utility function for two actors at desired positions of 0.7 and 0.5. 
 

 

Figure 3. The impact of risk parameter on the shape of utility function for an actor at a 
position of 0.6. The degree of risk aversion or risk seeking behavior exhibited by the actor 
will determine its utility function’s curvature. 

 

( )i i i
jk i i ij ikv c s u u= −                        (7) 

where i
iju  is the utility function of actor i for challenging actor j from i’s point 

of view, ic  and is  are actor i’s capability and salience, respectively, and i
jkv  

is the resulting vote. By replacing (6) into (7), we can obtain the following ex-
pression: 

( )2i
jk i i i k i jv c s x x x x= − − −                   (8) 

The Condorcet method of voting involves comparing the preference level of 
one position over another in a pair-wise voting system to determine which posi-
tion receives the most votes. In this method, the position that receives the most 
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votes is declared the winner. The preference level achieved by each position is 
determined by the vote cast by each actor, as described in the previous step. This 
process helps to identify the position that has the most support among the actors 
and is therefore most likely to be accepted as the median voter position. It is 
important to note that the median voter position may not necessarily be the op-
timal solution for the problem at hand, but rather a compromise that satisfies 
the preferences of the majority of actors. Using the preference level achieved by 
position j compared to position k, the median voter position μ can be obtained 
by finding the position with the most support. This calculation can be performed 
using the following equation: 

1, ,

n
i

jk jk
i i j k

v v
= ≠

= ∑                          (9) 

where jkv  is the votes cast for j versus k from all other players’ point of view. 

2.3. Probability of Success 

When two actors i and j challenge each other, the probability of success ijp  can 
be expressed as the ratio of the total support received by one actor over the other: 

|

1

ki kj

k
ijk u u

ij n
ijk
k

v
p

v
>

=

=
∑
∑

                      (10) 

The probability of success, ijp , can be interpreted as the amount of support 
received by actor i in comparison to actor j [14]. By substituting (8) into (10), 
the i’s probability of success over j can be achieved by: 

( )
( )

0

1

| k k k j k ik arg
ij n

k k k j k ik

c s x x x x
p

c s x x x x
>

=

− − −
=

− − −

∑
∑

             (11) 

where kc  and ks  are the capability and salience of player k in the issue. The 
numerator of (11) sums up the preference votes of all actors who prefer actor i 
over actor j. The denominator sums up the support for both actors, resulting in a 
probability value between 0 and 1. 

2.4. Risk 

The risk value is used to measure an actor’s willingness to take risks in order to 
diverge from the median voter position. Actors with desired positions closer to 
the median are less likely to require intense negotiations and are therefore less 
likely to take risks, resulting in a risk-averse strategy. Conversely, actors with 
weaker support and weaker alliances are more likely to take risks, resulting in a 
risk-seeking strategy. The risk term for actor i, denoted as ir  involves the cal-
culation of risk value iR  given below: 

1, 1, 1,

1, 1,

2 max min

max min

n n n
i i i
ji ji jiiij j i j j i j j i

i n n
i i
ji jiii j j i j j i

EU EU EU
R

EU EU

= ≠ = ≠ = ≠

= ≠ = ≠

− −
=

−

∑ ∑ ∑

∑ ∑
         (12) 
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where [ ]1,1iR ∈ − . Once iR  is obtained, the risk term ir  can be computed us-
ing a transformation in (13) which guarantees 0.5 2ir< < . Initially, all actors are 
considered to be risk neutral and assigned a risk term of 1, and it is recalculated 
for each round. 

1 3
1 3

i
i

i

Rr
R

−
=

+
                       (13) 

2.5. Utility of Success and Failure 

In this section, we introduce the basic utilities consisting of i
siU , i

fiU , i
sqU , 

i
biU , and i

wiU . Given the assumption that actor i either defeats or wins over ac-
tor j, the corresponding utilities of success siU  and failure fiU  are derived by 
actor i as follows: 

2 4 0.5 0.5 iri
si i jU x x = − − −                 (14) 

2 4 0.5 0.5 iri
fi i jU x x = − + −                 (15) 

where ( )2 4 0.5 2ir i
siU− ≤ ≤  and ( )2 2 4 0.5 iri

fiU− ≤ ≤ − . Referring to Figure 1, 
it can be observed that if actor i chooses not to challenge actor j, actor j may ei-
ther maintain their current position as status quo or move, which may result in a 
better or worse situation for actor i, and can be associated with the utilities biU  
and wiU , respectively. Therefore, the utilities i

biU , i
wiU , and i

sqU  are defined 
as follows to satisfy the condition i i i

wi qi biU U U≤ ≤ : 

( )2 4 0.5 0.25
iri

bi i i jU x x xµ = − − − + −           (16) 

( )2 4 0.5 0.25
iri

wi i i jU x x xµ = − + − + −          (17) 

where ( )2 4 0.5 2ir i
biU− ≤ ≤  and ( )2 2 4 0.5 iri

wiU− ≤ ≤ − , and μ is the median 
voter position which can be calculated using (9) to find the position with the 
most support. In a case where i does not challenge j and j does not move, the 
status quo utility is realized and is defined as: 

( )4 02 4 2 4 0.5
8

i
i

r
ri

sqU − = − = −  
            (18) 

The value of parameter Q in (3) has been set to different values (0.5 or 1) in 
various research papers. For instance, in [15], Q is considered as 1, while in [16], 
it is taken as 0.5. However, in our study, we have assumed Q to be 1. On the 
other hand, parameter T determines whether the situation gets better for actor i 
or not. If ( ) ( ), ,dist i dist i jµ < , then T is set to 1, indicating that the situation 
has improved for actor i. Otherwise, if ( ) ( ), ,dist i dist i jµ ≥ , then T is set to 0. 

2.6. Offer Categories  

The expected utilities are utilized to determine the negotiation outcomes among 
actors, which can fall into one of four categories: conflict, capitulation, compro-
mise, or stalemate. Figure 4 illustrates these scenarios and the corresponding ex-
pected utilities for each actor. Further details on each scenario are defined below. 
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Figure 4. Expected utility model scenarios from actor i’s viewpoint. 
 

• Conflict: When actors i and j both believe that they have the upper hand, a 
conflict is likely to occur, and the outcome of the conflict is determined based on 
the following conditions:  

- If i j
ij jiEU EU> , actor j moves to i’s position.  

- If i j
ij jiEU EU< , actor i moves to j’s position.  

- Actor j moves to i’s position when i j
ij jiEU EU> .  

- Actor i moves to j’s position when i j
ij jiEU EU< .  

• Capitulate: If 0i
ijEU > , 0j

jiEU < , and i j
ij jiEU EU< , actor j is expected 

to capitulate and accept actor i’s current position. 
i
ij iproposal x=                       (19) 

• Compromise: If actor i has the upper hand and actor j is willing to agree to an 
acceptable offer, they compromise in favor of actor i, and the offer is closer to i’s 
position. This scenario occurs when 0i

ijEU > , 0j
jiEU < , and i j

ij jiEU EU> . 

( )
j

ij
i j i

ji

EU
x x x

EU
∆ = −                      (20) 

i
ij jproposal x x= + ∆                      (21) 

• Stalemate: If both actors believe that they cannot beat the other, then they do 
not move from their current positions, resulting in a stalemate. This scenario 
happens when 0i

ijEU < , 0j
jiEU < . 

2.7. Offer Selection  

At the end of each round, actors receive offers from others, and the question is 
which offer to accept to determine each actor’s position for the next round. Mes-
quita [17] and Baranick [18] suggested that the actor should choose the offer 
that requires the smallest possible movement. We implemented this idea and as-
sumed that the minimum move should be greater than zero unless all received 
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offers are the same as the actor’s current position. Future studies may investigate 
for a more efficient offer selection algorithm. 

3. Model Extension 

Our main focus in this section is to update the formulation, extend the concept 
of position, and introduce corresponding distance measures. In the current 
model, the position of actors is assumed to be a single point or a discrete value in 
the position spectrum, which limits the flexibility of the model. To address this 
limitation, we propose an approach to replace the discrete or spike-like positions 
with more flexible alternatives. 

One way to realize this idea is to consider each actor’s position function as a 
Gaussian distribution [19] [20], the average (mean value) of which is assumed to 
be the initial position and its variance could be considered proportional to the in-
verse of salience. This approach would allow the position of actors to be represented 
by a continuous distribution rather than a discrete value. The Gaussian distribu-
tion is a popular choice for modeling position functions in various fields, such as 
signal processing, machine learning, and statistics. It offers several advantages 
over the current model, such as improved accuracy, better handling of uncer-
tainty, and greater flexibility. 

To incorporate this modification into the existing model, we need to update 
the formulation accordingly. Specifically, we need to redefine the position of ac-
tors as a continuous function rather than a discrete value. We also need to in-
troduce a corresponding distance measure that accounts for the uncertainty in 
the position function. One possible distance measure is the Bhattacharyya dis-
tance [21], which is commonly used for comparing Gaussian distributions. This 
distance measure takes into account both the mean and variance of the position 
functions, and provides a more accurate measure of the similarity between two 
positions. For a comprehensive understanding of the position function concept, 
the reader is referred to Mousavi’s dissertation (2023) [22]. 

3.1. Position Function  

In this subsection, we discuss distributions that can be defined on an interval [0, 
1] and are suitable for modeling actors’ position function. The position of actors 
in a dynamic network is a critical factor that determines their behavior and influ-
ence. While in the current model, the position of actors is represented by a single 
point or a discrete value, a more realistic approach is to model it as a probability 
distribution ( )ip x , where actor i can take a continuous position towards the 
position spectrum. This allows us to capture the uncertainty and variability of 
actors’ positions [22]. 

In the context of modeling actors’ position functions, certain distributions can 
be utilized that are defined on the interval [0, 1] and exhibit skewness towards ei-
ther direction. Among the candidate distributions, truncated normal, beta family, 
and triangular distributions are particularly suitable for this purpose. The upcom-
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ing sections will introduce each of these distributions in detail. 

3.1.1. Truncated Normal Distribution 
One way to realize this idea is to consider each actor’s position function as a Gaus-
sian distribution. This distribution has a bell-shaped curve and can be skewed to-
wards either direction. It is bounded within the interval [0, 1] and can be trun-
cated at any point within this range. The parameters of the distribution, namely 
the mean, variance, and truncation points, can be estimated from the data or set 
based on prior knowledge. 

In order to incorporate Gaussian distribution into the existing dataset, we can 
assign the initial position as the mean of the distribution and the variance can be 
set to be proportional to the inverse of salience. The mathematical formulation 
of the Gaussian distribution is presented below: 

( ) ( )2

2
1 exp

22
x

i i

x m
p p x

σσ

 −
 = = −
 
 π

               (22) 

where xm  represents the mean value and 2σ  represents the variance of the 
Gaussian distribution. 

The position distribution of actors is illustrated in Figure 5 using Gaussian 
functions with varying means and variances. The figure reveals that actors with 
higher salience, and thus lower variance, are less likely to share a common posi-
tion with other actors. 

By applying lower and upper bounds to the variable in the normal distribution, 
we can obtain the truncated normal distribution. The mathematical representa-
tion of the truncated normal distribution is as follows: 

( ) 1; , , ,

x

f x A B
B A

µφ
σµ σ

µ µσ
σ σ

− 
 
 =

− −   Φ −Φ   
   

           (23) 

( ) 21 1exp
22

x xφ =
π

− 
 

                  (24) 

( ) ( )( )1 1 erf 2
2

x xΦ = +                   (25) 

where μ and σ represent the mean and standard deviation of the normal distri-
bution, respectively, and A and B are the lower and upper bounds of the trun-
cated distribution. ( ).φ  and ( ).Φ  denote the probability density function and 
cumulative distribution function of the standard normal distribution, respec-
tively. 

By setting A = −∞ , we get 0A µ
σ
− Φ = 

 
. Similarly, if B = +∞ , we obtain 

1B µ
σ
− Φ = 

 
. Thus, we can use the truncated normal distribution to represent 

one-sided position functions. 
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Figure 5. Two actors’ position as Gaussian distribution functions with different means and variances. 
 

Figure 6 shows an example of the truncated normal distribution with differ-
ent lower and upper bounds. We can observe that the probability density func-
tion of the truncated normal distribution is zero outside the given bounds. 

3.1.2. Beta Distribution 
Another family of distributions that can be used for modeling position functions 
is the beta distribution. This distribution can be bounded within the interval [0, 
1], and its shape is flexible, allowing it to be either skewed or symmetric. The 
beta distribution has two shape parameters that control the skewness and kurto-
sis of the distribution, and these parameters can be estimated using maximum 
likelihood or Bayesian methods. 

The beta family of distributions can be defined over a general interval (A, B) 
by the following equation: 

( ) ( )
( ) ( )

1 11; , , , x A B xf x A B
B A B A B A

α βα β
α β

α β

− −Γ + − −   =    − Γ ⋅Γ − −   
      (26) 

where α and β are the shape parameters, and A and B denote the interval end-
points. However, if the interval is confined to [0, 1], using 0A =  and 1B =  in 
(26) yields the standard Beta distribution: 
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Figure 6. Example of truncated normal distribution with varying 
mean values. The variance (σ2) for all curves is constant at 0.1. 

 

( )
( )
( ) ( ) ( ) 11 1 0 1

; ,
0 otherwise

x x x
f x

βαα β
α β α β

−− Γ +
− ≤ ≤= Γ ⋅Γ




         (27) 

where μ and σ can be calculated as: 

αµ
α β

=
+

                         (28) 

( ) ( )
2

2 1
αβσ

α β α β
=

+ + +
                   (29) 

An alternative formulation of the beta distribution involves reparameterizing it 

in terms of αµ
α β

=
+

 and φ α β= +  [23]. The distribution can then be ex-

pressed as: 

( ) ( )
( ) ( )( ) ( )( )1 11; , 1 , 0 1

1
f x x x xµ φµφφ

µ φ
µφ µ φ

− −−Γ
= − ≤ ≤
Γ ⋅Γ −

     (30) 

where 0 1µ< <  and 0φ > . Using this formulation, μ can be used as the mean 
parameter, and φ  can be interpreted as the precision parameter. Greater preci-
sion yields a smaller variance if μ is fixed. Figure 7 illustrates the beta distribu-
tion for various combinations of μ and φ . The figure presents the probability 
density function of the standard beta distribution for different combinations of 
its shape parameters, μ and φ . The beta distribution is a flexible distribution 
that can model a variety of data types and is particularly useful for modeling data 
that are bounded between 0 and 1. In subplot (a), we have fixed 5φ =  and va-
ried μ from 0.05 to 0.95 in increments of 0.25. In subplots (b), (c), and (d), we 
have the same setup, but with φ  fixed at 15, 50, and 100, respectively. As μ in-
creases, the peak of the distribution shifts towards the right and the tails become 
thinner. As φ  increases, the distribution becomes more concentrated around 
the mean and the tails become even thinner. The figure provides insights into  
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Figure 7. Variations in the Beta distribution function with changes in the mean and precision parameters μ and φ , respectively. 
 

how the beta distribution changes with varying values of its shape parameters 
and can aid in selecting appropriate parameter values for modeling a position for 
a given actor. The utilization of beta distribution as a position function allows 
for the interpretation of the highest point of the distribution as the desired posi-
tion, while the degree of sharpness in its tail can be regarded as an indication of 
the level of significance (salience) of the issue to the actor. 

3.1.3. Triangular Distribution 
In addition to the beta distribution, the triangular distribution is another candi-
date for modeling actors’ position function. This distribution is particularly use-
ful when prior knowledge about the range and mode of the position function is 
available. The triangular distribution can be bounded within the interval [0, 1] 
and is characterized by three parameters: the lower and upper bounds, and the 
mode. The skewness of the position can be adjusted by controlling the values of 
the lower and upper bounds. 

The triangular distribution is a continuous probability distribution over the 
interval [a, b] and can be defined as follows: 
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( )

( )
( )( )

( )
( )( )
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2
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2
,

0 .

x a
x a

a x c
b a c a

f x a b c x c
b a

b x
c x b

b a b c
b x

<
 − ≤ < − −

= =

−
 −

< ≤
− −

 <

              (31) 

where ( ),a∈ −∞ ∞  is the lower limit, b a>  is the upper limit, and a c b≤ ≤ . 
Parameter c is the mode of the distribution and can be considered as the central 
position taken by the actor. To utilize this distribution as a position function li-
mited within [0, 1], it is necessary to select the values of parameters a and b from 
the interval [ ]1,1a∈ −  for our specific purposes. The skewness of the position 
can be set by parameters a and b. Figure 8 displays the triangular distribution 
for various combinations of parameters a, b, and c over the interval [0, 1]. 

Using either the beta or the triangular distribution as a position function, the 
peak of the distribution can be considered as the desired position, and the thin-
ness of its tail can represent the level of salience of the issue to the actor. The 
choice of which distribution to use depends on the availability of prior know-
ledge about the position function and the desired level of control over the skew-
ness of the distribution. Figure 8 illustrates the flexibility of the triangular dis-
tribution in this regard. We can observe that as the difference between the mode 
and the midpoint of the interval ( ) 2a b+  increases, the distribution becomes 
more skewed. 

3.2. Distance Measure  

Various techniques can be employed to quantify the distance between two sto-
chastic variables and can be applied in our model to evaluate the distance be-
tween position functions. The choice of distance metric can depend on the na-
ture of the data and the research question being addressed. In the following, we 
will examine a few of them. 

 

 

Figure 8. Triangular distribution function with varying parameters a, b, and c. 
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3.2.1. Lukaszyk-Karmowsky Distance Function 
One approach to measure the statistical distance between two random variables 
is using Lukaszyk-Karmowsky function [24]. The distance between two variables 
X and Y, denoted by D, can be obtained using the following equation: 

( ) ( ) ( ), d dD X Y x y f x g y x y
∞ ∞

−∞ −∞
= −∫ ∫                (32) 

where ( )f x  and ( )g y  represent the probability density functions of X and 
Y, respectively. 

3.2.2. Bhattacharyya Distance Function 
The Bhattacharyya distance function is another approach to calculate the statis-
tical distance between two random variables [21]. With p(x) and q(y) representing 
probability density functions of random variables X and Y, respectively, the 
Bhattacharyya distance can be defined as: 

( ) ( ) ( )( ), , ln ,BD X Y D p q BC p q= = −               (33) 

where the Bhattacharyya coefficient can be achieved by: 

( ) ( ) ( ), dBC p q p x q x x= ∫                    (34) 

It can be seen that 0 1BC≤ ≤  and 0 BD≤ ≤ ∞ . Note that the Bhattacharyya 
coefficient ranges from 0 to 1, with a value of 0 indicating that the two distribu-
tions have no overlap, and a value of 1 indicating that the two distributions are 
identical. Therefore, the Bhattacharyya Distance is defined as the negative loga-
rithm of the Bhattacharyya coefficient, and it ranges from 0 to infinity, with a 
value of 0 indicating that the two distributions are identical, and larger values 
indicating greater dissimilarity between the distributions. 

3.2.3. Cosine Similarity Based Distance Function 
The cosine similarity method can be used to determine the distance between two 
distribution functions. It measures the angle between two vectors to determine 
their similarity. To compute the cosine similarity based distance between two 
random variables X and Y, the sum of squares for variable X, the sum of squares 
for variable Y, and the sum of the cross-product for X and Y are needed [25]: 

( ) 1

2 2

1 1

, 1 1
.

n

i i
i

n n

i i
i i

A B
A BD X Y
A B

A B

=

= =

⋅
= − = −

∑

∑ ∑
               (35) 

where A and B are the vectors representing the two functions defined over two 
variables X and Y, respectively, and n is the number of data points the functions 
are sampled with. 

The cosine similarity and distance measures have some limitations. They as-
sume that the data are normalized and that the vectors are of equal length. Fur-
thermore, they do not consider the shape of the distributions and may not be 
appropriate for certain types of data, such as ordinal or categorical data. In such 
cases, other distance measures, such as the Bhattacharyya distance or the Lukas-
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zyk-Karmowsky distance, may be more appropriate. 

3.2.4. Normalized Similarity Measure 
One potential distance measure that has been proposed in the literature is based 
on the minimum of two functions [26] [27]. This measure calculates the distance 
between two probability density functions by integrating the minimum of the 
two functions over their common domain. The resulting distance measure is a 
non-negative value that ranges from 0 to 1, where 0 indicates identical distribu-
tions and 1 indicates completely dissimilar distributions. 

Formally, let ( )p x  and ( )q x  be two probability density functions with a 
common domain [ ],a b . The minimum-based distance measure ( ),D X Y  be-
tween ( )p x  and ( )q x  is given by: 

( ) ( ) ( ){ }1, 1 min d
b

a
D X Y p x q x x

b a
= −

− ∫               (36) 

where p and q representing probability density functions of random variables X 
and Y, respectively. 

3.3. BDM Model Explanation Using the Proposed Model 

By incorporating the Lukaszyk-Karmowsky distance function into the BDM 
model and treating the discrete position representation as a position function 
with a Dirac delta function, the same results can be achieved. The position func-
tion for actor i can be defined as: 

( ) ( )i i ip p x x xδ= = −                      (37) 

where 0x  is the initial position of actor i. Figure 9 represents two actors in the 
BDM position model using Dirac functions. Previously, the distance between the 
positions of two actors i and j was obtained using: 

( ),i j i jD x x x x= −                      (38) 

However, using (32) to calculate the distance between two positions, we get 
the same result: 

 

 

Figure 9. Position of BDM model as Dirac delta functions. 
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( ) ( ) ( )

( )
0 0

0 0 0 0

, d d

d

D X Y x y x x y y x y

y x y y y y x

δ δ

δ

∞ ∞

−∞ −∞

∞

−∞

= − − −

= − − = −

∫ ∫

∫
          (39) 

where 0x  and 0y  are actors i and j’s initial positions (discrete positions), re-
spectively. 

3.4. Distance of Median Voter Position to Actors 

The median voter position with the maximum support can be calculated using 
(9). However, to calculate i

biU  and i
wiU , the distance between the median voter 

position ( 0µ ) and the distributed position function, ip , needs to be determined. 
In order to calculate this distance, we can consider a position function for the 
median voter position as a truncated normal distribution with standard devia-
tion of 0.5σ =  and average of 0µ µ= . The distance between the actor’s posi-
tion and the median voter position can then be calculated using a distance 
measure, such as the Lukaszyk-Karmowsky Distance Function. 

3.5. Complexity Analysis 

In dealing with problems that involve large number of issues (dimensions) 
and/or large number of actors per issue/dimension, the computational complex-
ity of the problem becomes increasingly important. To demonstrate the analysis 
of the model’s time complexity, a simple pseudo code is provided in Algorithm 
10. Table 1 displays the complexity of different parts of the algorithm. The over-
all computational complexity of the algorithm is ( )3O M , where M is the num-
ber of actors. The main calculation in the for loops involves calculating the dis-
tance functions using the Lukaszyk-Karmowsky Distance Function. This in-
volves calculating dual integral to find the distance between two position func-
tions. To reduce computational time, we can pre-calculate the pairwise distance 
between all actors at the beginning of each round and store them in a lookup ta-
ble for later retrieval. This optimization can reduce the time complexity remarka-
bly, which can now be estimated as ( )2O M . However, the space complexity 
remains unchanged at ( )2O M . 

4. Experimental Results 

In this section, some experiments have been conducted to illustrate the capability 
of the proposed model. We fed the proposed model with a one-dimensional test 
data to see if it can produce reasonable results, similar to the one-dimensional 
model. In all experiments, the positions are modeled using truncated normal dis-
tribution with ixµ =  and 1 isσ = . In the following, we will discuss the process 
of selecting a distance measure followed by an overview of the dataset used in 
this study. Subsequently, we will present the outcomes of our proposed method, 
and finally, a case study will be presented to demonstrate the explanability of our 
approach. 
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Table 1. Complexity of different parts of the position function based model. 

Component Complexity 
i
jkv  ( )2O M  

jkv  ( )O M  

µ  ( )O M  

( ),sU i j , ( ),fU i j , ( ),bU i j , ( ),wU i j  ( )2O M  

( )sqU i  ( )O M  

ijp  ( )2O M  

, ,
i
i j dEU  ( )2O M  

,
i
i jEU  ( )2O M  

iR  ( )2O M  

ir  ( )O M  

Offer categories and proposals ( )2O M  

Choosing proposals ( )2O M  
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4.1. Selecting Distance Function 

In this subsection, we compare four different distance functions to find the most 
suitable one for measuring the distance between truncated normal distributions 
as position functions in our model. The four distance measures we considered 
are the Lukaszyk-Karmowsky Distance Function, the Bhattacharyya Distance 
Function, the Cosine Similarity-based Distance Function, and the Normalized 
Similarity Measure based Distance Function. It is worth noting that the suitabil-
ity of each distance function may vary depending on the specific characteristics 
of the distributions being compared. Therefore, it is recommended to perform a 
comprehensive comparison of different distance functions for any given prob-
lem to select the most appropriate one. 

To conduct the comparison, we generated four scenarios of truncated normal 
distributions with different parameters. These scenarios can be seen in Figure 10. 
For each subplot, we calculated the distance between the two truncated normal 
distributions using each of the four distance functions. The results of our compar-
ison are summarized in Table 2 below. The first row in the table shows the para-
meters of the truncated normal distributions used depicted in Figure 10 subplots, 
where (0.2, 0.1) vs (0.3, 0.1) represents the comparison between the truncated 
normal distributions in subplot (a) with means 0.2 and 0.3, and standard devia-
tions 0.1, respectively. 

In our proposed model, we hypothesized that the degree of overlap between 
position functions would inversely affect their distance, i.e., the distance would 
be higher when there is no overlap and lower when the functions share a com-
mon area. Additionally, when comparing two-position functions with similar μ 
but low σ (Figure 10(b) and Figure 10(d)), we expect the distance to approx-
imate the difference between their mean values. Our analysis using Table 1 re-
veals that only the Lukaszyk-Karmowsky distance function satisfies this expecta-
tion, and we have thus selected it for our model. However, it is important to note 
that for some case studies with similar positions like those in Figure 10(b) and 
Figure 10(d), maximum distance may be preferred, and for such situations, the 
cosine similarity or normalized similarity measure based distance function could 
be considered. 

 
Table 2. Comparison of distance functions for truncated normal distributions as position 
functions. 

Distance Measure 
(0.2, 0.1) vs 

(0.3, 0.1) 
(0.2, 0.01) vs 

(0.3, 0.01) 
(0.3, 0.1) vs 

(0.7, 0.1) 
(0.3, 0.01) vs 

(0.7, 0.01) 

Lukaszyk-Karmowsky 0.135 0.100 0.399 0.400 

Bhattacharyya 0.119 12.500 1.999 200.000 

Cosine similarity 0.220 1.000 0.982 1.000 

Normalized similarity 
measure 

0.377 1.000 0.954 1.000 
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Figure 10. Truncated normal functions used for the distance measure selection. 

4.2. Dataset 

The EMU Positions dataset is a collection of data related to the major reforms of 
the Economic and Monetary Union that took place between 2010 and 2015. It 
covers 47 contested policy issues that were negotiated between 28 EU member 
states and significant EU institutions, including their position and salience. The 
dataset was created using various data collection methods, including expert in-
terviews and text analysis, in order to improve the accuracy and comprehen-
siveness of the data [13]. 

The dataset contains information about the positions taken by different actors 
during the negotiation process, as well as the salience of these positions. In the 
online appendix and the codebook, they provide the data and detailed informa-
tion on it. By analyzing this data, researchers can gain insights into the deci-
sion-making process of the EU legislative body, as well as the factors that influ-
ence decision-making. 

It is important to note that the dataset had missing position or salience infor-
mation for some actors in certain issues. Therefore, those actors were eliminated 
from the analysis of those issues. To estimate the actors’ capability in the issues, 
their GDP for the year 2021 was used as a proxy for their level of power. This 
assumption is considered reasonable given that the issues being analyzed are re-
lated to financial and monetary policies. Although the actors’ GDP may have 
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been different at the time the dataset was created, we assume that their relative 
power remains almost the same. Table 3 shows the capability values used for the 
actors present in the issues. 

4.3. Proposed Model Performance  

To evaluate the model’s capability in predicting negotiation problems, we ran 
the model on the EMU position dataset and compared its performance with the 
BDM model and BiLSTM model. In our model, we used a truncated normal dis-
tribution with ixµ =  and σ  proportional to 1 is  as the position function 
for each actor. Equation (40) was used to calculate the sigma value used in the 
position function. We considered 1sp = , 100sm = , and 0.01ε =  as the pa-
rameters. 

( )
1

sp
s im s

σ
ε

=
+

                       (40) 

where is  is actor i’s salience. The parameter ε  is used as denominator offset 
to avoid division by zero, and sp  and sm  are reserved as degrees of freedom 
in the implementation of the position function. For this experiment, the BiLSTM 
architecture had 10 neurons in the first layer and 5 neurons in the second layer. 

The evaluation metric used was the mean absolute error (MAE). Table 4 
shows the comparison of MAE for the proposed model, BDM model, and the 
BiLSTM model. Our position function based model outperformed both the 
BiLSTM model and BDM model with an MAE of 0.2122, indicating its effec-
tiveness in predicting negotiation outcomes. 

 
Table 3. Capability of European Union countries used in EMU position dataset Evalua-
tion. 

Country GDP (in million USD) Country GDP (in million USD) 

Austria 480368.40 Italy 2107702.84 

Belgium 594104.18 Latvia 39853.50 

Bulgaria 84056.31 Lithuania 66445.26 

Croatia 68955.08 Luxembourg 85506.24 

Cyprus 28407.87 Malta 17364.04 

Czechia 281777.89 Netherlands 1012846.76 

Denmark 398303.27 Poland 679444.83 

Estonia 37191.17 Portugal 253663.14 

Finland 297301.88 Romania 284087.56 

France 2957879.76 Slovakia 116527.10 

Germany 4259934.91 Slovenia 61748.59 

Greece 214873.88 Spain 1427380.68 

Hungary 181848.02 Sweden 635663.80 

Ireland 504182.60 UK 3131377.76 
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4.4. Model’s Explainability 

To present the explainability of the proposed model, we employed a one-dimen- 
sional case study from [5]. The issue is to predict the number of years it would 
take for the introduction of emission standards for medium-sized automobiles. 
Table 5 shows the initial capabilities, positions, and salience of the players in-
volved in the problem. Figure 11 depicts the positions of the players after 10 
rounds. The results obtained are in agreement with the findings reported in [6]. 
According to [6], the expected utility model predicted the outcome to be 7.0 
years, while the actual delay was 8.83 years. According to the median voter posi-
tion result, our model predicts the outcome to be 7.0 years. From Figure 11, it 
can be seen that the actors are negotiating during each round until they reach an 
agreement in the final round. For instance, the UK is gradually changing its po-
sition, while Italy is changing its position at a faster pace. Although the capabili-
ty of the UK and Italy is considered equal towards the issue, it can be inferred 
that the UK has more salience towards the issue, which is why it changed its po-
sition at a slower pace than Italy. Another instance could be a comparison be-
tween Denmark and Germany. Since Denmark’s capability is lower than Ger-
many’s, it left its initial position earlier. 

 
Table 4. Comparison of results in the evaluation stage. 

Method MAE 
BiLSTM Model 0.3351 

BDM model 0.2244 
Position function based model 0.2122 

 

 

Figure 11. Players’ positions along x-axis over different rounds in case study I. 
Position X shows the number of years that would need to pass before the intro-
duction of emission standards for medium sized automobiles. 
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Table 5. Input data for case study I. 

Players Capability Salience Position 

Netherlands 0.08 0.8 4 

Belgium 0.08 0.4 7 

Luxembourg 0.03 0.2 4 

Germany 0.16 0.8 4 

France 0.16 0.6 10 

Italy 0.16 0.6 10 

UK 0.16 0.9 10 

Ireland 0.05 0.1 7 

Denmark 0.05 1.0 4 

Greece 0.08 0.7 7 

5. Conclusions and Future Work  

In this paper, we introduce a game theory-based approach for forecasting out-
comes of negotiation and group decision-making problems. We propose an ex-
tension to the BDM model that addresses situations where actors’ positions span 
a spectrum, thus offering increased flexibility in defining their targets. 

We provide comprehensive explanations for the formulation of position func-
tions and distance functions. Utilizing the EMU Positions dataset, we illustrate 
the model’s notable capability to produce superior results when compared to ex-
isting models. By replicating the findings of previous studies, we demonstrate 
the model’s interpretability and its proficiency in providing clear and compre-
hensible explanations. 

Looking forward, our future research will delve into various facets. We plan to 
explore offer selection and the potential for alliance formation. Moreover, we 
intend to employ natural language processing techniques to estimate actors’ de-
sired position functions, which could potentially enhance prediction accuracy. 
Further, conducting additional case studies will be essential to continually assess 
the efficacy of our proposed model. 
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